Self test of MEMS gyroscope with ASICs integrated capacitors

Information

  • Patent Grant
  • 9069006
  • Patent Number
    9,069,006
  • Date Filed
    Tuesday, February 12, 2013
    11 years ago
  • Date Issued
    Tuesday, June 30, 2015
    9 years ago
Abstract
An apparatus includes a MEMS gyroscope sensor including a first sensing capacitor and a second sensing capacitor and an IC. The IC includes a switch circuit configured to electrically decouple the first sensing capacitor from a first input of the IC and electrically couple the second sensing capacitor to a second input of the IC, and a capacitance measurement circuit configured to measure capacitance of the second sensing capacitor of the MEMS gyroscope sensor during application of a first electrical signal to the decoupled first capacitive element.
Description
BACKGROUND

Micro-electromechanical systems (MEMS) include small mechanical devices performing electrical and mechanical functions that are fabricated using photo-lithography techniques similar to techniques used to fabricate integrated circuits. Some MEMS devices are sensors that can detect motion such as an accelerometer or detect angular rate such as a gyroscope. A capacitive MEMS gyroscope undergoes a change in capacitance in response to a change in angular rate. Production of MEMS gyroscope sensors involves testing that should quickly detect any faults in the manufactured devices.


OVERVIEW

This document discusses, among other things, devices, systems, and methods to interface with MEMS sensors. An apparatus example includes an IC and a MEMS gyroscope sensor that includes a first sensing capacitor and a second sensing capacitor. The IC includes a switch circuit configured to electrically decouple the first sensing capacitor from a first input of the IC and electrically couple the second sensing capacitor to a second input of the IC, and a capacitance measurement circuit configured to measure capacitance of the second sensing capacitor of the MEMS gyroscope sensor during application of a first electrical signal to the decoupled first capacitive element.


This section is intended to provide an overview of subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive explanation of the invention. The detailed description is included to provide further information about the present patent application.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example and not by way of limitation, various embodiments discussed in the present document.



FIG. 1 is an illustration of a block diagram of portions of an example of a MEMS sensor and an integrated circuit.



FIG. 2 is a flow diagram of an example of a method of implementing self test of a MEMS sensor.



FIG. 3 is an illustration of an example of a circuit to test a MEMS sensor.



FIG. 4 is an illustration of another example of a circuit to test a MEMS sensor.





DETAILED DESCRIPTION


FIG. 1 is a block diagram of portions of an example of an electronic system that includes a MEMS sensor 105 and an IC 110. The MEMS sensor can include a MEMS gyroscope, such as a vibratory gyroscope for example. A vibratory gyroscope can include a proof mass that is suspended above a substrate. The proof mass oscillates mechanically in a drive direction and in a sense direction orthogonal to the drive direction. The proof mass is driven into resonance in the drive direction by an external drive source. When the gyroscope is subjected to an angular rotation, a Coriolis force or Coriolis effect is induced in the sense direction that is detected using sensing capacitors.


In FIG. 1, the sensing capacitors Cgp and Cgn represent the gyroscope Coriolis sense outputs to the IC 110. Capacitors Cgsp and Cgsn are drive sense capacitors. These capacitors are used to monitor a drive loop included in the MEMS gyroscope sensor 105 and IC 110. The gyro drive loop includes, among other things, the drive capacitors (not shown) of the MEMS gyroscope sensor 105, an output driver amplifier circuit (not shown) of the IC 110 to generate mechanical oscillation of the MEMS gyroscope sensor 105, and an automatic gain control (AGC) circuit (not shown). The AGC circuit adjusts the electrostatic force provided by the output driver amplifier circuit to maintain the mechanical oscillation to a target value. Drive sense capacitors Cgsp and Cgsn are used to sense the amplitude of the oscillation of the MEMS gyroscope sensor 105. The gyro drive loop also includes the top capacitor-to-voltage (C2V) sensor circuit 120 and the phase shift circuit 125. The top C2V sensor circuit 120 converts capacitance of Cgsp and Cgsn to a voltage signal that can be observed to sustain the oscillation maintained by the gyro drive loop.


The bottom C2V sensor circuit 130 converts the capacitance of the Coriolis sensing capacitors Cgp and Cgn to a voltage. The voltage derived from the drive sense capacitors Cgsp and Cgsn and the voltage derived by the Coriolis sensing capacitors Cgp and Cgn are demodulated using mixer circuit 135 and the result is measured using the analog-to-digital converter (ADC) circuit 140. In some examples, the ADC circuit 140 is a sigma-delta ADC circuit.


The example in FIG. 1 only shows one set of drive sense capacitors and one set of Coriolis sensing capacitors. A multi-axis MEMS gyroscope sensor may include a set of drive sense capacitors and a set of Coriolis sensing capacitors for each axis. For example, a three-axis MEMS gyroscope sensor may include a set of drive sense capacitors and a set of Coriolis sensing capacitors for each of the X, Y, and Z axes.


To test the MEMS gyroscope sensor 105, advantage can be taken of the fact that capacitive MEMS sensors can also be used as actuators. Typically, capacitors are added to the MEMS sensors that are used when the device is operated in a test mode to add electrostatic charge and drive the proof mass. This testing approach requires the additional capacitors and additional electrical contacts to be fabricated on the MEMS sensor. A better approach is to use the sensing capacitors themselves in the testing. This simplifies the design of the MEMS gyroscope sensor by eliminating components dedicated to testing.



FIG. 2 is a flow diagram of an example of a method 200 of implementing self test of a MEMS gyroscope sensor. In a normal operating mode, the MEMS gyroscope sensor is electrically coupled to an IC (e.g., an application specific integrated circuit or ASIC) as in FIG. 1. The IC measures capacitance of the Coriolis sensing capacitors at the output of the MEMS gyroscope sensor in the normal mode.


At block 205, a first Coriolis sensing capacitor of the MEMS sensor is electrically decoupled from the IC in a test mode. At block 210, a first electrical signal is applied to the decoupled capacitive element. Application of the first electrical signal can cause the proof mass to move and change the capacitance of the second sensing capacitor, which is measured at block 215. In this way, the interaction of movement of the proof mass and the change in capacitance of the second sensing capacitor can be tested without having to provide rotational force to the MEMS gyroscope sensor. The first Coriolis sensing capacitor can be measured similarly.


Returning to FIG. 1, the IC 110 includes a switch circuit (not shown). The switch circuit can operate in a normal mode and in a test mode. In the normal operating mode, the switch circuit can couple the first and second Coriolis sensing capacitors Cgp and Cgn of the MEMS sensor 105 as a capacitive element pair. The capacitive element pair changes capacitance in response to a Coriolis effect acting on the MEMS sensor. In the test mode, the switch circuit provides access to one or more of the Coriolis sensing capacitors.



FIG. 3 shows portions of an example of the MEMS gyroscope sensor 305 and the IC 310 in the test mode. The switch circuit can electrically decouple the first sensing capacitor Cgp of the MEMS gyroscope sensor 305 from a first input of the IC and electrically couple the second sensing capacitor Cgn to a second input of the IC 310. As shown in the Figure, the first sensing capacitor Cgp may be electrically decoupled from the bottom C2V sensor circuit 330. The switch circuit may connect an internal capacitor 345 to the bottom C2V sensor circuit 330.


An electrical test signal can be applied to the decoupled first sensing capacitor Cgp, such as by a testing circuit (not shown) or testing platform. In some examples, the electrical signal is a sinusoidal signal. In some examples, the MEMS gyroscope sensor can include an electrical contact to contact the proof mass of the MEMS gyroscope sensor. As shown in FIG. 3 a direct current (DC) drive voltage can be applied to the proof mass via the electrical contact during application of the electrical test signal. The electrical test signal and the DC drive voltage provide electrostatic drive to move the proof mass to emulate a change in angular rate. The capacitance of the second sensing capacitor Cgn is measured while electrostatically driving the proof mass.


The IC 310 also includes a capacitance measurement circuit that measures capacitance of the second capacitive element of the MEMS sensor. The capacitance measurement circuit includes the bottom C2V sensor 330 and the ADC circuit 340. The C2V sensor circuit 330 senses a voltage representative of the capacitance of the second sensing capacitor, and the ADC circuit 340 produces a digital value representative of capacitance of the second capacitive element. The capacitance measurement circuit measures capacitance of the second sensing capacitor of the MEMS gyroscope sensor during application of the electrical signal to the decoupled first capacitive element.


The capacitance of the first sensing capacitor Cgp can be measured similarly. The first switch circuit can electrically decouple the second sensing capacitor Cgn of the MEMS gyroscope sensor from the second input of the IC and electrically couple the first sensing capacitor Cgp of the MEMS gyroscope sensor to the first input of the IC. The capacitance measurement circuit is configured to measure capacitance of the first sensing capacitor Cgn during application of a second electrical signal to the decoupled second sensing capacitor Cgn.


As explained previously herein, the electrical test signals can be sinusoidal signals. In some examples, a sinusoidal test signal is used and the capacitances are measured at different phase shifts of the sinusoidal signal. For instance, to test the second sensing capacitor Cgn, a first sinusoidal electrical signal having a first phase shift value (e.g., 0° of phase shift) can be applied to the first sensing capacitor Cgp. The capacitance of the second sensing capacitor Cgn can be measured during application of the first sinusoidal signal with the first phase shift value.


The phase shift value of the first sinusoidal electrical signal may then be changed to a second phase shift value (e.g., 90° of phase shift). The capacitance of the second sensing capacitor Cgn can be re-measured during application of the first sinusoidal signal with the second phase shift value. The capacitance of the sensing capacitors can also be measured at other values of phase shift (e.g., 180° and 270°).



FIG. 4 shows portions of another example of the MEMS gyroscope sensor 405 and the IC 410 in the test mode. The top C2V sensor 420 circuit converts an oscillating capacitance of the MEMS gyroscope sensor to an oscillating voltage signal. The switch circuit can then apply the oscillating voltage signal as an electrical test signal to measure capacitance of a Coriolis sensing capacitor (e.g., sensing capacitor Cgn as shown in the Figure).


As explained previously herein, the IC 405 includes a significant portion of the gyro drive loop. In some examples, the IC 410 includes a self-starting oscillator circuit to provide a random “initial kick” to the gyro drive loop with a self-generated oscillating signal. The self-generated oscillating signal can be a substantially sinusoidal signal with a frequency different (e.g., a lower frequency) from the resonance frequency of the MEMS gyroscope sensor 405. The energy of this initial signal is gathered and causes the MEMS gyroscope sensor 405 to a resonance state at which point the mechanical oscillation of the MEMS gyroscope sensor becomes locked to the MEMS oscillation frequency.


The gyro drive loop locks to the MEMS oscillation frequency. The oscillation is sensed by the drive sense capacitors Cgsp and Cgsn, and the oscillation amplitude of the voltage signal generated by the top C2V sensor circuit 420 begins to grow. The amplitude of the voltage signal will keep growing until a threshold is crossed (e.g., 97% of target oscillation amplitude). When the threshold amplitude is satisfied, the AGC circuit selects the voltage signal from the top C2V sensor 420 as the reference signal to drive the MEMS gyroscope sensor instead of the self-generated oscillating signal. The AGC loop begins to regulate the gain of the output driver such that the target amplitude of oscillation is maintained.


As explained previously herein, the gyro drive loop includes a phase shift circuit 425 on the IC. The phase shift circuit 425 shifts the phase of the oscillating voltage signal from the top C2V sensor circuit 420. In certain examples, the phase shift circuit 425 provides 90° of phase shift. The switch circuit can apply the phase-shifted oscillating voltage signal to a sensing capacitor as an electrical test signal. In certain examples, the sensing capacitor that receives the electrical signal (e.g., Cgn) is decoupled from the bottom C2V sensor circuit 430 but remains in electrical contact with the IC 410 to receive the electrical test signal.


According to some examples, the switch circuit includes a multiplexer or MUX circuit 450 to selectively provide an electrical test signal with a phase shift of 0° or 90° to a sensing capacitor. To generate phase shifts of 180° and 270°, the switch circuit may invert the signal from the top C2V circuit 420 to provide 180° phase shift and use the phase shift circuit 425 to generate 270° of phase shift. In certain examples, the switch circuit can apply the original voltage signals to the other sensing capacitor (e.g., Cgp instead of Cgn) to generate phase shifts of 180° and 270°.


According to some examples, the first and second sensing capacitors Cgp, Cgn are configured to sense a Coriolis effect along a first axis (e.g., an X axis) of the MEMS gyroscope sensor. A MEMS gyroscope sensor may include a second sensing capacitor pair to sense a Coriolis effect along a second axis (e.g., a Y axis), and may include a third sensing capacitor pair to sense a Coriolis effect along a third axis (e.g., a Z axis).


The capacitance measurement circuit may measure capacitance of at least one additional sensing capacitor configured to sense the Coriolis effect along a second axis or third axis of the MEMS gyroscope sensor. For example, the IC of one or more of FIGS. 3 and 4 may include a C2V sensor circuit for drive sense capacitors and Coriolis sensing capacitors for at least a second axis or third axis. The switch circuit applies an electrical test signal to one or more sensing capacitors and the capacitance measurement circuit measures the capacitance of the sensing capacitors during application of the electrical test signal.


Note that only capacitive elements of the MEMS gyroscope sensor that are used for sensing the Coriolis effect are used in the testing, and that the MEMS gyroscope sensor does not require additional test capacitors. This results in less circuit components and less circuit contacts being required for the MEMS sensor, which simplifies its design.


ADDITIONAL NOTES AND EXAMPLES

Example 1 can include subject matter (such as an apparatus) comprising a micro-electromechanical system (MEMS) gyroscope sensor and an IC. The MEMs gyroscope sensor includes a first sensing capacitor and a second sensing capacitor. The IC includes a switch circuit configured to electrically decouple the first sensing capacitor from a first input of the IC and electrically couple the second sensing capacitor to a second input of the IC, and a capacitance measurement circuit configured to measure capacitance of the second sensing capacitor of the MEMS gyroscope sensor during application of a first electrical signal to the decoupled first capacitive element.


Example 2 can include, or can optionally be combined with the subject matter of Example 1 to optionally include, first and second sensing capacitors configured to sense a Coriolis effect of the MEMS gyroscope sensor in a normal operating mode.


Example 3 can include, or can optionally be combined with the subject matter of one or any combination of Examples 1 and 2 to optionally include, a switch circuit is configured to electrically decouple the second sensing capacitor of the MEMS gyroscope sensor from the second input of the IC and electrically couple the first sensing capacitor of the MEMS gyroscope sensor to the first input of the IC. The capacitance measurement circuit is optionally configured to measure capacitance of the first sensing capacitor of the MEMS gyroscope sensor during application of a second electrical signal to the decoupled second sensing capacitor.


Example 4 can include, or can optionally be combined with the subject matter of one or any combination of Examples 1-3 to optionally include, applying a first sinusoidal electrical signal to the first sensing capacitor, wherein the first sinusoidal electrical signal has a first phase shift, measuring capacitance of the second sensing capacitor during application of the first sinusoidal signal with the first phase shift, changing the phase shift of the first sinusoidal electrical signal to a second phase shift, and re-measuring capacitance of the second sensing capacitor during application of the first sinusoidal signal with the second phase shift.


Example 5 can include, or can optionally be combined with the subject matter of one or any combination of Examples 1-4 to optionally include, a capacitance-to-voltage sensor circuit configured to sense a voltage representative of the capacitance of the second sensing capacitor, and an analog-to-digital converter (ADC) circuit configured to produce a digital value representative of capacitance of the second capacitive element.


Example 6 can include, or can optionally be combined with the subject matter of one or any combination of Examples 1-5 to optionally include, a capacitor-to voltage sensor configured to convert an oscillating capacitance of the MEMS gyroscope sensor to an oscillating voltage signal, and the switch circuit is optionally configured to apply the oscillating voltage signal as the first electrical signal.


Example 7 can include, or can optionally be combined with the subject matter of Example 6 to optionally include, a phase shift circuit configured to shift the phase of the oscillating voltage signal, and the switch circuit is optionally configured to apply the phase-shifted oscillating voltage signal as the first electrical signal.


Example 8 can include, or can optionally be combined with the subject matter of one or any combination of Examples 1-7 to optionally include, a testing circuit configured to apply a direct current (DC) voltage to a proof mass of the MEMS gyroscope sensor during application of the first electrical signal.


Example 9 can include, or can optionally be combined with the subject matter of one or any combination of Examples 1-8 to optionally include, first and second sensing capacitors configured to sense a Coriolis effect along a first axis of the MEMS gyroscope sensor, and the capacitance measurement circuit is optionally configured to measure capacitance of at least one additional sensing capacitor configured to sense the Coriolis effect along a second axis of the MEMS gyroscope sensor.


Example 10 can include, or can optionally be combined with the subject matter of one or any combination of Examples 1-9 to optionally include, a MEMS gyroscope sensor that includes a movable proof mass, the first and second sensing capacitors are optionally configured to sense a Coriolis effect of the proof mass when the IC operates in a normal operating mode, application of the first electrical signal to the decoupled first capacitive element is optionally configured to move the proof mass during the test mode, and the IC is optionally configured to measure capacitance of the second sensing capacitor during movement of the proof mass in the test mode.


Example 11 can include, or can optionally be combined with the subject matter of one or any combination of Examples 1-10 to include, subject matter (such as a method, a means for performing acts, or a machine readable medium including instructions that, when performed by the machine, can cause the machine to perform acts) comprising electrically decoupling a first sensing capacitor of an MEMS gyroscope sensor from an IC, applying a first electrical signal to the decoupled first sensing capacitor, and measuring capacitance of a second sensing capacitor of the MEMS sensor during application of the first electrical signal.


Example 12 can include, or can optionally be combined with the subject matter of Example 11 to optionally include sensing a Coriolis effect of the MEMS gyroscope sensor using the first and second sensing capacitors in a normal operating mode.


Example 13 can include, or can optionally be combined with the subject matter of one or any combination of Examples 11 and 12 to include, electrically decoupling the second sensing capacitor of the MEMS sensor from the IC, applying a second electrical signal to the second sensing capacitor, and measuring capacitance of the first sensing capacitor of the MEMS gyroscope sensor during application of the second electrical signal.


Example 14 can include, or can optionally be combined with the subject matter of one or any combination of Examples 11-13 to optionally include, applying a first sinusoidal electrical signal to the first sensing capacitor, wherein the first sinusoidal electrical signal has a first phase shift, measuring capacitance of the second capacitor during application of the first sinusoidal signal with the first phase shift, changing the phase shift of the first sinusoidal electrical signal to a second phase shift, and re-measuring capacitance of the second capacitor during application of the first sinusoidal signal with the second phase shift.


Example 15 can include, or can optionally be combined with the subject matter of one or any combination of Examples 11-14 to include, sensing a voltage representative of the capacitance of the second sensing capacitor, and producing a digital value representative of capacitance of the second capacitive element using an ADC circuit.


Example 16 can include, or can optionally be combined with the subject matter of one or any combination of Examples 11-15 to include, receiving an oscillating signal from the MEMS gyroscope sensor at a third input to the IC, and applying the oscillating signal from the MEMS gyroscope sensor as the first electrical signal.


Example 17 can include, or can optionally be combined with the subject matter of Example 16 to optionally include, shifting the phase of the oscillating signal from the MEMS gyroscope sensor, and applying the phase-shifted oscillating signal as the first electrical signal.


Example 18 can include, or can optionally be combined with the subject matter of one or any combination of Examples 11-17 to optionally include, applying a DC voltage to a proof mass of the MEMS gyroscope sensor during application of the first electrical signal.


Example 19 can include, or can optionally be combined with the subject matter of one or any combination of Examples 11-18 to optionally include, sensing a Coriolis effect along a first axis of the MEMS gyroscope sensor using the first and second sensing capacitors, and measuring a capacitance of at least one additional sensing capacitor configured to sense the Coriolis effect along a second axis of the MEMS gyroscope sensor.


Example 20 can include, or can optionally be combined with the subject matter of one or any combination of Examples 11-19 to optionally include sensing a Coriolis effect of a proof mass of the MEMS gyroscope sensor using the first and second sensing capacitors in a normal operating mode of the MEMS gyroscope sensor, applying the first electrical signal to the decoupled first sensing capacitor to move a proof mass of the MEMS gyroscope sensor during a test mode of the MEMS gyroscope sensor, and measuring capacitance of the second sensing capacitor includes measuring capacitance of the second sensing capacitor of the MEMS gyroscope sensor during movement of the proof mass in the test mode.


Example 21 can include, or can optionally be combined with any portion or combination of portions of any one or more of Examples 1-20 to include, subject matter that can include means for performing any one or more of the functions of Examples 1-20, or a machine readable medium including instructions that, when performed by a machine, cause the machine to perform any one or more of the functions of Examples 1-20.


The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced.


These embodiments are also referred to herein as “examples.” All publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.


In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.


The above description is intended to be illustrative, and not restrictive. The above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims
  • 1. An apparatus comprising: a micro-electromechanical system (MEMS) gyroscope sensor including a first sensing capacitor and a second sensing capacitor; andan integrated circuit (IC), including: a switch circuit configured to electrically decouple the first sensing capacitor from a first input of the IC and electrically couple the second sensing capacitor to a second input of the IC; anda capacitance measurement circuit configured to measure a capacitance of the second sensing capacitor of the MEMS gyroscope sensor during application of a first electrical signal to the decoupled first capacitive element.
  • 2. The apparatus of claim 1, wherein the first and second sensing capacitors are configured to sense a Coriolis effect of the MEMS gyroscope sensor in a normal operating mode.
  • 3. The apparatus of claim 2, wherein the switch circuit is configured to: electrically decouple the second sensing capacitor of the MEMS gyroscope sensor from the second input of the IC and electrically couple the first sensing capacitor of the MEMS gyroscope sensor to the first input of the IC; andwherein the capacitance measurement circuit is configured to measure capacitance of the first sensing capacitor of the MEMS gyroscope sensor during application of a second electrical signal to the decoupled second sensing capacitor.
  • 4. The apparatus of claim 1, wherein applying a first electrical signal includes: applying a first sinusoidal electrical signal to the first sensing capacitor, wherein the first sinusoidal electrical signal has a first phase shift;measuring capacitance of the second sensing capacitor during application of the first sinusoidal signal with the first phase shift;changing the phase shift of the first sinusoidal electrical signal to a second phase shift; andre-measuring capacitance of the second sensing capacitor during application of the first sinusoidal signal with the second phase shift.
  • 5. The apparatus of claim 1, wherein the IC includes: a capacitance-to-voltage sensor circuit configured to sense a voltage representative of the capacitance of the second sensing capacitor; andan analog-to-digital converter (ADC) circuit configured to produce a digital value representative of the capacitance of the second sensing capacitor.
  • 6. The apparatus of claim 1, wherein the IC includes: a capacitor-to voltage sensor configured to convert an oscillating capacitance of the MEMS gyroscope sensor to an oscillating voltage signal, andwherein the switch circuit is configured to apply the oscillating voltage signal as the first electrical signal.
  • 7. The apparatus of claim 6, wherein the IC includes a phase shift circuit configured to shift a phase of the oscillating voltage signal; andwherein the switch circuit is configured to apply the phase-shifted oscillating voltage signal as the first electrical signal.
  • 8. The apparatus of claim 1, including a testing circuit configured to apply a direct current (DC) voltage to a proof mass of the MEMS gyroscope sensor during application of the first electrical signal.
  • 9. The apparatus of claim 1, wherein the first and second sensing capacitors are configured to sense a Coriolis effect along a first axis of the MEMS gyroscope sensor, and wherein the capacitance measurement circuit is configured to measure a capacitance of at least one additional sensing capacitor configured to sense the Coriolis effect along a second axis of the MEMS gyroscope sensor.
  • 10. The apparatus of claim 1, wherein the MEMS gyroscope sensor includes a movable proof mass, wherein the first and second sensing capacitors are configured to sense a Coriolis effect of the proof mass when the IC operates in a normal operating mode, wherein application of the first electrical signal to the decoupled first capacitive element is configured to move the proof mass during a test mode, and wherein the IC is configured to measure the capacitance of the second sensing capacitor during movement of the proof mass in the test mode.
  • 11. A method comprising: electrically decoupling a first sensing capacitor of an MEMS gyroscope sensor from an IC;applying a first electrical signal to the decoupled first sensing capacitor; andmeasuring a capacitance of a second sensing capacitor of the MEMS gyroscope sensor during application of the first electrical signal.
  • 12. The method of claim 11, including sensing a Coriolis effect of the MEMS gyroscope sensor using the first and second sensing capacitors in a normal operating mode.
  • 13. The method of claim 11, including: electrically decoupling the second sensing capacitor of the MEMS sensor from the IC;applying a second electrical signal to the second sensing capacitor; andmeasuring capacitance of the first sensing capacitor of the MEMS gyroscope sensor during application of the second electrical signal.
  • 14. The method of claim 11, wherein applying a first electrical signal includes: applying a first sinusoidal electrical signal to the first sensing capacitor, wherein the first sinusoidal electrical signal has a first phase shift;measuring capacitance of the second capacitor during application of the first sinusoidal signal with the first phase shift;changing the phase shift of the first sinusoidal electrical signal to a second phase shift; andre-measuring capacitance of the second capacitor during application of the first sinusoidal signal with the second phase shift.
  • 15. The method of claim 11, wherein measuring capacitance includes: sensing a voltage representative of the capacitance of the second sensing capacitor; andproducing a digital value representative of the capacitance of the second sensing capacitor using an analog-to-digital converter (ADC) circuit.
  • 16. The method of claim 11, including: receiving an oscillating signal from the MEMS gyroscope sensor at a third input to the IC,wherein applying the first electrical signal includes applying the oscillating signal from the MEMS gyroscope sensor as the first electrical signal.
  • 17. The method of claim 16, wherein applying the first electrical signal includes: shifting a phase of the oscillating signal from the MEMS gyroscope sensor; andapplying the phase-shifted oscillating signal as the first electrical signal.
  • 18. The method of claim 11, including applying a direct current (DC) voltage to a proof mass of the MEMS gyroscope sensor during application of the first electrical signal.
  • 19. The method of claim 11, wherein the first and second sensing capacitors are configured to sense a Coriolis effect along a first axis of the MEMS gyroscope sensor, and wherein the method further includes measuring a capacitance of at least one additional sensing capacitor configured to sense the Coriolis effect along a second axis of the MEMS gyroscope sensor.
  • 20. The method of claim 11, including: sensing a Coriolis effect of a proof mass of the MEMS gyroscope sensor using the first and second sensing capacitors in a normal operating mode of the MEMS gyroscope sensor;wherein applying the first electrical signal includes applying the first electrical signal to the decoupled first sensing capacitor to move the proof mass of the MEMS gyroscope sensor during a test mode of the MEMS gyroscope sensor; andwherein measuring the capacitance of the second sensing capacitor includes measuring thecapacitance of the second sensing capacitor of the MEMS gyroscope sensor during movement of the proof mass in the test mode.
CLAIM OF PRIORITY

This application claims the benefit of priority under 35 U.S.C. §119(e) of Opris et al., U.S. Provisional Patent Application Ser. No. 61/620,575, filed on Apr. 5, 2012, the benefit of priority of which is claimed hereby, and is incorporated by reference herein in its entirety.

US Referenced Citations (177)
Number Name Date Kind
4896156 Garverick Jan 1990 A
5487305 Ristic et al. Jan 1996 A
5491604 Nguyen et al. Feb 1996 A
5600064 Ward Feb 1997 A
5723790 Andersson Mar 1998 A
5751154 Tsugai May 1998 A
5760465 Alcoe et al. Jun 1998 A
5765046 Watanabe et al. Jun 1998 A
6131457 Sato Oct 2000 A
6214644 Glenn Apr 2001 B1
6301965 Chu et al. Oct 2001 B1
6351996 Nasiri et al. Mar 2002 B1
6366468 Pan Apr 2002 B1
6390905 Korovin et al. May 2002 B1
6501282 Dummermuth et al. Dec 2002 B1
6504385 Hartwell Jan 2003 B2
6553835 Hobbs et al. Apr 2003 B1
6722206 Takada Apr 2004 B2
6725719 Cardarelli Apr 2004 B2
6781231 Minervini Aug 2004 B2
6848304 Geen Feb 2005 B2
7051590 Lemkin et al. May 2006 B1
7054778 Geiger et al. May 2006 B2
7093487 Mochida Aug 2006 B2
7166910 Minervini et al. Jan 2007 B2
7202552 Zhe et al. Apr 2007 B2
7210351 Lo et al. May 2007 B2
7221767 Mullenborn et al. May 2007 B2
7240552 Acar et al. Jul 2007 B2
7258011 Nasiri et al. Aug 2007 B2
7258012 Xie Aug 2007 B2
7266349 Kappes Sep 2007 B2
7293460 Zarabadi et al. Nov 2007 B2
7301212 Mian et al. Nov 2007 B1
7305880 Caminada et al. Dec 2007 B2
7358151 Araki et al. Apr 2008 B2
7436054 Zhe Oct 2008 B2
7449355 Lutz et al. Nov 2008 B2
7451647 Matsuhisa et al. Nov 2008 B2
7454967 Skurnik Nov 2008 B2
7518493 Bryzek et al. Apr 2009 B2
7539003 Ray et al. May 2009 B2
7595648 Ungaretti et al. Sep 2009 B2
7600428 Robert et al. Oct 2009 B2
7616078 Prandi et al. Nov 2009 B2
7622782 Chu et al. Nov 2009 B2
7706149 Yang et al. Apr 2010 B2
7781249 Laming et al. Aug 2010 B2
7795078 Ramakrishna et al. Sep 2010 B2
7859352 Sutton Dec 2010 B2
7950281 Hammerschmidt May 2011 B2
8004354 Pu et al. Aug 2011 B1
8006557 Yin et al. Aug 2011 B2
8037755 Nagata et al. Oct 2011 B2
8113050 Acar et al. Feb 2012 B2
8171792 Sameshima May 2012 B2
8201449 Ohuchi et al. Jun 2012 B2
8250921 Nasiri et al. Aug 2012 B2
8375789 Prandi et al. Feb 2013 B2
8421168 Allen et al. Apr 2013 B2
8476970 Mokhtar et al. Jul 2013 B2
8508290 Elsayed et al. Aug 2013 B2
8710599 Marx et al. Apr 2014 B2
8739626 Acar Jun 2014 B2
8742964 Kleks et al. Jun 2014 B2
8754694 Opris et al. Jun 2014 B2
8813564 Acar Aug 2014 B2
20020021059 Knowles et al. Feb 2002 A1
20020117728 Brosnihhan et al. Aug 2002 A1
20020178831 Takada Dec 2002 A1
20020189352 Reeds, III et al. Dec 2002 A1
20020196445 McClary et al. Dec 2002 A1
20030038415 Anderson et al. Feb 2003 A1
20030061878 Pinson Apr 2003 A1
20030200807 Hulsing, II Oct 2003 A1
20030222337 Stewart Dec 2003 A1
20040119137 Leonardi et al. Jun 2004 A1
20040177689 Cho et al. Sep 2004 A1
20040211258 Geen Oct 2004 A1
20040219340 McNeil et al. Nov 2004 A1
20040231420 Xie et al. Nov 2004 A1
20040251793 Matsuhisa Dec 2004 A1
20050005698 McNeil et al. Jan 2005 A1
20050097957 McNeil et al. May 2005 A1
20050139005 Geen Jun 2005 A1
20050189635 Humpston et al. Sep 2005 A1
20050274181 Kutsuna et al. Dec 2005 A1
20060032308 Acar et al. Feb 2006 A1
20060034472 Bazarjani et al. Feb 2006 A1
20060043608 Bernier et al. Mar 2006 A1
20060097331 Hattori May 2006 A1
20060137457 Zdeblick Jun 2006 A1
20060207328 Zarabadi et al. Sep 2006 A1
20060213265 Weber et al. Sep 2006 A1
20060213266 French et al. Sep 2006 A1
20060213268 Asami et al. Sep 2006 A1
20060246631 Lutz et al. Nov 2006 A1
20070013052 Zhe et al. Jan 2007 A1
20070034005 Acar et al. Feb 2007 A1
20070040231 Harney et al. Feb 2007 A1
20070047744 Karney et al. Mar 2007 A1
20070071268 Harney et al. Mar 2007 A1
20070085544 Viswanathan Apr 2007 A1
20070099327 Hartzell et al. May 2007 A1
20070114643 DCamp et al. May 2007 A1
20070165888 Weigold Jul 2007 A1
20070205492 Wang Sep 2007 A1
20070220973 Acar Sep 2007 A1
20070222021 Yao Sep 2007 A1
20070284682 Laming et al. Dec 2007 A1
20080049230 Chin et al. Feb 2008 A1
20080081398 Lee et al. Apr 2008 A1
20080083958 Wei et al. Apr 2008 A1
20080083960 Chen et al. Apr 2008 A1
20080092652 Acar Apr 2008 A1
20080122439 Burdick et al. May 2008 A1
20080157238 Hsiao Jul 2008 A1
20080157301 Ramakrishna et al. Jul 2008 A1
20080169811 Viswanathan Jul 2008 A1
20080202237 Hammerschmidt Aug 2008 A1
20080245148 Fukumoto Oct 2008 A1
20080247585 Leidl et al. Oct 2008 A1
20080251866 Belt et al. Oct 2008 A1
20080290756 Huang Nov 2008 A1
20080302559 Leedy Dec 2008 A1
20080314147 Nasiri et al. Dec 2008 A1
20090064780 Coronato et al. Mar 2009 A1
20090072663 Ayazi et al. Mar 2009 A1
20090140606 Huang Jun 2009 A1
20090166827 Foster et al. Jul 2009 A1
20090175477 Suzuki et al. Jul 2009 A1
20090183570 Acar et al. Jul 2009 A1
20090194829 Chung et al. Aug 2009 A1
20090263937 Ramakrishna et al. Oct 2009 A1
20090266163 Ohuchi et al. Oct 2009 A1
20100019393 Hsieh et al. Jan 2010 A1
20100024548 Cardarelli Feb 2010 A1
20100038733 Minervini Feb 2010 A1
20100044853 Dekker et al. Feb 2010 A1
20100052082 Lee Mar 2010 A1
20100058864 Hsu et al. Mar 2010 A1
20100072626 Theuss et al. Mar 2010 A1
20100089154 Ballas et al. Apr 2010 A1
20100122579 Hsu et al. May 2010 A1
20100155863 Weekamp Jun 2010 A1
20100206074 Yoshida et al. Aug 2010 A1
20100212425 Hsu et al. Aug 2010 A1
20100224004 Suminto et al. Sep 2010 A1
20100236327 Mao et al. Sep 2010 A1
20110023605 Tripoli et al. Feb 2011 A1
20110030473 Acar Feb 2011 A1
20110030474 Kuang et al. Feb 2011 A1
20110031565 Marx et al. Feb 2011 A1
20110094302 Schofield et al. Apr 2011 A1
20110120221 Yoda May 2011 A1
20110121413 Allen et al. May 2011 A1
20110146403 Rizzo Piazza Roncoroni et al. Jun 2011 A1
20110265564 Acar et al. Nov 2011 A1
20110285445 Huang et al. Nov 2011 A1
20130139591 Acar Jun 2013 A1
20130139592 Acar Jun 2013 A1
20130192364 Acar Aug 2013 A1
20130192369 Acar et al. Aug 2013 A1
20130247666 Acar Sep 2013 A1
20130247668 Bryzek Sep 2013 A1
20130250532 Bryzek et al. Sep 2013 A1
20130257487 Opris et al. Oct 2013 A1
20130269413 Tao et al. Oct 2013 A1
20130270657 Acar et al. Oct 2013 A1
20130270660 Bryzek et al. Oct 2013 A1
20130271228 Tao et al. Oct 2013 A1
20130277772 Bryzek et al. Oct 2013 A1
20130277773 Bryzek et al. Oct 2013 A1
20130298671 Acar et al. Nov 2013 A1
20130328139 Acar Dec 2013 A1
20130341737 Bryzek et al. Dec 2013 A1
20140070339 Marx Mar 2014 A1
Foreign Referenced Citations (106)
Number Date Country
1389704 Jan 2003 CN
1816747 Aug 2006 CN
1948906 Apr 2007 CN
101038299 Sep 2007 CN
101180516 May 2008 CN
101270988 Sep 2008 CN
101426718 May 2009 CN
101813480 Aug 2010 CN
101858928 Oct 2010 CN
102597699 Jul 2012 CN
103209922 Jul 2013 CN
103210278 Jul 2013 CN
103221331 Jul 2013 CN
103221332 Jul 2013 CN
103221333 Jul 2013 CN
103221778 Jul 2013 CN
103221779 Jul 2013 CN
103221795 Jul 2013 CN
103238075 Aug 2013 CN
103363969 Oct 2013 CN
103363983 Oct 2013 CN
103364590 Oct 2013 CN
103364593 Oct 2013 CN
103368503 Oct 2013 CN
103368562 Oct 2013 CN
103368577 Oct 2013 CN
103376099 Oct 2013 CN
103376102 Oct 2013 CN
103403495 Nov 2013 CN
203275441 Nov 2013 CN
203275442 Nov 2013 CN
103663344 Mar 2014 CN
203719664 Jul 2014 CN
104094084 Oct 2014 CN
104105945 Oct 2014 CN
112011103124 Dec 2013 DE
102013014881 Mar 2014 DE
1460380 Sep 2004 EP
1521086 Apr 2005 EP
1688705 Aug 2006 EP
1832841 Sep 2007 EP
1860402 Nov 2007 EP
2053413 Apr 2009 EP
2259019 Dec 2010 EP
09089927 Apr 1997 JP
10239347 Sep 1998 JP
2005024310 Jan 2005 JP
2005114394 Apr 2005 JP
2005294462 Oct 2005 JP
2007024864 Feb 2007 JP
2008294455 Dec 2008 JP
2009075097 Apr 2009 JP
2009186213 Aug 2009 JP
2010025898 Feb 2010 JP
2010506182 Feb 2010 JP
1020110055449 May 2011 KR
1020130052652 May 2013 KR
1020130052653 May 2013 KR
1020130054441 May 2013 KR
1020130055693 May 2013 KR
1020130057485 May 2013 KR
1020130060338 Jun 2013 KR
1020130061181 Jun 2013 KR
101311966 Sep 2013 KR
1020130097209 Sep 2013 KR
101318810 Oct 2013 KR
1020130037462 Oct 2013 KR
1020130112789 Oct 2013 KR
1020130112792 Oct 2013 KR
1020130112804 Oct 2013 KR
1020130113385 Oct 2013 KR
1020130113386 Oct 2013 KR
1020130113391 Oct 2013 KR
1020130116189 Oct 2013 KR
1020130116212 Oct 2013 KR
101332701 Nov 2013 KR
1020130139914 Dec 2013 KR
1020130142116 Dec 2013 KR
101352827 Jan 2014 KR
1020140034713 Mar 2014 KR
I255341 May 2006 TW
WO-0175455 Oct 2001 WO
WO-2008059757 May 2008 WO
WO-2008087578 Jul 2008 WO
WO-2009050578 Apr 2009 WO
WO-2009156485 Dec 2009 WO
WO-2011016859 Feb 2011 WO
WO-2011016859 Feb 2011 WO
WO-2012037492 Mar 2012 WO
WO-2012037492 Mar 2012 WO
WO-2012037501 Mar 2012 WO
WO-2012037501 Mar 2012 WO
WO-2012037536 Mar 2012 WO
WO-2012037537 Mar 2012 WO
WO-2012037538 Mar 2012 WO
WO-2012037539 Mar 2012 WO
WO-2012037539 Mar 2012 WO
WO-2012037540 Mar 2012 WO
WO-2012040194 Mar 2012 WO
WO-2012040211 Mar 2012 WO
WO-2012040245 Mar 2012 WO
WO-2012040245 Mar 2012 WO
WO-2013115967 Aug 2013 WO
WO-2013116356 Aug 2013 WO
WO-2013116514 Aug 2013 WO
WO-2013116522 Aug 2013 WO
Non-Patent Literature Citations (206)
Entry
“U.S. Appl. No. 12/849,742, Response filed Jan. 23, 2012 to Non Final Office Action mailed Aug. 23, 2012”, 10 pgs.
“U.S. Appl. No. 12/849,787, Non Final Office Action mailed May 28, 2013”, 18 pgs.
“U.S. Appl. No. 12/947,543, Notice of Allowance mailed Dec. 17, 2012”, 11 pgs.
“U.S. Appl. No. 13/813,443, Preliminary Amendment mailed Jan. 31, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,586, Preliminary Amendment mailed Mar. 8, 2013”, 6 pgs.
“U.S. Appl. No. 13/821,589, Preliminary Amendment mailed Mar. 8, 2013”, 6 pgs.
“U.S. Appl. No. 13/821,598, Preliminary Amendment mailed Mar. 8, 2013”, 7 pgs.
“U.S. Appl. No. 13/821,609, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,612, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,619, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,793, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,842, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,853, Preliminary Amendment mailed Mar. 8. 2013”, 3 pgs.
“Application Serial No. PCT/US2011/051994, International Republished Application mailed Jun. 7, 2012”, 1 pg.
“DigiSiMic™ Digital Silicon Microphone Pulse Part No. TC100E”, TC100E Datasheet version 4.2 DigiSiMic™ Digital Silicon Microphone. (Jan. 2009), 6 pgs.
“EPCOS MEMS Microphone With TSV”, 1 pg.
“International Application Serial No. PCT/US2011/051994, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 8 pgs.
“International Application Serial No. PCT/US2011/052340, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 5 pgs.
“International Application Serial No. PCT/US2011/052340, Search Report mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052340, Written Opinion mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052369, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/021411, International Search Report mailed Apr. 30, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/021411, Written Opinion mailed Apr. 30, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/023877, International Search Report mailed May 14, 2013”, 3 pgs.
“International Application Serial No. PCT/US2013/023877, Written Opinion mailed May 14, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/024149, Written Opinion mailed”, 4 pages.
“International Application Serial No. PCT/US2013/024149, International Search Report mailed”, 7 pages.
“T4020 & T4030 MEMS Microphones for Consumer Electronics”, Product Brief 2010, Edition Feb. 2010, (2010), 2 pgs.
Acar, Cenk, et al., “Chapter 4: Mechanical Design of MEMS Gyroscopes”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 73-110.
Acar, Cenk, et al., “Chapter 6: Linear Multi DOF Architecture—Sections 6.4 and 6.5”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 158-178.
Acar, Cenk, et al., “Chapter 7: Torsional Multi-DOF Architecture”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (209), 187-206.
Acar, Cenk, et al., “Chapter 8: Distributed-Mass Architecture”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 207-224.
Acar, Cenk, et al., “Chapter 9: Conclusions and Future Trends”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 225-245.
Krishnamurthy, Rajesh, et al., “Drilling and Filling, but not in your Dentist's Chair A look at some recent history of multi-chip and through silicon via (TSV) technology”, Chip Design Magazine, (Oct./Nov. 2008), 7 pgs.
“U.S. Appl. No. 12/849,742, Supplemental Notice of Allowability mailed Mar. 17, 2014”, 3 pgs.
“U.S. Appl. No. 12/849,742, Supplemental Notice of Allowability mailed May 5, 2014”, 2 pgs.
“U.S. Appl. No. 12/849,787, Supplemental Notice of Allowability mailed Mar. 21, 2014”, 3 pgs.
“U.S. Appl. No. 13/362,955, Non Final Office Action mailed Apr. 15, 2014”, 9 pgs.
“U.S. Appl. No. 13/363,537, Response filed Jun. 6, 2014 to Non Final Office Action mailed Feb. 6, 2014”, 11 pgs.
“U.S. Appl. No. 13/742,942, Supplemental Notice of Allowability mailed Apr. 10, 2014”, 2 pgs.
“U.S. Appl. No. 13/755,841, Notice of Allowance mailed May 7, 2014”, 8 pgs.
“U.S. Appl. No. 13/755,841, Preliminary Amendment filed Oct. 10, 2013”, 10 pgs.
“U.S. Appl. No. 13/755,841, Response filed Apr. 21, 2014 to Restriction Requirement mailed Feb. 21, 2014”, 7 pgs.
“U.S. Appl. No. 13/821,589, Restriction Requirement mailed Apr. 11, 2014”, 10 pgs.
“Chinese Application Serial No. 2010800423190, Office Action mailed Mar. 26, 2014”, 10 pgs.
“Chinese Application Serial No. 201180053926.1, Response filed Apr. 29, 2014 to Office Action mailed Jan. 13, 2014”, w/English Claims, 10 pgs.
“Chinese Application Serial No. 201180055029.4, Response filed May 27, 2014 to Office Action mailed Jan. 13, 2014”, w/English Claims, 29 pgs.
“Chinese Application Serial No. 201180055309.5, Office Action mailed Mar. 31, 2014”, w/English Claims, 7 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action mailed Jan. 30, 2014”, w/English Claims, 3 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Mar. 18, 2014 to Office Action mailed Jan. 30, 2014”, w/English Claims, 20 pgs.
“Chinese Application Serial No. 201320565239.4, Response filed Mar. 31, 2014 to Office Action mailed Jan. 16, 2014”, w/English Claims, 38 pgs.
“European Application Serial No. 118260070.2, Office Action mailed Mar. 12, 2014”, 1 pg.
“European Application Serial No. 11826070.2, Extended European Search Report mailed Feb. 21, 2014”, 5 pgs.
“European Application Serial No. 11826071.0, Extended European Search Report mailed Feb. 20, 2014”, 6 pgs.
“European Application Serial No. 11826071.0, Office Action mailed Mar. 12, 2014”, 1 pg.
“European Application Serial No. 13001692.6, Response filed Apr. 1, 2014 to Extended European Search Report mailed Jul. 24, 2013”, 19 pgs.
“European Application Serial No. 13001721.3, Response filed Apr. 7, 2014 to Extended European Search Report mailed Jul. 18, 2013”, 25 pgs.
“Korean Application Serial No. 10-2013-7009777, Response filed Apr. 28, 2014”, w/English Claims, 19 pgs.
“U.S. Appl. No. 13/363,537, Final Office Action mailed Jun. 27, 2014”, 8 pgs.
“U.S. Appl. No. 13/742,942, Notice of Allowance mailed Jan. 28, 2014”, 8 pgs.
“U.S. Appl. No. 13/755,841, Supplemental Notice of Allowability Jun. 27, 2014”, 2 pgs.
“U.S. Appl. No. 13/821,589, Non Final Office Action mailed Jul. 9, 2014”, 10 pgs.
“U.S. Appl. No. 13/821,589, Response to Restriction Requirement mailed Apr. 11, 2014”, 6 pgs.
“U.S. Appl. No. 13/821,598, Restriction Requirement mailed Aug. 15, 2014”, 11 pgs.
“U.S. Appl. No. 13/821,612, Non Final Office Action mailed Jul. 23, 2014”, 8 pgs.
“U.S. Appl. No. 13/821,853, Non Final Office Action mailed Jul. 30, 2014”, 10 pgs.
“U.S. Appl. No. 13/860,761, Non Final Office Action mailed Aug. 19, 2014”, 13 pgs.
“Chinese Application Serial No. 2010800423190, Response filed Aug. 11, 2014 to Office Action mailed Mar. 26, 2014”, w/English Claims, 11 pgs.
“Chinese Application Serial No. 201180054796.3, Response filed Jun. 30, 2014 to Office Action mailed Jan. 16, 2014”, w/English Claims, 3 pgs.
“Chinese Application Serial No. 201180055029.4, Office Action mailed Jul. 2, 2014”, w/English Translation, 5 pgs.
“Chinese Application Serial No. 201180055309.5, Response filed Aug. 13, 2014 to Office Action mailed Mar. 31, 2014”, w/English Claims, 27 pgs.
“Chinese Application Serial No. 201380007588.7, Notification to Make Rectification mailed Aug. 18, 2014”, 2 pgs.
“Chinese Application Serial No. 201380007615.0, Notification to Make Rectification mailed Aug. 18, 2014”, 2 pgs.
“European Application Serial No. 10806751.3, Response filed Jul. 24, 2014 to Office Action mailed Jan. 24, 2014”, 26 pgs.
“European Application Serial No. 11826068.6, Extended European Search Report mailed Jul. 16, 2014”, 10 pgs.
“European Application Serial No. 13001719.7, Extended European Search Report mailed Jun. 24, 2014”, 10 pgs.
“International Application Serial No. PCT/US2013/021411, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 7 pgs.
“International Application Serial No. PCT/US2013/023877, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 7 pgs.
“International Application Serial No. PCT/US2013/024138, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 6 pgs.
“International Application Serial No. PCT/US2013/024149, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 6 pgs.
Xia, Guo-Ming, et al., “Phase correction in digital self-oscillation drive circuit for improve silicon MEMS gyroscope bias stability”, Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on, IEEE, (Nov. 1 2010), 1416-1418.
“U.S. Appl. No. 12/849,742, Response filed Sep. 30, 2013 to Non-Final Office Action mailed Mar. 28, 2013”, 12 pgs.
“Chinese Application Serial No. 201180053926.1, Amendment filed Aug. 21, 2013”, w/English Translation, 13 pgs.
“Chinese Application Serial No. 201180055309.5, Voluntary Amendment filed Aug. 23, 2013”, w/English Translation, 13 pgs.
“Chinese Application Serial No. 201320165465.3, Office Action mailed Jul. 22, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320165465.3, Response filed Aug. 7, 2013 to Office Action mailed Jul. 22, 2013”, w/English Translation, 39 pgs.
“Chinese Application Serial No. 201320171504.0, Office Action mailed Jul. 22, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320171504.0, Response filed Jul. 25, 2013 to Office Action mailed Jul. 22, 2013”, w/English Translation, 33 pgs.
“Chinese Application Serial No. 201320171616.6, Office Action mailed Jul. 10, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320171757.8, Office Action mailed Jul. 11, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320171757.8, Response filed Jul. 25, 2013 to Office Action mailed Jul. 11, 2013”, w/English Translation, 21 pgs.
“Chinese Application Serial No. 201320171757.8, Response filed Jul. 26, 2013 to Office Action mailed Jul. 10, 2013”, w/English Translation, 40 pgs.
“Chinese Application Serial No. 201320172128.7, Office Action mailed Jul. 12, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320172128.7, Response filed Aug. 7, 2013 to Office Action mailed Jul. 12, 2013”, w/English Translation, 39 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action mailed Jul. 9, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Sep. 16, 2013 to Office Action mailed Jul. 9, 2013”, w/English Translation, 24 pgs.
“Chinese Application Serial No. 201320172367.2, Office Action mailed Jul. 9, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320172367.2, Response filed Sep. 16, 2013 to Office Action mailed Jul. 9, 2013”, w/English Translation, 24 pgs.
“Chinese Application Serial No. 201320185461.1, Office Action mailed Jul. 23, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320185461.1, Response filed Sep. 10, 2013 to Office Action mailed Jul. 23, 2013”, w/English Translation, 25 pgs.
“Chinese Application Serial No. 201320186292.3, Office Action mailed Jul. 19, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320186292.3, Response filed Sep. 10, 2013 to Office Action mailed Jul. 19, 2013”, w/English Translation, 23 pgs.
“European Application Serial No. 13001692.6, European Search Report mailed 07-13-24”, 5 pgs.
“European Application Serial No. 13001696.7, Extended European Search Report mailed Aug. 6. 2013”, 4 pgs.
“European Application Serial No. 13001721.3, European Search Report mailed Jul. 18, 2013”, 9 pgs.
“International Application Serial No. PCT/US2013/024138, International Search Report mailed May 24, 2013”, 3 pgs.
“International Application Serial No. PCT/US2013/024138, Written Opinion mailed May 24, 2013”, 4 pgs.
“Korean Application Serial No. 10-2013-7009775, Office Action mailed Sep. 17, 2013”, w/English Translation, 6 pgs.
“Korean Application Serial No. 10-2013-7009777, Office Action mailed Sep. 17, 2013”, w/English Translation, 8 pgs.
“Korean Application Serial No. 10-2013-7009788, Office Action mailed Aug. 29, 2013”, w/English Translation, 6 pgs.
“Korean Application Serial No. 10-2013-7009790, Office Action mailed Jun. 26, 2013”, W/English Translation, 7 pgs.
“Korean Application Serial No. 10-2013-7009790, Response filed Aug. 26, 2013 to Office Action mailed Jun. 26, 2013”, w/English Claims, 11 pgs.
“Korean Application Serial No. 10-2013-7010143, Office Action mailed May 28, 2013”, w/English Translation, 5 pgs.
“Korean Application Serial No. 10-2013-7010143, Response filed Jul. 24, 2013 to Office Action mailed May 28, 2013”, w/English Claims, 14 pgs.
Ferreira, Antoine, et al., “A Survey of Modeling and Control Techniques for Micro- and Nanoelectromechanical Systems”, IEEE Transactions on Systems, Man and Cybernetics—Part C: Applications and Reviews vol. 41, No. 3., (May 2011), 350-364.
Fleischer, Paul E, “Sensitivity Minimization in a Single Amplifier Biquad Circuit”, IEEE Transactions on Circuits and Systems. vol. Cas-23, No. 1, (1976), 45-55.
Reljin, Branimir D, “Properties of SAB filters with the two-pole single-zero compensated operational amplifier”, Circuit Theory and Applications: Letters to the Editor. vol. 10, (1982), 277-297.
Sedra, Adel, et al., “Chapter 8.9: Effect of Feedback on the Amplifier Poles”, Microelectronic Circuits, 5th edition, (2004), 836-864.
Song-Hee, Cindy Paik, “A MEMS-Based Precision Operational Amplifier”, Submitted to the Department of Electrical Engineering and Computer Sciences MIT, [Online]. Retrieved from the Internet: <URL: http://dspace.mitedu/bitstream/handle/1721.1/16682/57138272.pdf? . . . >, (Jan. 1, 2004), 123 pgs.
“U.S. Appl. No. 13/362,955, Final Office Action mailed Nov. 19, 2014”, 5 pgs.
“U.S. Appl. No. 13/362,955, Response filed Aug. 15, 2014 to Non Final Office Action mailed May 15, 2014”, 13 pgs.
“U.S. Appl. No. 13/363,537, Examiner Interview Summary mailed Sep. 29, 2014”, 3 pgs.
“U.S. Appl. No. 13/363,537, Notice of Allowance mailed Nov. 7, 2014”, 5 pgs.
“U.S. Appl. No. 13/363,537, Response filed Sep. 29, 2014 to Final Office Action mailed Jun. 27, 2014”, 9 pgs.
“U.S. Appl. No. 13/821,586, Response filed Nov. 24, 2014 to Restriction Requirement mailed Sep. 22, 2014”, 6 pgs.
“U.S. Appl. No. 13/821,586, Restriction Requirement mailed Sep. 22, 2014”, 4 pgs.
“U.S. Appl. No. 13/821,589, Response filed Nov. 10, 2014 to Non Final Office Action mailed Jul. 9, 2014”, 15 pgs.
“U.S. Appl. No. 13/821,598, Non Final Office Action mailed Nov. 20, 2014”, 9 pgs.
“U.S. Appl. No. 13/821,598, Response filed Oct. 15, 2014 to Restriction Requirement mailed Aug. 15, 2014”, 8 pgs.
“U.S. Appl. No. 13/821,612, Response filed Oct. 23, 2014 to Non Final Office Action mailed Jul. 23, 2014”, 6 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action mailed Sep. 4, 2014”, w/English Claims, 11 pgs.
“Chinese Application Serial No. 201180055029.4, Response filed Nov. 14, 2014 to Office Action mailed Jul. 2, 2014”, w/English Claims, 23 pgs.
“Chinese Application Serial No. 201310118845.6, Office Action mailed Sep. 9, 2014”, 8 pgs.
“Chinese Application Serial No. 201310119472.4, Office Action mailed Sep. 9, 2014”, w/English Translation, 11 pgs.
“European Application Serial No. 11826043.9, Office Action mailed May 6, 2013”, 2 pgs.
“European Application Serial No. 11826043.9, Response filed Nov. 4, 2013 to Office Action mailed May 6, 2013”, 6 pgs.
“European Application Serial No. 11826067.8, Extended European Search Report mailed Oct. 6, 2014”, 10 pgs.
“European Application Serial No. 11826070.2, Response filed Sep. 19, 2014 to Office Action mailed Mar. 12, 2014”, 11 pgs.
“European Application Serial No. 11826071.0, Response filed Sep. 19, 2014 to Office Action mailed Mar. 12, 2014”, 20 pgs.
“European Application Serial No. 11827347.3, Office Action mailed May 2, 2013”, 6 pgs.
“European Application Serial No. 11827347.3, Response filed Oct. 30, 2013 to Office Action mailed May 2, 2013”, 9 pgs.
“European Application Serial No. 13001695.9, European Search Report mailed Oct. 5, 2014”, 6 pgs.
Dunn, C, et al., “Efficient linearisation of sigma-delta modulators using single-bit dither”, Electronics Letters 31(12), (Jun. 1995), 941-942.
Kulah, Haluk, et al., “Noise Analysis and Characterization of a Sigma-Delta Capacitive Silicon Microaccelerometer”, 12th International Conference on Solid State Sensors, Actuators and Microsystems, (2003), 95-98.
Sherry, Adrian, et al., “AN-609 Application Note: Chopping on Sigma-Delta ADCs”, Analog Devices, [Online]. Retrieved from the Internet: <URL: http://www.analog.com/static/imported-files/application—notes/AN-609.pdf>, (2003), 4 pgs.
“U.S. Appl. No. 12/849,742, Notice of Allowance mailed Nov. 29, 2013”, 7 pgs.
“U.S. Appl. No. 12/849,787, Notice of Allowance mailed Dec. 11, 2013”, 9 pgs.
“U.S. Appl. No. 12/849,787, Response filed Oct. 28, 2013 to Non Final Office Action mailed May 28, 2013”, 12 pgs.
“U.S. Appl. No. 13/362,955, Response filed Feb. 17, 2014 to Restriction Requirement mailed Dec. 17, 2013”, 9 pgs.
“U.S. Appl. No. 13/362,955, Restriction Requirement mailed Dec. 17, 2013”, 6 pgs.
“U.S. Appl. No. 13/363,537, Non Final Office Action mailed Feb. 6, 2014”, 10 pgs.
“U.S. Appl. No. 13/742,942, Notice of Allowance mailed Jan. 28, 2014”, 9 pgs.
“U.S. Appl. No. 13/746,016, Notice of Allowance mailed Jan. 17, 2014”, 10 pgs.
“U.S. Appl. No. 13/755,841, Restriction Requirement mailed Feb. 21, 2014”, 6 pgs.
“Chinese Application Serial No. 201180053926.1, Office Action mailed Jan. 13, 2014”, 7 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action mailed Jan. 16, 2014”, 8 pgs.
“Chinese Application Serial No. 201180055029.4, Office Action mailed Jan. 13, 2014”, 7 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action mailed Oct. 25, 2013”, 8 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Dec. 24, 2013 to Office Action mailed Oct. 25, 2013”, 11 pgs.
“Chinese Application Serial No. 201320565239.4, Office Action mailed Jan. 16, 2014”, w/English Translation, 3 pgs.
“European Application Serial No. 10806751.3, Extended European Search Report mailed Jan. 7, 2014”, 7 pgs.
“Korean Application Serial No. 10-2013-0109990, Amendment filed Dec. 10, 2013”, 4 pgs.
“Korean Application Serial No. 10-2013-7009775, Office Action mailed Dec. 17, 2013”, 8 pgs.
“Korean Application Serial No. 10-2013-7009775, Response filed Oct. 29, 2013 to Office Action mailed Sep. 17, 2013”, w/English Claims, 23 pgs.
“Korean Application Serial No. 10-2013-7009777, Office Action mailed Jan. 27, 2014”, 5 pgs.
“Korean Application Serial No. 10-2013-7009777, Response filed Nov. 5, 2013 to Office Action mailed Sep. 17, 2013”, 11 pgs.
“Korean Application Serial No. 10-2013-7009788, Office Action mailed Dec. 27, 2013”, w/English Translation, 10 pgs.
“Korean Application Serial No. 10-2013-7009788, Response filed Oct. 29, 2013 to Office Action mailed Aug, 29, 2013”, w/English Claims, 22 pgs.
“U.S. Appl. No. 12/849,742, Non Final Office Action mailed Mar. 28, 2013”, 9 pgs.
“U.S. Appl. No. 12/849,742, Non Final Office Action mailed Aug. 23, 2012”, 9 pgs.
“U.S. Appl. No. 12/849,787, Response filed Feb. 4, 2013 to Restriction Requirement mailed Oct. 4, 2012”, 7 pgs.
“U.S. Appl. No. 12/849,787, Restriction Requirement mailed Oct. 4, 2012”, 5 pgs.
“U.S. Appl. No. PCT/US2011/052006, International Republished Application mailed Jun. 7, 2012”, 1 pg.
“Application Serial No. PCT/US2011/052417, International Republished Application mailed Jun. 7, 2012”, 1 pg.
“International Application Serial No. PCT/US2010/002166, International Preliminary Report on Patentability mailed Feb. 16, 2012”, 6 pgs.
“International Application Serial No. PCT/US2010/002166, International Search Report mailed Feb. 28, 2011”, 3 pgs.
“International Application Serial No. PCT/US2010/002166, Written Opinion mailed Feb. 28, 2011”, 4 pgs.
“International Application Serial No. PCT/US2011/051994, International Search Report mailed Apr. 16, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/051994, Written Opinion mailed Apr. 16, 2012”, 6 pgs.
“International Application Serial No. PCT/US2011/052006, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 7 pgs.
“International Application Serial No. PCT/US2011/052006, Search Report mailed Apr. 16, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052006, Written Opinion mailed Apr. 16, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052059, International Preliminary Report on Patentability mailed Jan. 22, 2013”, 14 pgs.
“International Application Serial No. PCT/US2011/052059, Search Report mailed Apr. 20, 2012”, 4 pgs.
“International Application Serial No. PCT/US2011/052059, Written Opinion mailed Apr. 20, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/052060, International Preliminary Report on Patentability mailed Jan. 22, 2013”, 12 pgs.
“International Application Serial No. PCT/US2011/052060, International Search Report Apr. 20, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052060, Written Opinion mailed Apr. 20, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/052061, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 6 pgs.
“International Application Serial No. PCT/US2011/052061, International Search Report mailed Apr. 10, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052061, Written Opinion mailed Apr. 10, 2012”, 4 pgs.
“International Application Serial No. PCT/US2011/052064, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 5 pgs.
“International Application Serial No. PCT/US2011/052064, Search Report mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052064, Written Opinion mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052065, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 7 pgs.
“International Application Serial No. PCT/US2011/052065, International Search Report mailed Apr. 10, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052065, Written Opinion mailed Apr. 10, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052369, International Search Report mailed Apr. 24, 2012”, 6 pgs.
“International Application Serial No. PCT/US2011/052369, Written Opinion mailed Apr. 24, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052417, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 6 pgs.
“International Application Serial No. PCT/US2011/052417, International Search Report mailed Apr. 23, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052417, Written Opinion mailed Apr. 23, 2012”, 4 pgs.
Beyne, E, et al., “Through-silicon via and die stacking technologies for microsystemsintegration”, IEEE International Electron Devices Meeting, 2008. IEDM 2008., (Dec. 2008), 1-4.
Cabruja, Enric, et al., “Piezoresistive Accelerometers for MCM-Package—Part II”, The Packaging Journal of Microelectromechanical Systems. vol. 14, No. 4, (Aug. 2005), 806-811.
Ezekwe, Chinwuba David, “Readout Techniques for High-Q Micromachined Vibratory Rate Gyroscopes”, Electrical Engineering and Computer Sciences University of California at Berkeley, Technical Report No. UCB/EECS-2007-176, http://vonweecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-176.html, (Dec. 21, 2007), 94 pgs.
Rimskog, Magnus, “Through Wafer Via Technology for MEMS and 3D Integration”, 32nd IEEE/CPMT International Electronic Manufacturing Technology Symposium, 2007. IEMT '07., (2007), 286-289.
Related Publications (1)
Number Date Country
20130263641 A1 Oct 2013 US
Provisional Applications (1)
Number Date Country
61620575 Apr 2012 US