This invention relates to fastener elements having a self-threading or self-tapping bore upon receipt of a standard or conventional spirally threaded male fastener element formed by piercing a configured bore through the female fastener element which forms a continuous spiral female thread upon threaded receipt of a conventional spirally threaded male fastener element, such as a screw or bolt. The self-threading female fastener element of this invention also provides prevailing torque. This invention also relates to a method of forming self-attaching female fastener elements having a self-threading bore.
The prior art includes self-threading and thread rolling male fastener elements, including bolts and screws, which form a spiral thread in a cylindrical bore of a female fastener element, including nuts. However, such self-threading or thread rolling male fastener elements are relatively expensive and therefore are not widely used in mass production applications. The prior art also includes bolts and screws having prevailing torque which generally include a lobular cross-section. As will be understood, the term “prevailing torque” means that the torque required to thread the male fastener element into the female fastener element is maintained, generally at decreasing levels, with each removal and rethreading of the male fastener element into the female fastener element. Conventional male and female fastener elements have a clearance between the threads, such that the female fastener element can be unthreaded under vibrational loads, for example. However, male fastener elements having prevailing torque are generally relatively expensive to manufacture and are therefore used only in applications requiring prevailing torque.
The prior art also includes female fastener elements generally formed from strip steel having a stamped opening which threadably receives a male fastening element, such as a screw. The “Tinnerman” fasteners are typical of this type of fastener. However, the prior art does not include commercial female fastener elements, such as conventional nuts, including self-attaching nuts, having a self-threading bore which may be pierced through the body portion of the female fastener element and which provide prevailing torque.
As will be understood by those skilled in this art, a substantial portion of the cost of a conventional female fastener element is the cost of forming or tapping the threaded bore. In a conventional nut, for example, a cylindrical bore is first pierced through the nut body and the bore is then tapped forming a continuous spiral female thread requiring expensive tapping machines and handling equipment. A chamfer or counter bore is often required to reduce burrs and provide a lead in for the screw, bolt or male fastener element. The tapping operation is generally the slowest step in the manufacture of conventional female fastener elements and the tapping tool must continuously be lubricated with oil, such that the female fastener elements must be cleaned after tapping of lubricating oil, chips and burrs. Thus, in a typical application, the female fastener elements must be taken “off line” to a tapping machine which forms the female thread and cleaned following tapping. Because the tapping operation is generally the slowest step in the manufacture of female fastener elements, several expensive tapping machines are generally utilized by the manufacturer of female fasteners to maintain a continuous manufacturing operation.
The problems associated with tapping female fastener elements described above are a particular problem with the manufacture of self-attaching female fastener elements including pierce, clinch and weld nuts. For example, the self-attaching female fastener elements disclosed in U.S. Pat. Nos. 3,187,796, 3,648,747 and 3,711,931, all assigned to the assignee of the predecessor in interest of the assignee of the present application, are formed by rolling a continuous metal strip having the desired cross-section of the female fastener elements, including a continuous projecting pilot portion and flange portions on opposed sides of the pilot portion. The rolled strip is then pierced forming a cylindrical bore. The rolled strip is then severed or chopped, forming discreet self-attaching female fastener elements, and the cylindrical bore is then tapped by tapping machines forming a continuous spiral female thread in the bore for receipt of a male fastener element, such as a bolt, following installation in a panel. The pierce or clinch nuts disclosed in these patents have achieved substantial commercial success, particularly in mass production applications used by the automotive and appliance industries. However, the thread tapping operation is much slower than the other manufacturing steps, requiring several expensive high speed tappers, labor and time.
Where the self-attaching female fastener elements disclosed in the above-referenced patents are interconnected in a strip for feeding to the fastener installation head, as disclosed in the above-referenced U.S. Pat. No. 3,711,931, the fastener elements are collected in a hopper following severing of the strip and transferred to tapping machines as described above. Following tapping and cleaning of oil, chips and burrs, the self-attaching female fasteners are then reassembled in end to end relation and interconnected by frangible connector elements. Thus, the tapping operation significantly slows the manufacture of self-attaching female fastener elements as disclosed in this patent and increased labor and time. Reference is also made to U.S. Pat. Nos. 3,775,791 and 3,999,659, wherein the fastener elements remain integral with the strip, requiring a gang tapping operation, which also slows the manufacturing process and wherein the taps must be periodically replaced or sharpened and the strip must be cleaned of chips, oil and burrs.
There is, therefore, a long felt need for a female fastener element, such as a nut, having a self-threading bore, wherein the bore may be formed by piercing, thereby eliminating the tapping operation, and which may be utilized with standard male fastener elements, including conventional bolts and screws. The self-threading or self-tapping female fastener elements of this invention eliminate the tapping operation in the manufacture of female fastener elements, thereby significantly reducing the cost and providing further advantages including a prevailing torque female fastener element.
The self-threading female fastener element of this invention is adapted for receipt of a conventional or standard spirally threaded male fastener element, such as a conventional bolt or screw. The female fastener element of this invention includes a metal body portion having a configured bore therethrough, wherein the bore includes a generally cylindrical internal surface or more specifically equally circumferentially spaced cylindrical surfaces having a diameter less than the major or crest diameter of the male fastener element. In a preferred embodiment, the internal diameter of the cylindrical surface or surfaces is approximately equal to the minor or root diameter of the male threaded element. The bore of the female fastener element further includes a plurality of equally circumferentially spaced recesses between the cylindrical surfaces, wherein threading of a male fastener element into the bore deforms metal from the cylindrical surface or surfaces into the recesses forming a substantially continuous female spiral thread. Because the threads of the male fastener element and the threads formed in the female fastener element are in line to line contact, unlike a conventional nut and bolt wherein the threads of the male and female fastener are spaced, the female fastener element of this invention also provides prevailing torque.
In one preferred embodiment of the self-threading female fastener element of this invention, the recesses in the generally cylindrical internal surface are cylindrical concave surfaces and the bore includes an inlet portion wherein the generally cylindrical surface is frustoconical, providing a lead-in for a male fastener element and reducing or eliminating burrs formed during threading of the male fastener element into the self-threading female fastener element. To assure formation of a substantially full female spiral thread in the female fastener element, the total volume of the recesses are approximately equal to an annulus defined by a major diameter of the bore measured between a radial outer surface of opposed recesses and an internal diameter of the generally cylindrical surface less the total volume of the recesses, such that the volume of each recess is approximately equal to the volume of the adjacent annular portion including the cylindrical surface defining the minor diameter of the bore. As will be understood, however, the volume of the adjacent annulus which is deformed into the recess is preferably slightly less than the recess to prevent binding of the male fastener element in the self-threading bore during threading. In a preferred embodiment, the volume of the annulus, as defined above, adjacent each recess is between eighty percent and ninety-five percent of the total volume of the recesses, providing a substantially fully formed continuous spiral female thread and prevailing torque. Cylindrical recesses are preferred with smaller female fastener elements, such as an M6 nut. However, it is believed that other shapes of recesses may be utilized, particularly for larger female fastener elements, including arcuate including concave rectangular recesses.
The method of forming a continuous strip of self-attaching female fastener elements of this invention provides additional benefits, particularly where the nut bodies are continuously formed in a rolling mill and the fastener elements are reconnected in the same orientation by frangible connector elements as described above. This method includes rolling a metal strip having a cross-section of the female fastener elements, including a continuous projecting pilot portion having an end face and parallel side faces and continuous flange portions on opposed sides of the continuous pilot portion. The method then includes piercing equally spaced configured bores through the end face of the continuous pilot portion of the strip having the self-threading configuration described above. The pilot portion may then be severed but retained in a strip having integral carrier portions as disclosed in the above-referenced U.S. Pat. Nos. 3,775,791 and 3,999,659 or the strip may be severed forming aligned discreet self-attaching fastener elements ready for interconnection with frangible connector elements if desired. In either embodiment, the tapping operation is eliminated.
The method of forming self-attaching female fastener elements of this invention has further advantages where the fastener elements are interconnected by a frangible connector element eliminating the requirement for taking the fastener elements off line for tapping as described above. The method of this invention may then include severing the strip between the self-threading bores, forming discreet female fastener elements and then interconnecting the discreet fastener elements with a frangible connector element without the requirements of tapping, cleaning and realignment. Thus, the orientation of the discreet female fastener elements may be maintained following severing of the strip and reconnecting the discreet fastener elements with a frangible connector element.
Other advantages and meritorious features of the self-threading female fastener element and method of this invention will be more fully understood from the following description of the preferred embodiments, the appended claims and the drawings, a brief description of which follows.
As set forth above, the female fastener element and method of this invention is particularly, but not exclusively adapted for mass production applications and eliminates the requirement for threading or tapping the bore of the female fastener element and cleaning of chips and cutting oil. As will be understood from the following description of forming a substantially continuous spiral thread in the configured pierce bore of a female fastener element, a force is required to thread a male fastener element into the configured pierced configured bore of the female fastener element, such as utilized in mass production applications, wherein a torque power driver or wrench is utilized to thread either a female fastener element on a conventional male fastener element or a male fastener element into the bore of the female fastener element. Further, because the spirally threaded bore formed in the female fastener element during threading of a male fastener element into the pierced bore of the female fastener element is in line-to-line contact, the female fastener element of this invention additionally provides prevailing torque.
FIGS. 1 to 3 illustrate one embodiment of a female fastener element 20 of this invention having a configured pierced self-threading or self-tapping bore 22. The female fastener element 20 illustrated in FIGS. 1 to 3 has a conventional body portion 24 including a first end face 26, a second end face 28 and a hexagonal side face 30, wherein the configured pierced self-threading bore 22 extends through the end faces 26 and 28. As will be understood from the following description of the female fastener element and method of this invention, the configuration of the body portion 24 of the female fastener element 20 may be any conventional female fastener element, including fastener elements having any number of side faces suitable for threading the female fastener element on a conventional or standard male fastener element, wherein either the nut or bolt is fixed or restrained. The self-threading nut of this invention is also particularly suitable for weld nuts or weld studs. Further, as described below, the female fastener element and method of this invention is particularly suitable for self-attaching or welded female fastener elements.
The pierced configured bore 22 of the female fastener element 20 of this invention includes a generally cylindrical internal surface 32 having a plurality of spaced recesses 34. Stated another way, the internal surface 32 of the configured bore includes a plurality of equally circumferentially spaced cylindrical surfaces 32 spaced by concave recesses 34. As shown in
In one preferred embodiment, the generally cylindrical interval surface or surfaces 32 between the recesses 34 includes a frustoconical lead-in surface 32a as shown in
As will be understood by those skilled in this art, the cross-sectional configuration of the female fastener element 44 shown in
Alternatively, the orientation of the fastener elements 44 may be maintained and the fastener elements interconnected in a continuous strip for feeding to an installation head as disclosed in the above-referenced U.S. Pat. No. 3,711,931, wherein the fastener elements 44 are interconnected by frangible connector elements 80 which are rolled and knurled by roller 82 into the grooves 62 as shown in
FIGS. 8 to 11 schematically illustrate the formation of a substantially continuous spiral female thread in the pierced configured bore 22 in FIGS. 1 to 3 and 64 in
As the male threaded shank 38 is threaded into the self-threading bore 22, the leading flank 90 of the spiral thread 84 deforms the cylindrical portions 32 between the recesses 34 into the recesses as shown by
As shown and described above, the internal minor diameter d1 of the internal cylindrical surfaces 32 is approximately equal to but slightly greater than the minor diameter D2 of the threaded shank 38 and the major diameter d2 measured between the radial outer surfaces of opposed recesses 34 is approximately equal to but preferably slightly greater than the major diameter D1 of the threaded shank 38 as shown in
As will now be understood, the substantially continuous spiral female thread 94 formed in the bore 22 of the female fastener element is in substantially line-to-line contact with the male thread 84 of the male fastener element 36 which forms the female thread. Thus, the spiral female thread formed by the male threaded element also provides prevailing torque. For example, an M6 nut having a pierced self-tapping bore had a prevailing torque of 0.45 Nm following first removal and a prevailing torque of 0.3 Nm following the fifth removal of the nut from the male fastener element. The prevailing torque of the female fastener element is an important feature of the self-threading or self-tapping female fastener element of this invention because it provides substantially zero clearance. That is, the female fastener element will not loosen on a stud or screw under vibrational and other loads. The preferred shape and number of recesses is believed to be dependent upon the size of the nut. For an M6 nut, it was found that six cylindrical recesses are preferred because the desired volumetric relation between the recesses and the cylindrical surfaces can be achieved with six cylindrical recesses in an M6 nut. However, it is also believed that other shapes of recesses may be utilized to achieve the desired volumetric relationship in larger female fastener elements, particularly for larger female fasteners, including arcuate or even generally rectangular recesses, wherein the corners are arcuate.
As will be understood by those skilled in this art, various modifications may be made to the self-threading or self-tapping female fastener element and method of this invention. As set forth above, the self-threading bore may be utilized with any female fastener element including conventional nuts as shown in FIGS. 1 to 3 or specialized female fastener elements, including self-attaching female fastener elements such as pierce, clinch and weld nuts. The material selected for the self-attaching female fastener element will depend upon the application; however, steel having a Rockwell b hardness of between fifty to seventy has been found particularly suitable. The method of this invention may also be utilized to form a self-threading or self-tapping self-attaching female fastener element as disclosed in the above-referenced U.S. Pat. Nos. 3,775,791 and 3,999,659, wherein the self-attaching female fastener elements are retained in an integral strip including carrier portions on opposed sides of the pilot portion which also function as flange portions following installation. The configuration of the self-attaching fastener element will also depend upon the application and the panel retention grooves may also be located in the side faces of the pilot portion adjacent the flange portion as disclosed, for example, in the above-referenced U.S. Pat. No. 3,187,796.
The self-threading female fastener elements of this invention thereby eliminate threading or tapping of the bore of a female fastener element, including bulk handling and cleaning of chips, burrs and cutting oil, significantly reducing the cost and increasing production. The self-threading female fastener elements of this invention also provide prevailing torque eliminating loosening of the female fastener element under vibrational and other loads. Having described preferred embodiments of the self-threading female fastener elements and method of this invention, the invention is now claimed as follows.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/37534 | 11/24/2003 | WO | 2/23/2007 |
Number | Date | Country | |
---|---|---|---|
60431003 | Dec 2002 | US |