The disclosed embodiments relates generally to the field of tracks and track assemblies for retractable screens, and more particularly, to self-tensioning magnetic tracks and track assemblies for motorized retractable screens.
Over the past two decades, motorized retractable screens have gained popularity due to their utility and versatility for temporarily enclosing spaces. For example, many restaurants and other businesses having patios/outdoor areas utilize retractable screens to temporarily enclose these areas thereby creating environmentally controlled areas that are shielded from inclement weather conditions (e.g., windy and/or cold weather conditions).
While these retractable screens have great versatility and utility, several problems exist with the currently marketed screens and tracks/track assemblies. For example, the currently marketed tracks and track assemblies are fixed tracks that maintain the screen in a tight, aesthetically pleasing manner once the screen has been deployed. Although these fixed tracks/track assemblies maintain the screen in a tight, aesthetically pleasing manner, these fixed tracks allow for very little play (e.g., expansion and/or contraction) of the screen during, for example, high wind conditions. Consequently, during high wind conditions, these screens may (1) twist, buckle, and/or warp the fixed tracks/track assemblies, (2) damage the screen, or (3) any combination thereof. These problems lead to frequent, costly repairs and/or replacement of the fixed tracks/track assemblies and screens.
Therefore, it is an object of the disclosure to provide tracks and track assemblies that overcome the problems of currently marketed fixed tracks and fixed track screen assemblies. In one of more embodiments, the tracks and track screen assemblies overcome these problems by utilizing a self-tensioning magnet arrangement that allows for expansion and contraction of a screen/shade attached thereto. When compared to currently marketed fixed tracks and fixed track screen assemblies, this self-tensioning magnet arrangement advantageously results in less frequent maintenance of the disclosed tracks/track assemblies while simultaneously increasing screen lifespan.
In one or more embodiments, a set of tracks and track assemblies utilize a novel arrangement of magnets in the track assemblies that allow a screen attached thereto to expand while under high wind pressure/conditions. Specifically, in the track and track assemblies, magnets having opposite polarity separate from one another allowing for screen expansion while subjected to high wind pressure. However, after the high wind pressure subsides, the magnetic attraction of the separated magnets pulls the separated magnets into close proximity relative to one another while concurrently tensioning the screen to provide for an aesthetically pleasing, tight screen.
As another feature, in one of more embodiments, tracks and track assemblies do not have dimensional limitations of screens that can be used in these tracks/track assemblies, and screens covering extremely wide and tall openings, including dimensions of up to 30 feet wide by 24 feet high, may be used with the disclosed tracks and track assemblies.
In one of more embodiments a magnetic track assembly includes an elongate channel having an open side, an end wall, and two parallel side walls; a first magnet disposed within the elongate channel near an interior side of the end wall; a compartment defined within the elongate channel spaced from the first magnet; and a screen receiver disposed within the compartment and including a second magnet arranged facing the first magnet, wherein the first and second magnets are of opposite polarity and the screen receiver is loosely disposed within the compartment such that a magnetic bond is intact between the first and second magnets when the first and second magnets are close together and the magnetic bond is broken when the first and second magnets are pulled apart.
In some embodiments, the screen receiver includes an elongate C-shaped channel opening in a direction opposite the first magnet such that the C-shaped channel is accessible through the open side of the elongate channel. The screen receiver, and more particularly the C-shaped channel opening, are in some implementations adapted to receive a screen interlock including, but not limited to a keder interlock, a zipper interlock, a rope, a beaded chain, or any similar interlock known in the art associated with the disclosed retractable screens.
In one or more embodiments, the compartment is defined by interior partition walls that extend inward from their respective one of the two parallel side walls, and wherein each of the partition walls extend inward a distance less than half a distance between the two parallel side walls.
In some embodiments, the second magnet is outside of the compartment when the magnetic bond between the first and second magnets is intact, and within the compartment when the bond between the first and second magnets is broken.
In one or more embodiments, a width of the screen receiver is less than a width of the compartment such that the screen receiver can be installed at an angle through the open side of the elongate channel.
In one or more embodiments, the elongate channel further includes a secondary channel disposed along one of the two parallel side walls opening in a direction perpendicular to the open side of the elongate channel.
In one or more embodiments, the magnetic track assembly further includes a removable elongate cover covering a length of the secondary channel.
In one or more embodiments, the elongate channel is open at a top and a bottom thereof, and wherein the top and the bottom are covered with removable top and bottom covers, respectively.
In one or more embodiments, the interior compartment has a depth greater than one inch and up to, for example, 2 inches, 3 inches, 4 inches, 5 inches, 6 inches, or 7 inches.
Also disclosed herein is a magnetic track assembly including an elongate channel having an open side, an end wall, and two parallel side walls; a first magnet disposed within the elongate channel near an interior side of the end wall; a compartment defined within the elongate channel spaced from the first magnet; a screen receiver disposed within the compartment, the screen receiver comprising a C-shaped channel opening in a direction of the open side of the elongate channel, and a second magnet arranged facing the first magnet; and a screen tensioner slidably received within the C-shaped channel; wherein the first and second magnets are of opposite polarity and the screen receiver is loosely disposed within the compartment such that a magnetic bond is intact between the first and second magnets when the first and second magnets are close together and the magnetic bond is broken when the first and second magnets are pulled apart.
In one or more embodiments, the screen receiver is adapted to move horizontally within the compartment toward and away from the first magnet.
In one or more embodiments, the compartment is defined by interior partition walls that extend inward from their respective one of the two parallel side walls, and wherein each of the partition walls extend inward a distance less than half a distance between the two parallel side walls.
In one or more embodiments, a width of the screen receiver is less than a width of the compartment such that the screen receiver can be installed at an angle through the open side of the elongate channel.
In one or more embodiments, the elongate channel further includes a secondary channel disposed along one of the two parallel side walls opening in a direction perpendicular to the open side of the elongate channel.
In one or more embodiments, the magnetic track assembly further includes a removable elongate cover covering a length of the secondary channel.
In one or more embodiments, the elongate channel is open at a top and a bottom thereof, and wherein the top and the bottom are covered with removable top and bottom covers, respectively.
In one or more embodiments, the interior compartment has a depth greater than one inch and up to, for example, 2 inches, 3 inches, 4 inches, 5 inches, 6 inches, or 7 inches.
Embodiments of the disclosure can include one or more or any combination of the above features and configurations.
Additional features, aspects and advantages of the disclosure will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the disclosure as described herein. It is to be understood that both the foregoing general description and the following detailed description present various embodiments of the disclosure, and are intended to provide an overview or framework for understanding the nature and character of the disclosure as it is claimed. The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated in and constitute a part of this specification.
These and other features, aspects and advantages of the disclosure are better understood when the following detailed description of the disclosure is read with reference to the accompanying drawings, in which:
In the following detailed description of the embodiments, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the disclosure may be practiced. The embodiments of the present disclosure described below are not intended to be exhaustive or to limit the disclosure to the precise forms in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may appreciate and understand the principles and practices of the present disclosure. It will be understood by those skilled in the art that various changes in form and details may be made without departing from the principles and scope of the invention. It is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures. For instance, although aspects and features may be illustrated in or described with reference to certain figures or embodiments, it will be appreciated that features from one figure or embodiment may be combined with features of another figure or embodiment even though the combination is not explicitly shown or explicitly described as a combination. In the depicted embodiments, like reference numbers refer to like elements throughout the various drawings.
Furthermore, although some disclosed embodiments may be described relative to specific materials, embodiments are not limited to the specific materials or apparatuses but only to their specific characteristics and capabilities and other materials and apparatuses can be substituted as is well understood by those skilled in the art in view of the present disclosure. Moreover, although the disclosed embodiments are primarily described in the context of retractable screen applications, the embodiments are not so limited. In is appreciated that the embodiments may be adapted for use in other applications which may be improved by the disclosed structures, arrangements and/or methods.
It is to be understood that the terms such as “left, right, top, bottom, front, back, side, height, length, width, upper, lower, interior, exterior, inner, outer, and the like as may be used herein, merely describe points of reference and do not limit the present invention to any particular orientation or configuration.
As used herein, the term “or” includes one or more of the associated listed items, such that “A or B” means “A but not B,” and “B but not A.” As used herein, the term “and” includes all combinations of one or more of the associated listed items, such that “A and B” means “A as well as B.” The use of “and/or” includes all combinations of one or more of the associated listed items, such that “A and/or B” includes “A but not B,” “B but not A,” and “A as well as B,” unless it is clearly indicated that only a single item, subgroup of items, or all items are present. The use of “etc.” is defined as “et cetera” and indicates the inclusion of all other elements belonging to the same group of the preceding items, in any “and/or” combination(s).
As used herein, the singular forms “a,” “an,” and “the” are intended to include both the singular and plural forms, unless the language explicitly indicates otherwise. Indefinite articles like “a” and “an” introduce or refer to any modified term, both previously-introduced and not, while definite articles like “the” refer to a same previously-introduced term; as such, it is understood that “a” or “an” modify items that are permitted to be previously-introduced or new, while definite articles modify an item that is the same as immediately previously presented. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including,” when used herein, specify the presence of stated features, characteristics, steps, operations, elements, and/or components, but do not themselves preclude the presence or addition of one or more other features, characteristics, steps, operations, elements, components, and/or groups thereof.
It will be understood that when an element is referred to as being “connected,” “coupled,” “mated,” “attached,” “fixed,” etc. to another element, it can be directly connected to the other element, or intervening elements may be present. In contrast, when an element is referred to as being “directly connected,” “directly coupled,” etc. to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). Similarly, a term such as “communicatively connected” includes all variations of information exchange and routing between two electronic devices, including intermediary devices, networks, etc., connected wirelessly or not.
It will be understood that, although the ordinal terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited to any order by these terms. These terms are used only to distinguish one element from another; where there are “second” or higher ordinals, there merely must be that many number of elements, without necessarily any difference or other relationship. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments or methods.
Similarly, the structures and operations discussed below may occur out of the order described and/or noted in the figures. For example, two operations and/or figures shown in succession may in fact be executed concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved. Similarly, individual operations within example methods described below may be executed repetitively, individually or sequentially, to provide looping or other series of operations aside from single operations described below. It should be presumed that any embodiment or method having features and functionality described below, in any workable combination, falls within the scope of example embodiments.
Disclosed are magnetic tracks and track assemblies that utilize a novel magnet arrangement in the track assemblies that allow magnets to separate thereby allowing an attached screen to expand while under high wind pressure, and after the high wind pressure subsides, magnetic attraction of these separated magnets pulls the separated magnets into close proximity relative to one another thereby tensioning the attached screen to provide an aesthetically pleasing, tight screen. Thus, the novel magnet arrangement of the disclosed magnetic tracks/track assemblies provide a “self-tensioning” system that operates effectively while accounting for fluctuations in weather conditions that advantageously ensures increased screen and track assembly lifespan while currently reducing frequent maintenance (and/or replacement) associated with currently marketed screens, track/track assemblies, or a combination thereof.
Exemplary magnetic tracks/track assemblies 100 are depicted, for example, in
The compartment 146 is adapted to securely receive the removable screen receiver 110 while allowing for movement therein.
As further shown in
For example and as shown in
As shown in
Next and as further shown in
As further shown in
However, as shown in
As further shown in
The screen receiver 110, the elongate channel 140, elongate cover 170, and/or top cover 181 (and bottom cover) may be formed of metal, a thermoplastic resin, or a combination thereof. For example, in certain aspects, the screen receiver 110, the elongate channel 140, elongate cover 170, and/or top cover 181 (and bottom cover) may be formed of a molded thermoplastic/thermoplastic resin sufficient to withstand harsh weather conditions and the movements disclosed herein.
It should be further noted that the screen receiver 110 disclosed herein may be adapted to receive a screen keder through, for example, a C-shaped channel 111. However, the screen receiver 110 may have any desired predetermined shape (e.g., triangular, square, rectangular shape) that can receive screen 200 there through. As alluded to above, the screen receiver 110 may be adapted to receive a zipper interlock, a rope, a beaded chain, or any similar interlock 202 known in the art associated with the disclosed retractable screens.
With reference to
In the arrangement shown, as one example, motorized screen system 10 having magnetic track assemblies 100 includes a housing 12. Housing 12 is formed of any suitable size, shape and design and is configured to house and hold various components of the system 10 so as to facilitate function of the system 10 as well as to provide an aesthetically pleasing appearance, as is further described herein. In the arrangement shown, as one example, housing 12 includes a rear member 14, a top member 16, a front member 18 and end caps 20 having bracket members 22 among other components, features and elements.
In the arrangement shown, as one example, housing 12 includes a rear member 14. Rear member 14 is formed of any suitable size, shape and design and is configured to form a portion of housing 12 and enclose the rear side of housing 12. In the arrangement shown, as one example, rear member 14 is a generally planar shaped member that extends a length between opposing ends. In the arrangement shown, as one example, when housing 12 is installed in a rear-mount application, fasteners 204, such as screws or bolts or the like extend through rear member 14 and into the structure to which housing 12 is installed. In the arrangement shown, as one example, the upper end of rear member 14 connects to the rearward side of top member 16 and the outward ends of rear member 14 connect to end caps 20.
In the arrangement shown, as one example, housing 12 includes a top member 16. Top member 16 is formed of any suitable size, shape and design and is configured to form a portion of housing 12 and enclose the upper side of housing 12. In the arrangement shown, as one example, top member 16 is a generally planar shaped member that extends a length between opposing ends. In the arrangement shown, as one example, when housing 12 is installed in a top-mount application, fasteners 204, such as screws or bolts or the like extend through top member 16 and into the structure to which housing 12 is installed. In the arrangement shown, as one example, the rearward end of top member 16 connects to the upper end of rear member 14, the forward end of top member 16 connects to the upper end of front member 18 and the outward ends of top member 16 connect to end caps 20.
In the arrangement shown, as one example, housing 12 includes a front member 18. Front member 18 may also be referred to or known as in the industry as a fascia. Front member 18 is formed of any suitable size, shape and design and is configured to form a portion of housing 12 and enclose the front side of housing 12. In the arrangement shown, as one example, front member 18 is an elongated member that includes a generally planar portion that forms the upper front side of the front member 18 and a generally planar portion that forms the lower side of the front member 18. In the arrangement shown, the generally planar front portion and the generally planar lower portion extend in approximate perpendicular alignment to one another. In the arrangement shown, a curved corner section connects the lower end of the generally planar front portion and the forward end of the generally planar lower portion. However, any other shape is hereby contemplated for use as front member 18 such as a 90-degree corner section, which provides a different aesthetic appearance. In the arrangement shown, as one example, the upper end of front member 18 connects to the forward end of top member 16 and the outward ends of top member 16 connect to end caps 20.
In the arrangement shown, as one example, rear member 14, top member 16, front member 18 and end caps 20 may connect to one another using connection members 24, such as joints that facilitate the selective connection to and removal from one another. These connection members 24 may be formed of a joint, snap-fit arrangement, hinge, fastener, interlocking features, or any other arrangement of connecting two components together.
In the arrangement shown, as one example, housing 12 includes an end cap 20 positioned at each outward end of housing 12. End caps 20 are formed of any suitable size, shape and design and are configured to form a portion of housing 12 and enclose the outward ends of housing 12. In the arrangement shown, as one example, end caps 20 are generally planar shaped members that connect to the outward ends of rear member 14, top member 16 and front member 18 and enclose the outward ends of housing 12. In the arrangement shown, as one example, when housing 12 is installed in a side-mount application, fasteners 204, such as screws or bolts or the like extend through end caps 20 and into the structure to which housing 12 is installed. In the arrangement shown, as one example, the interior sides of end caps 20 include bracket members 22. Bracket members 22 are formed of any suitable size, shape and design and are configured to facilitate connection of roller tube assembly 26 to housing 12.
In the arrangement shown, as one example, once assembled housing 12 forms a hollow interior 28 that houses and holds roller tube assembly 26 therein. In the arrangement shown, as one example, an opening 30 is positioned between the rearward lower end of front member 18, the forward lower end of rear member 14 and the interior sides of end caps 20. This opening 30, which may also be referred to as a slot, allows for passage of screen 200 to pass there through while the screen 200 is opened and closed.
Any other size, shape, design and configuration is hereby contemplated for use as housing 12. In an alternative arrangement, no housing 12 is used and instead in this arrangement, roller tube assembly 26 is connected to and/or held in place by connection to end caps 20 and/or bracket members 22 alone without the use of rear member 14, top member 16 and/or front member 18.
In the arrangement shown, as one example, motorized screen system 10 having magnetic track assemblies 100 includes a roller tube assembly 26. Roller tube assembly 26 is formed of any suitable size, shape and design and is configured to connect to housing 12 as well as facilitate the connection to screen 200 to housing 12 while facilitating the opening and closing of screen 200.
In the arrangement shown, as one example, roller tube assembly 26 includes a roller tube 32. Roller tube 32 is formed of any suitable size, shape and design. In the arrangement shown, as one example, roller tube 32 is a generally elongated cylindrical member that extends a length between opposing ends 34. In the arrangement shown, as one example, connection members 36 extend outward from ends 34 and facilitate connection to collars 38 that fit over and connect to connection members 36.
In the arrangement shown, as one example, roller tube 32 and/or collars 38 have a generally cylindrical exterior surface of approximate equal diameter and shape and configuration. In the arrangement shown, as one example roller tube 32 and collars 38 include one or more receivers 40 on or in their exterior surface. Receivers 40 are formed of any suitable size, shape and design and are configured to facilitate connection of the upper end of screen 200 to roller tube assembly 26.
More specifically, in one arrangement receiver 40 is formed of the exact same or a similar shape to the C-shaped channel 111 of screen receiver 110 as is described herein with respect to screen receiver 110. In this arrangement, the upper end of screen 200 includes an interlock that is similar to, if not exactly the same as, the interlock 202 described herein that is present at the sides of screen 200 as is shown in
To be clear, just like interlock 202 at the sides of screen 200, the interlock at the upper end of screen 200 may be formed of any form of an interlock including, but not limited to a keder interlock, a zipper interlock, a rope, a beaded chain, or any similar interlock known in the art associated with the disclosed retractable screens. Similarly, receiver 40 may be formed of any corresponding size, shape and design and is configured to receive and hold the interlock at the upper end of screen 200. In the arrangement shown, as one example, the interlock at the upper end of screen 200 is a rounded or generally cylindrical member when viewed from the side and the receiver 40 is a similarly shaped rounded or generally cylindrical opening in roller tube assembly 26 (roller tube 32 and collars 38) that connects to a slot that allows the passage of the screen 200 through the slot while retaining the interlock within the generally cylindrical opening in the roller tube assembly 26.
In the arrangement shown, as one example, two different shaped receivers 40 are shown in the exterior surface of roller tube 32 and collars 38. However, any number of receivers 40 are hereby contemplated for use in the exterior surface of roller tube 32 and collars 38 such as one, two, three, four, five, six or more. Alternatively, it is hereby contemplated that no receivers 40 are used and instead screen 200 is connected to roller tube assembly 26 by any other manner, method or means.
Also, in the arrangement shown, roller tube assembly 26 includes a hollow interior as well as a plurality of structural features that provide roller tube assembly 26 with structural rigidity while minimizing material usage and weight.
In the arrangement shown, as one example, motorized screen system 10 having magnetic track assemblies 100 includes a motor assembly 42. Motor assembly 42 is formed of any suitable size, shape and design and is configured to facilitate motorized operation of motorized screen system 10.
Motor assembly 42 may be formed of any form of a motor and may be connected to roller tube assembly 26 in any manner that facilitates rotation of roller tube assembly 26. In the arrangement shown, as one example, motor assembly 42 is an electric motor that is positioned within the hollow interior of roller tube assembly 26 adjacent an end of roller tube assembly 26. Positioning motor assembly 42 within the hollow interior of roller tube assembly 26 provides a sleek arrangement wherein motor assembly 42 is contained within other components of the motorized screen system 10 thereby minimizing the size and space requirements for the system 10.
In one arrangement, as is shown, motor assembly 42 is a self-contained assembly including a motor, gear assembly, drive wheel and electronic controller assembly, among other components. In this self-contained assembly arrangement, with the installation of a single component, the motor assembly 42, within roller tube assembly 26 the system 10 is motorized which provides convenience, minimal installation, case of use and an aesthetic appearance. In one arrangement, motor assembly 42 is controlled by wired control by passing control signals to the motor assembly 42 through a wired connection. In another arrangement, motor assembly 42 is controlled by wireless control by passing control signals to the motor assembly 42 through a wireless connection to an antenna connected to motor assembly. In another arrangement, motor assembly 42 is controlled by both wired control by passing control signals to the motor assembly 42 through a wired connection, as well as by wireless control by passing control signals to the motor assembly 42 through a wireless connection to an antenna connected to motor assembly.
In one arrangement, motor assembly 42 is connected to an external power source by a wired connection such as by connection to line power of a house or building thereby providing motor assembly 42 an unlimited power source. Alternatively, motor assembly 42 is connected to a battery power source, a solar module or solar cell, or any combination thereof such as connection to line power with battery back-up and a solar cell for recharging the batteries is hereby contemplated for use.
In the arrangement shown, as one example, once the roller tube assembly 26 is assembled, with motor assembly 42 therein, the roller tube assembly 26 is installed within the hollow interior 28 of housing 12. In doing so, the outward ends of roller tube assembly 26 are connected to the bracket members 22 of end caps 20 and the roller tube assembly 26 is able to rotate within the hollow interior 28 of housing 12 thereby raising and/or lowering the screen 200 through opening 30 thereby raising and/or lowering bottom bar 44 along with screen 200.
With reference to
In the arrangement shown, as one example, motorized screen system 10 having magnetic track assemblies 100 includes a bottom bar assembly 44. Bottom bar assembly 44 is formed of any suitable size, shape and design and is configured to connect to the lower end of screen 200 while providing sufficient weight to the lower end of screen 200 to facilitate smooth opening and closing while also keeping the lower end of screen 200 flat and straight.
In the arrangement shown, as one example, bottom bar assembly 44 includes a bottom bar 46 that is formed of an elongated member that extends a length between opposing ends 48 and includes a hollow interior 50 that is configured to receive a weight bar 52 (not shown) therein that adds weight to the bottom bar assembly 44. The lower end of bottom bar 46 includes a channel 54 that is configured to receive and hold a sealing member 56 therein that is configured to seal the lower end of bottom bar 46 to the ground when the bottom bar 46 is in a fully lowered or closed position. Sealing member 56 may be formed of any device that facilitates a seal such as a piece of woolpile, a strip of foam, a rubber strip, or any form of a sealing member or other compressible member that helps to facilitate a seal when the bottom bar 46 is in a fully lowered position.
In the arrangement shown, as one example bottom bar assembly 44 includes a receiver 58. Receiver 58 is formed of any suitable size, shape and design and is configured to facilitate connection of the lower end of screen 200 to bottom bar assembly 44.
More specifically, in one arrangement receiver 58 is formed of the exact same or a similar shape to the C-shaped channel 111 of screen receiver 110, and/or the receiver 40 as is described herein with respect to screen receiver 110 and/or roller tube assembly 26, respectively. In this arrangement, the lower end of screen 200 includes an interlock that is similar to, if not exactly the same as, the interlock 202 described herein that is present at the sides of screen 200 as is shown in
To be clear, just like interlock 202 at the sides of screen 200, the interlock at the lower end of screen 200 may be formed of any form of an interlock including, but not limited to a keder interlock, a zipper interlock, a rope, a beaded chain, or any similar interlock known in the art associated with the disclosed retractable screens. Similarly, receiver 58 may be formed of any corresponding size, shape and design and is configured to receive and hold the interlock at the lower end of screen 200. In the arrangement shown, as one example, the interlock at the lower end of screen 200 is a rounded or generally cylindrical member when viewed from the side and the receiver 58 is a similarly shaped rounded or generally cylindrical opening in bottom bar assembly 44 (or bottom bar 46) that connects to a slot that allows the passage of the screen 200 through the slot while retaining the interlock within the generally cylindrical opening in the bottom bar assembly 44.
In the arrangement shown, as one example, only a single receiver 58 shown in the bottom bar assembly 44. However, any number of receivers 58 are hereby contemplated for use in the bottom bar assembly 44 such as one, two, three, four, five, six or more. Alternatively, it is hereby contemplated that no receivers 58 are used and instead screen 200 is connected to bottom bar assembly 44 by any other manner, method or means.
In the arrangement shown, as one example, weight bar probes 60 are attached to the outward edges of the lower end of screen 200. These weight bar probes 60 are then inserted within the hollow interior 50 of bottom bar 46. In the arrangement shown, as one example, weight bar probes 60 include a slot 62 that receives the lower end of the interlock of screen 200 at the outward sides of screen 200. In the arrangement shown, as one example, weight bar probes 60 are tightened to screen 200 using fasteners 64 such as screws of bolts or the like thereby securing the weight bar probes 60 in place on the lower end of screen 200. In one arrangement, the attachment of weight bar probes 60 to the lower end of screen 200 helps to facilitate a tight and/or taut lower end of screen 200.
With reference to
In the arrangement shown, as one example, motorized screen system 10 having magnetic track assemblies 100 shown in
One difference between the arrangement shown in
As another way to reduce the cost of magnets 113, 145, in an alternative arrangement, only a single magnet 113, 145 is used. That is, instead of having two magnets 113, 145 aligned with one another that attract toward one another with one magnet 113 attached to the screen receiver 110 and one magnet 145 attached with the elongate channel 140, only a single magnet 113, 145 is used. In this arrangement, a single magnet 113, 145 is attached to one of the screen receiver 110 or elongate channel 140 opposite a piece of magnetic material, such as a piece of ferrous material (such as steel, iron, or the like) attached to the other of the screen receiver 110 or elongate channel 140. In this arrangement, when the aligned magnet 113, 145 comes within close proximity of the piece of magnetic material (such as a piece of ferrous material such as steel, iron, or the like), the magnet 113, 145 and piece of magnetic material attract toward one another through magnetic attraction thereby providing the desired self-tightening of the screen 200 with the use of less magnets 113, 145.
In one arrangement, the piece of magnetic material is formed of the same size and shape as the opposing magnet 113, 145, the main difference being that the piece of magnetic material is not a magnet or is not permanently magnetized. As the piece of magnetic material is not a magnet, the cost of the piece of magnetic material is substantially less than magnet 113, 145
Notably, in one arrangement, the screen receiver 110 and elongate channel 140 are formed of a material that is non-magnetic in nature such as aluminum or a composite material such as plastic, fiberglass or the like that does not form a magnetic bond with a magnet. As such, the addition of the piece of magnetic material, aligned opposite with the position of the magnet 113, 145 on the other component, forms a track assembly 100 where the screen receiver 110 and elongate channel 140 are magnetically attracted to one another which facilitates the self-tightening of screen 200.
Using a combination of magnets 113, 145 and opposing magnetic materials, in one arrangement, the magnets 113, 145 are all connected to one of the screen receiver 110 or elongate channel 140 while the pieces of magnetic material are all connected to the other of the screen receiver 110 or elongate channel 140. In another arrangement, the magnets 113, 145 and pieces of magnetic material switch between being connected to the screen receiver 110 and the elongate channel 140. That is, in one arrangement, for each set of magnets 113, 145 and magnetic materials, the magnet 113, 145 and piece of magnetic material switch sides. Any other arrangement or combination is hereby contemplated for use, as is any combination of opposing magnets 113, 145 in some spots of the magnetic track assembly 100 (such as top, bottom or middle) and the use of magnets 113, 145 on one side and a piece of magnetic material on the other side. That is, as one example, the top and bottom of track assembly 100 have opposing magnets 113, 145 whereas between the top and bottom of track assembly 100 a magnet 113, 145 is on one side opposite a piece of magnetic material. Again, any combination or arrangement of magnets 113, 145 and magnetic materials is hereby contemplated for use
One of the substantial benefits of the motorized screen system 10 is that it allows the inward movement of the outward sides of screen 200 when a force is applied to the screen 200, such as when a strong wind blows upon screen 200, while also retaining a taut screen 200. This is accomplished by the unending and unrelenting magnetic attraction between screen receivers 110 and elongate channels 140. This unending and unrelenting magnetic attraction between screen receivers 110 and elongate channels 140 pulls screen receivers 110 outward and into elongate channels 140 thereby tightening screen 200.
In a natural state, the magnetic attraction between the magnets 113, 145 of screen receivers 110 and elongate channels 140 pulls the screen receivers outward and into the elongate channels 140 thereby pulling the sides of the screen 200 outward as well. In this outward most position, the outward ends 114, 115 of screen receiver 110 are directly engaged with the outward most partitions, or back partitions 149, 150. This engagement stops the outward movement of screen receivers 110. However, when a force is applied to screen 200, the force of the magnetic attraction between screen receiver 110 and elongate channel 140 is overcome and thereby pulling the screen receiver 110 inward or away from the end wall 142 of elongate channel 140 toward the inward most partitions, or front partitions 147, 148. This inward movement of screen receiver 110 continues until the outward ends 114, 115 of screen receiver 110 are directly engaged with the inward most partitions, or front partitions 147, 148. This engagement stops the inward movement of screen receivers 110.
The outward ends 114, 115 of screen receiver 110 remain engaged with the inward most partitions, or front partitions 147, 148 until the force on screen 200 reduces and the force of the magnetic attraction between screen receiver 110 and elongate channel 140 again pulls the screen receiver 110 into the elongate channel 140. This outward movement of screen receiver 110 continues until the outward ends 114, 115 of screen receiver 110 again are engaged with the outward most partitions, or back partitions 149150, at which point the magnetic attraction between screen receiver 110 and elongate channel 140 continues to hold until another greater force is applied to screen 200.
This process repeats itself over and over again with screen receivers 110 moving laterally within compartment 146 between a fully outward position, wherein the outward ends 114, 115 of screen receiver 110 are directly engaged with the outward most partitions, or back partitions 149, 150, and a fully inward position, wherein the outward ends 114, 115 of screen receiver 110 engages the inward most partitions, or front partitions 147, 148. While it is desirable to allow for the inward movement of screen receivers 110 when a force is applied to the screen 200, each time the screen receiver 110 engages the inward most partitions or front partitions 147, 148 and each time the screen receiver 110 engages the outward most partitions or back partitions 149, 150 an undesirable noise is generated, such as a clicking or clacking or the like noise. On a blustery day, where screen 200 is repeatedly engaged by force or wind, this repeated noise can become very bothersome or annoying. This noise is exasperated or made worse in the arrangement when the screen receiver 110 and/or elongate channel 140 are formed of a metallic material, such as aluminum or the like. This metal-on-metal engagement between screen receiver 110 and the partitions 147, 148, 149 and 150 of elongate channel 140 can be sharp, high-pitched, and loud, especially when abrupt and/or fast movements of screen 200 occur.
In one arrangement as is shown, to alleviate or reduce this noise, all or a portion of inward most partitions, or front partitions 147, 148 and/or all or a portion of outward most partitions or back partitions 149, 150 are covered by a liner 66.
Liner 66 is formed of any suitable size, shape and design and is configured to reduce the noise generated when a force (such as wind) is applied to or removed from screen 200 thereby causing movement of screen receiver 110 within compartment 146 of elongated channel 140. More specifically, in one arrangement, liner 66 is configured to reduce the noise generated when the outward ends 114, 115 of screen receiver 110 engages the inward most partitions, or front partitions 147, 148. In another arrangement, liner 66 is configured to reduce the noise generated when the outward ends 114, 115 of screen receiver 110 engages the outward most partitions, or back partitions 149, 150. In yet another arrangement, liner 66 is configured to reduce the noise generated when the outward ends 114, 115 of screen receiver 110 engages the inward most partitions, or front partitions 147, 148 as well as when the outward ends 114, 115 of screen receiver 110 engages the outward most partitions, or back partitions 149, 150.
In one arrangement, liner 66 is formed of a noise-reducing non-metallic material such as rubber, plastic, synthetic rubber, fiberglass, an ultra-high molecular weight material (UHMW), a composite material, a foam material, a compressible material, or any combination thereof. In one arrangement, liner 66 is partially compressible, or is not as rigid as the metallic material that forms screen receiver 110 and/or elongate channel 140 (which includes partitions 147, 148, 149 and 150). In one arrangement, the presence of the non-metallic and/or partially compressible material of liner 66 positioned between the engaging screen receiver 110 and elongate channel 140 reduces the noise generated by eliminating the metal-on-metal contact and/or by decelerating the engagement between the engaging screen receiver 110 and elongate channel 140.
In the arrangement shown, as one example, a liner 66 is positioned to fit around all or a portion of inward most partitions, or front partitions 147, 148. In this arrangement, liner 66 extends in a generally continuous manner along the vertical length of inward most partitions or front partitions 147, 148 which themselves extend all or a portion of the length of elongate channel 140. In the arrangement shown, as one example, the outward facing surface of inward most partitions or front partitions 147, 148 (the portion that faces screen receiver 110 when screen receiver is positioned within compartment 146) is generally flat and flush and in planar spaced relation to the inward facing surface of the outward ends 114, 115 of screen receiver 110. This causes a flat and flush engagement between the inward facing surface of the outward ends 114, 115 of screen receiver 110 and the outward facing surface of inward most partitions or front partitions 147, 148 which serves as an abrupt stop-surface to the inward motion of screen receiver 110.
This abrupt stop is good for setting a defined stop-point for the inward motion of screen receiver 110, as well as being good for allowing for a clean release once the force on screen 200 subsides (thereby allowing screen receiver 110 to return to a fully outward and taut position). However, this abrupt stop causes the generation of loud noise (or louder than may be desirable) when it occurs.
When this engagement occurs, with liner 66 between inward facing surface of the outward ends 114, 115 of screen receiver 110 and the outward facing surface of inward most partitions or front partitions 147, 148, the noise is greatly reduced due to the elimination of metal-on-metal contact, slowed deceleration, a muffling effect, among other physical principals. The slightly slowed deceleration can also have an effect of reducing the wear and tear on the components of the system 10, such as screen 200, screen receiver 110, elongate channel 140 and the like.
It is worth noting that while the outward facing surfaces of inward most partitions or front partitions 147, 148 are generally flat, the inward facing surfaces are angled. That is, in the arrangement shown, the outward facing surfaces of inward most partitions or front partitions 147, 148 are generally perpendicular to the vertical length of track assemblies 100, compartment 146 and screen receiver 110. These flat and perpendicular surfaces facilitate a clear, defined and clean stop surface for screen receiver 110 when it moves inward. In contrast, the inward facing surfaces of inward most partitions or front partitions 147, 148 are generally angled inward toward the center of the hollow interior of compartment 146 positioned within elongate channel 140. These angled surfaces, or chamfered surfaces help facilitate the insertion of screen receiver 110 within the compartment 146 within elongate channel 140.
As is described further herein, screen receiver 110 may be inserted within compartment 146 after the elongate channel 140 is installed by rotating screen receiver 110 at an angle to elongate channel 140 and moving screen receiver 110 within compartment 146. The angled interior facing surfaces of inward most partitions or front partitions 147, 148 help to facilitate this insertion. Once screen receiver 110 is positioned within compartment 146 of elongate channel 140 the screen receiver 110 is again rotated back to be in parallel alignment with the elongate channel 140. In this position, the outward facing surfaces of inward most partitions or front partitions 147, 148 prevent the escape of screen receiver 110 from the compartment 146 of elongate channel 140.
In the arrangement shown, as one example, liner 66 fits around and is frictionally held in place around the inward most partitions or front partitions 147, 148 through the dimensions, shape and tolerances of liner 66 and inward most partitions or front partitions 147, 148. In the arrangement shown, as one example, liner 66 is formed of a generally slender layer of material, that is of generally consistent shape or thickness that extends from an inward end to an outward end. In the arrangement shown, as one example, a groove is positioned at the intersection of the interior-facing surface of parallel side walls 143, 144 and inward most partitions or front partitions 147, 148. In the arrangement shown, as one example, the inward end and outward end of liner 66 is received with or engages these grooves thereby frictionally holding liner 66 onto inward most partitions or front partitions 147, 148. Any other manner, method or means of connecting two components together is hereby contemplated for use between inward most partitions or front partitions 147, 148 and liner 66 such as the use of adhesives, fasteners, snap-fit features, over-molding or any other manner, method or means.
In the arrangement shown, as one example, a liner 66 is positioned to fit around all or a portion of outward most partitions, or back partitions 149, 150. In this arrangement, liner 66 extends in a generally continuous manner along the vertical length of outward most partitions, or back partitions 149, 150 which themselves extend all or a portion of the length of elongate channel 140. In the arrangement shown, as one example, the inward facing surface of outward most partitions, or back partitions 149, 150 (the portion that faces screen receiver 110 when screen receiver is positioned within compartment 146) is generally flat and flush and in planar spaced relation to the outward facing surface of the outward ends 114, 115 of screen receiver 110. This causes a flat and flush engagement between the outward facing surface of the outward ends 114, 115 of screen receiver 110 and the inward facing surface of outward most partitions, or back partitions 149, 150 which serves as an abrupt stop-surface to the outward motion of screen receiver 110.
This abrupt stop is good for setting a defined stop-point for the outward motion of screen receiver 110, as well as being good for allowing for a clean release once the force on screen 200 is applied (thereby allowing screen receiver 110 to move inward). However, this abrupt stop causes the generation of loud noise (or louder than may be desirable) when it occurs.
When this engagement occurs, with liner 66 between outward facing surface of the outward ends 114, 115 of screen receiver 110 and the inward facing surface of outward most partitions, or back partitions 149, 150, the noise is greatly reduced due to the elimination of metal-on-metal contact, slowed deceleration, a muffling effect, among other physical principals. The slightly slowed deceleration can also have an effect of reducing the wear and tear on the components of the system 10, such as screen 200, screen receiver 110, elongate channel 140 and the like.
In the arrangement shown, as one example, liner 66 fits around and is frictionally held in place around the outward most partitions, or back partitions 149, 150 through the dimensions, shape and tolerances of liner 66 and outward most partitions, or back partitions 149, 150. In the arrangement shown, as one example, liner 66 is formed of a generally slender layer of material, that is of generally consistent shape or thickness that extends from an inward end to an outward end. In the arrangement shown, as one example, the liner reaches around a portion of outward most partitions, or back partitions 149, 150 thereby frictionally holding itself upon outward most partitions, or back partitions 149, 150. Any other manner, method or means of connecting two components together is hereby contemplated for use between outward most partitions, or back partitions 149, 150 and liner 66 such as the use of adhesives, fasteners, snap-fit features, over-molding or any other manner, method or means.
In the arrangement shown, as one example, a liner 66 is positioned to fit around all or a portion of outward ends 114, 115 of screen receiver 110. This includes all or a portion of the inward facing surface of outward ends 114, 115 of screen receiver 110 and/or all or a portion of the outward facing surface of outward ends 114, 115 of screen receiver 110. In this arrangement, liner 66 extends in a generally continuous manner along the vertical length of the outward ends 114, 115 of screen receiver 110 which themselves extend all or a portion of the length of screen receiver 110.
In the arrangement shown, as one example, the inward facing side and outward facing side of the outward ends 114, 115 of screen receiver 110 includes a generally flat surface and rounded ends. The generally flat inward facing surface of the outward ends 114, 115 of screen receiver 110 is configured to engage the generally flat outward facing surface of inward most partitions or front partitions 147, 148 when screen receiver 110 is in a fully inward position (such as when a force is applied to screen 200). The generally flat outward facing surface of the outward ends 114, 115 of screen receiver 110 is configured to engage the generally flat inward facing surface of outward most partitions or back partitions 149, 150 when screen receiver 110 is in a fully outward position (such as when no force is applied to screen 200).
This causes a flat and flush engagement between the outward facing surface of the outward ends 114, 115 of screen receiver 110 and the inward facing surface of outward most partitions, or back partitions 149, 150 which serves as an abrupt stop-surface to the outward motion of screen receiver 110. This causes a flat and flush engagement between the inward facing surface of the outward ends 114, 115 of screen receiver 110 and the outward facing surface of inward most partitions or front partitions 147, 148 which serves as an abrupt stop-surface to the inward motion of screen receiver 110.
This abrupt stop is good for setting a defined stop-point for the outward motion as well as the inward motion of screen receiver 110, as well as being good for allowing for a clean release once the forces change. However, this abrupt stop causes the generation of loud noise (or louder than may be desirable) when it occurs.
When this engagement occurs, with liner 66 between outward facing surface and/or inward facing surface of the outward ends 114, 115 of screen receiver 110, the noise is greatly reduced due to the elimination of metal-on-metal contact, slowed deceleration, a muffling effect, among other physical principals. The slightly slowed deceleration can also have an effect of reducing the wear and tear on the components of the system 10, such as screen 200, screen receiver 110, elongate channel 140 and the like.
In the arrangement shown, as one example, liner 66 fits around and is frictionally held in place around the outward ends 114, 115 of screen receiver 110 through the dimensions, shape and tolerances of liner 66 and outward ends 114, 115 of screen receiver 110. In the arrangement shown, as one example, liner 66 is formed of a generally slender layer of material, that is of generally consistent shape or thickness that extends from an inward end to an outward end. In the arrangement shown, as one example, the liner reaches around a portion of outward ends 114, 115 of screen receiver 110 thereby frictionally holding itself upon outward ends 114, 115 of screen receiver 110. Any other manner, method or means of connecting two components together is hereby contemplated for use between outward ends 114, 115 of screen receiver 110 and liner 66 such as the use of adhesives, fasteners, snap-fit features, over-molding or any other manner, method or means.
Various liners 66 have been described herein. These liners 66 have been described as being positioned to fit around all or a portion of inward most partitions, or front partitions 147, 148, around all or a portion of outward most partitions, or back partitions 149, 150, and/or around all or a portion of outward ends 114, 115 of screen receiver 110. Any combination of these liners 66 are hereby contemplated for use. As one example, it is hereby contemplated for use that liners 66 may only be used in association with inward most partitions, or front partitions 147, 148. As another example, it is hereby contemplated for use that liners 66 may only be used in association with outward most partitions, or back partitions 149, 150. As another example, it is hereby contemplated for use that liners 66 may only be used in association with outward ends 114, 115 of screen receiver 110.
In one arrangement, only one of screen receiver 110 and inward most partitions, or front partitions 147, 148 or outward most partitions, or back partitions 149, 150 include a liner 66 thereon when engagement occurs. This is desirable as this reduces the noise generated as one layer of liner 66 is positioned between the metal components of screen receiver 110 and elongate channel 140.
In another arrangement, both of screen receiver 110 and inward most partitions, or front partitions 147, 148 or outward most partitions, or back partitions 149, 150 include a liner 66 thereon when engagement occurs. This is desirable as this reduces the noise generated as two layers of liner 66 are positioned between the metal components of screen receiver 110 and elongate channel 140. This arrangement may reduce the noise generated more than only having a single layer of liner 66 as two layers of liners 66 engage one another. With reference to
With reference to
With reference to
As force is applied to screen 200 the force of the magnetic attraction is overcome and the screen receiver 110 moves inward pulled by the engagement of interlock 202 with c-shaped channel 111. As the screen receiver 110 moves inward the inward facing surfaces of the outward ends 114, 115 engage the outward facing surfaces of inward most partitions, or front partitions 147, 148. When no liners 66 are present, a loud noise or louder than is desired, is generated. When one liner 66 is present between the engagement between screen receiver 110 and elongate channel 140 the noise generated is reduced by the elimination of metal-on-metal contact and/or by the reduced deceleration and compressible nature of liner 66. When two liners 66 are present between the engagement between screen receiver 110 and elongate channel 140 the noise generated is reduced even further by the elimination of metal-on-metal contact and/or by the reduced deceleration and compressible nature of two layers of liner 66.
In one arrangement, system 10 is used in association with a hurricane bracket 220. Hurricane bracket 220 is formed of any suitable size, shape and design and is configured to strengthen system 10 so that it can withstand hurricane strength winds.
In many applications of system 10, hurricanes and other wind events are present. To combat damage from hurricanes, as well as to meet hurricane building codes, in one arrangement, a hurricane bracket 220 is used which strengthens magnetic track assembly 100, or more specifically elongate channel 140, so that it will not deform and allow screen receiver 110 to escape the hollow compartment 146 of elongate channel 140 even under the strongest of winds.
With reference to
In the arrangement shown, as one example, end wall 222 extends a length rearward of rearward wall 226 so as to provide additional surface area to engage frame member 208 upon installation as well as to provide increased resistance to rotation upon strong winds as well as to provide additional areas to pass fasteners 204 through hurricane bracket 220 and into frame member 208 for additional strength. In an alternative arrangement, end wall 222 may extend past the forward side of forward wall 224 (that is the parts can be reversed with the outward extension of end wall 222 extending into or outward from the building the hurricane bracket 220 is attached to. In yet another alternative arrangement, end wall 222 may extend past the forward side of forward wall 224 as well as the rearward side of rearward wall 226 to provide even greater surface area and strength. Any other size, shape and/or configuration is hereby contemplated for use with hurricane bracket 220.
With reference to
In one arrangement, when hurricane bracket 220 is use, an extra-strength screen material 200 is used that is strong enough to withstand hurricane force winds. In one arrangement, a ballistic material such as Kevlar, an aramid, an ultra-high-molecular-weight polyethylene, or a similarly strong material is used as screen material 200 such that the strength of the screen material 200 matches the strength of the combined magnetic track assembly 100 and hurricane bracket 220.
In one arrangement, system 10 is used in association with funnel 240. Funnel 240 is formed of any suitable size, shape and design and is configured help facilitate the insertion of screen material 200 into the C-shaped channel 111 of screen receiver 110, or more specifically to help facilitate the insertion of the interlock 202 of screen material 200 into the C-shaped channel 111 of screen receiver 110.
In the arrangement shown, as one example, with reference to
In the arrangement shown, as one example, the sides of arm 242 of funnel 240 includes a plurality of recesses 244 that allow the edges of the slot that arm 242 is inserted into to be crimped inward thereby locking funnel 240 in place and preventing funnel 240 from coming off of screen receiver 110. However, any other manner, method or means of connecting funnel 240 to screen receiver 110 is hereby contemplated for use such as fastening, screwing, bolting, welding, crimping, pinning, adhering, friction fitting or the like.
In the arrangement shown, as one example the cone at the upper end of funnel 240 includes a slot 246. In the arrangement shown, as one example, when arm 242 of funnel 240 is inserted within the slot of screen receiver 110, the slot 246 of funnel 240 aligns with the slot in C-shaped channel 111 of screen receiver 110 thereby providing access for interlock 202 of screen material 200 into the slot of screen receiver 110 as the screen material 200 passes through the slot 246 of funnel 240.
The installation of funnel 240 eases the insertion of screen material 200 and interlock 202 into screen receiver 110. In addition, by adding funnel 240 as a second separate piece, funnel 240 may be formed of a different material than screen receiver 110. In one arrangement, screen receiver 110 is formed of a metallic material, such as aluminum or an aluminum alloy which provides superior strength and rigidity and durability while also being relatively lightweight, while funnel 240 is formed of a non-metallic material such as plastic, composite, nylon, fiberglass, ceramic or another material that may provide a smooth surface with a relatively low coefficient of friction that is easy on the screen material 200 while being durable. This configuration reduces the cost of the system 10 while improving performance and longevity.
The foregoing description provides embodiments of the invention by way of example only. It is envisioned that other embodiments may perform similar functions and/or achieve similar results. Any and all such equivalent embodiments and examples are within the scope of the present invention and are intended to be covered by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 18/626,671 filed on Apr. 4, 2024 which is a continuation of U.S. patent application Ser. No. 17/862,861 filed on Jul. 12, 2022; which is a continuation of U.S. patent application Ser. No. 16/932,069 filed on Jul. 17, 2020; which claims priority to U.S. Provisional Application No. 62/877,083 filed Jul. 22, 2019 and titled SELF-TENSIONING MAGNETIC TRACKS AND TRACK ASSEMBLIES and which is a continuation-in-part of U.S. patent application Ser. No. 16/024,972 filed Jul. 2, 2018; which is a continuation of U.S. patent application Ser. No. 15/646,223 filed Jul. 11, 2017; which is a continuation of U.S. patent application Ser. No. 15/227,345 filed Aug. 3, 2016; all of which are hereby fully incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
62877083 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18626671 | Apr 2024 | US |
Child | 18776673 | US | |
Parent | 17862861 | Jul 2022 | US |
Child | 18626671 | US | |
Parent | 16932069 | Jul 2020 | US |
Child | 17862861 | US | |
Parent | 15646223 | Jul 2017 | US |
Child | 16024972 | US | |
Parent | 15227345 | Aug 2016 | US |
Child | 15646223 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16024972 | Jul 2018 | US |
Child | 16932069 | US |