In low-power dc-dc converters, current sensing or measurement is not only used for protection from overload condition. It is often utilized for increasing converter efficiency through multi-mode operation and improving dynamic response. Generally, the measurement methods can be categorized as voltage drop and observer based methods. In voltage drop based methods, a current passing through a sense-resistor or a MOSFET is extracted from the voltage drop it causes. The observer-based systems usually estimate current from the voltage across the power stage inductor.
In most cases, the existing methods are not well-suited for the integration with rapidly emerging digital controllers of switch-mode power supplies (SMPS) for battery-powered portable devices, communications computers, consumer electronics, and other applications where the overall size, the system cost, and the overall efficiency are among the main concerns. The voltage drop methods either decrease efficiency of the converter or require a wide-bandwidth amplifier, which are very challenging to realize in the latest CMOS digital processes. This is due to very limited supply voltages of standard digital circuits (often in sub 1V range), at which traditional analog architectures cannot be used. Hence, bulkier and less reliable multi-chip solutions each requiring a sensing circuit and controller implemented in different IC technologies. On the other hand, the observers suffer from a limited accuracy. Typically, the current estimation relies on prior knowledge of the inductance and equivalent series resistance values, which depend on operating conditions and change under external influences, such as aging and temperature.
Embodiments of the present invention describe an inductor current estimator suitable for low-power digitally controlled switch-mode power supplies (SMPS). The estimation of the average current value over one switching cycle can be based on the analog-to-digital conversion of the inductor voltage and consequent adaptive signal filtering. The adaptive filter can be used to compensate for variations of the inductance and series equivalent resistance affecting accuracy of the estimation. Based on the response to an intentionally introduced and known current step, the filter can tune its own parameters such that a fast and accurate estimation is obtained.
A self-tuning current estimator, shown in
In one embodiment, a switched mode power supply 100 comprises a digital controller 102 to control the switching of at least once switch 104 and 106 of the switched mode power supply 100. The current through the power inductor 112 can be estimated using a self-tuning digital current estimator 110.
The estimation of the inductor current can be used to limit the peak inductor current, in a current sharing multiphase current supply, as part of an average current control system and to improve dynamic response.
The digital current estimator 110 can estimate the current through the power inductor 112 by deriving from an indication of the voltage across the power inductor 112, such as an estimated average voltage across the inductor 112.
The estimate of average voltage across the power inductor can be estimated using an input voltage and output voltage of the switched mode power supply, as well as a derived duty cycle value.
A digital filter can be used to derive the estimate of the current through the power inductor. Calibration logic can adjust the coefficients of the digital filter.
The self tuning adjustments can use a current sink. The current sink can have a switch and resistor positioned across the load to produce a known current drop.
Calibration logic in the self tuning digital current estimator can adjust coefficients for the estimation of current through the power inductor based on the response of the estimated current to the use of the current sink. Deviation in the digital filter output DC value or overshoots and/or undershoots in the filter response can be used in the calibration.
If the estimated current is used for over-current protection, the digital controller can turn off the switched mode power supply when the estimated current exceeds a threshold valve.
where L and RL are the inductance and its equivalent series resistance values, respectively, and Rf and Cf are the values of the filter components. When the filter parameters are selected so that τf=Rf·Cf=L/RL=τL, the capacitor voltage becomes an undistorted scaled version of the inductor current (the zero and pole cancel each other). This allows the inductor current to be reconstructed from the capacitor voltage measurements.
The main drawback of this method is that the inductor parameters are not exactly known and do change in time, often causing large errors in the estimation. To compensate for these variations, an analog filter with programmable resistive networks has been proposed where, in the later publication, an on-chip implementation of the filter is shown. Even though the method significantly improves the estimator accuracy, its implementation still requires a relatively large number of analog components, making it less suitable for the integration with digital controllers or low-power SMPS.
In the new estimator of
By manipulating equation (1) and applying a bilinear transformation the following difference equation for the digital filter can be derived:
where c1 and c2 are filter coefficients:
and Ts is the filter sampling rate. The estimator adjusts the filter gain factor 1/RL from equation (2) and coefficients c1 and c2 through a self-calibrating process. It can be obtained with the help of a test current sink connected at the converter output, as shown in
Since the series inductor resistance RL and inductance L dynamically change, due to variations of converter operating conditions (e.g. output load current or temperature), the accuracy of the current estimation can be maintained.
Since the current sink of
A practical implementation of the self tuning digital estimator may not be straightforward. Seemingly, it requires a very fast ADC, with sampling rate significantly higher than the switching frequency, as well as an equally fast processor for the filter implementation. Each of these can make the presented estimator impractical for the cost-sensitive low-power applications.
The precision and speed of the estimator depend on the accuracy of the measurement of the average value of the inductor voltage. Even a small error in the measurement can cause a large estimation error. To obtain a fast estimation, the accurate measurement of the inductor voltage over one switching cycle is required. It could be done with an ADC converter whose sampling rate is much higher than the switching frequency. The need for a very high sampling rate converter can be described through
To eliminate the need for the fast ADC, the input voltage of the power stage vg(t) can be sampled at a rate lower than switching frequency and the average value of the inductor voltage is calculated as:
vL-ave[n]=d[n]·vg[n]−vout[n], (5)
where d[n] is DPWM's duty cycle control variable and vout[n] is the converter output voltage, both of which can be readily available in the control loop of
The calculation of the average voltage described in the previous subsection reduces hardware requirements but at the same time affects the estimation accuracy. The actual average inductor voltage might differ from equation (5), due to the action of non-overlapping, i.e. dead-time circuit, and other parasitic effects. To compensate for this effect, as well as for the previously mentioned variations in the inductor values, a current sink and Gain/τ Calibration Logic 116 (
In the first phase, a known load current step is introduced by the sink and the accurate value 1/RL is found from the variation in the estimated inductor current.
In the next phase, another current step is introduced and the time constant τL=L/RL, determining coefficients c1 and c2 are calculated from the estimator output overshoot/undershoot.
A more detailed description of an exemplary calibration procedure is given in the following subsection.
The block named Gain/τ Calibration Logic 116, shown in
The initial steady state is detected by monitoring the error signal e[n] and at the time instant A (
where RL
The uncertainty of an actual inductor value L affects the time constant τf(1) and therefore the time response of the filter. This effect is demonstrated in
It can be seen that the estimated current accurately follows iL(t) only when a proper set of filter coefficients for the actual inductor value L is set. In two other cases, the estimated current exhibits overshoot for τf smaller than actual value and undershoot when τf is larger.
The calibration of the τf can be performed during the transient, at the output voltage valley point (time instant B in
An experimental system was built based on the diagrams shown in
Tuning process of the filter time constant τf due to the variation of the inductance value L is demonstrated in
A simple overload protection of the converter circuitry can be obtained by comparing the output of the current estimator with a predefined digital current threshold. Once the estimated current exceeds the threshold value, to prevent the converter damage, it is immediately turned off and the estimator stops its operation as shown in
In the example of
The accuracy of the current estimator is tested by changing the output load current between 0.5 A and 10.3 A (maximum load) and monitoring the estimated current. The obtained data is shown in
It can be seen that the current estimator has accuracy better than 10% between 20% and 100% of the maximum load current with 5% accuracy at the maximum load current. These results meet or surpass the most recent analog solution demonstrated in where an accuracy of 8% was achieved.
The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims and their equivalents.
This application claims priority from the following application, which is hereby incorporated in its entirety: U.S. Provisional Application No. 61/048,655 entitled: “SELF-TUNING DIGITAL CURRENT ESTIMATOR FOR LOW-POWER SWITCHING CONVERTERS”, by Aleksandar Prodic, et al., filed Apr. 29, 2008.
Number | Name | Date | Kind |
---|---|---|---|
4315316 | Boros et al. | Feb 1982 | A |
5831837 | Coyne et al. | Nov 1998 | A |
5966042 | Werner et al. | Oct 1999 | A |
6031361 | Burstein et al. | Feb 2000 | A |
6225795 | Stratakos et al. | May 2001 | B1 |
7236920 | Grochowski et al. | Jun 2007 | B2 |
7288924 | Trandafir et al. | Oct 2007 | B2 |
7391195 | Tiew et al. | Jun 2008 | B2 |
7652459 | Abu Qahouq et al. | Jan 2010 | B2 |
7821237 | Melanson | Oct 2010 | B2 |
20060276915 | Kelly | Dec 2006 | A1 |
20070108953 | Latham | May 2007 | A1 |
20090039852 | Fishelov et al. | Feb 2009 | A1 |
20090267582 | Prodic et al. | Oct 2009 | A1 |
20100141230 | Lukic et al. | Jun 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20090267582 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
61048655 | Apr 2008 | US |