Not applicable.
Description of the Related Art
In the past, pipettes or vials containing various chemicals and/or samples have been manually organized into well plates in a laboratory or facility. There is great opportunity for human error when attempting to organize numerous identical or nearly identical small vials into the tight space of a well plate or plates. One attempt to improve upon the prior systems is a system with a mounting surface incorporating light emitting diodes (LEDs) into the mounting surface. The LEDs are used to indicate the proper well in a plate for pipetting or vial handling. This is accomplished by placing a vial rack or plate on top of the LED mounting surface and using software to illuminate the correct LED for pipetting or handling.
A semi-automated pipetting apparatus has a computer monitor with a screen lying in at least a nearly horizontal plane. A screen protector is mounted over the screen. A processing unit runs a computer program and is in communication with the computer monitor to generate a screen display shown on the screen. The screen display indicates at least one target location for the placement of a vial.
Referring to
The computer monitor 12 is preferably a flat panel computer monitor 13 in communication with a CPU 14 contained in computer 14a. The computer monitor 12 may be other than a flat panel computer monitor so long as it is functional for mounting well plates 22 over the outer surface 18a of screen 18. The outer surface 18a should lie in a horizontal plane or in a primarily horizontal plane so that the well plate(s) 22 and vials 20 will rest and stabilize over the screen 18 under the influence of gravity. Preferably the computer monitor 12 has swivel joints 19 such that the outer surface 18a of screen 18 can be rotated to the horizontal or to a plane slightly sloped from the horizontal as desired by the user. However those skilled in the art will realize that there are other ways to make the screen 18 horizontal or nearly horizontal, and that there are many types of swivel joints 19 which may be used in the overall design of the system. Also, if the screen 18 lies in a plane which is nearly horizontal such would mean that the slope of the screen 18 from the horizontal would be sufficient for the vials 20 to be stable on top of the screen 18.
The screen protector or cover 30 is preferably used in the system to protect the computer monitor 12 from chemicals and/or moisture. Hence, the screen protector 30 is preferably made of a chemically resistant, transparent material, e.g., polyethelene perephthalate (“PET”) a polyester material. The screen protector 30 may be a sheet or layer 30a mounted over outer surface 18a of screen 18 or it may be embedded in/with the surface 18a. In the preferred embodiment, the screen protector 30 is made to match the computer monitor 12 including the surface 18a of the screen 18. Such a screen protector 30 has a planar interior surface 32 with sidewalls 34 adjoining to a raised peripheral surface 36. In one example, the interior surface 32 is approximately eleven inches by 8.25 inches, the sidewalls 34 are about 5/16th of an inch high, and the peripheral surface 36 is about from one-half inch to one inch wide. The screen protector 30 could include a template indicating a location for the proper placement of a well plate 22. The screen protector 30 could be made in other manners such as, for example, a screen 18 with fluid tight joints.
The processing unit or CPU (central processing unit) 14 may be integral with or separate from the computer monitor 12. The CPU 14 will enable a computer program or software 15 to generate or create the screen display 16. In the current preferred embodiment MICROSOFT EXCEL software is the software 15 used to create the screen displays 16, including spreadsheets 16a, target locations 17, etc. One skilled in the art may implement other software 15.
A sample User Manual excerpt for using the software 15 appears below and
The pipetting options are available for selection under the Source Plate Type and Target Plate Type list boxes on the Setup tab of WellAware. Please not that not all pipetting options are available under the Pipetting From list box.
The Programs button on the WellAware Setup tab provides access to a number of common pipetting programs. Programs include transposing using single and 8-channel pipettors with various plate configurations. WellAware also includes programs for transfers using single, 8, 12 & 16-channel pipettors and 8-channel 9 mm to 4.5 mm variable span pipettors utilizing various plate configurations.
Customizable Screen
On the Pipetting Tab there is a series of buttons that will allow the user to custom configure the WellAware program to any computer screen (
Accessories
Monitor & Screen cover—Bio TX has a 180-degree tilt modified fourteen inch LCD screen, which comes with a disposable chemical resistant screen cover. The covers are made of PET plastic and are resistant to most solvents, acids and bases (plastic soft drink bottles are made out of PET). The screen and the covers are available for purchase with or without the WellAware software.
Foot switch—A three-button USB foot switch is available for the hands-free operation of the WellAware programs. The Left button is the ESC key, the middle button is the Enter key and the right button is the combination of the Ctrl+Shift+R the equivalent of hitting the Run button on the Setup tab of WellAware.
Barcode reader—The main WellAware program can be used with bar-coded vials or containers. It is recommended that all bar-coded vials be grouped together in the Setup spreadsheet before hitting the Run button and that all bar-coded vials be processed at the same time. When a bar-coded record is encountered by the software an input box, will pop-up and ask the operator to scan the barcode. When the barcode is scanned, the correct record is found in the Setup spreadsheet and the correct Target well is illuminated. This function is ideal for making master plates from vials, filling holes in master plates, cherry picking and combi-chem type applications.
The software 15 may be used in conjunction with a computer network and with more than one computer monitor. For example, a user may desire to make data entries while viewing a display 26 on a second computer monitor 24 whilst the computer monitor 12 is used for the organized placement and arrangement of vials 20.
The screen display 16 works in conjunction with (is generated by) the CPU 14 and software 15 to indicate a target location 17 for each vial 20 on the screen display 16. The target location 17 is principally represented by a visual cue, such as, by way of example, a red light appearing within what was previously a white circle appearing against a black background. Other cues such as an audible cue or text to speech (voice prompting) may be used as well. For example, an audible cue may be used to inform the operator that the screen display 16 is ready for placement of a vial 20 which was just bar code scanned by a linked scanner 28 into the system.
In another example, the screen protector 30 is mounted over outer surface 18a on the computer monitor 16. A semi-transparent well plate 22 is placed on the screen protector 30 in a location indicated by lights on the screen display 16. The screen display 16 then lights up a red light which can be seen through the semi-transparent well plate 22 to indicate to the operator where a vial 20 should be transferred and placed within the well plate 22. The CPU 14 will process data so that a record is kept of the placement location and contents of each individual vial 20.
A foot control 40 may be used with the semi-automated pipetting aid 10. The foot control 40 can be used by the operator to, for example, cue the system that the operator has completed a specific or specified task, to move on to the next transfer, etc. The foot control allows the operator's hands to be free to pipet liquids into vials 20 or plates 22, scan bar codes located on vials 20, apply bar code labels, etc.
A wired or wireless, or “bluetooth” system 50 can be added to the overall system. The wireless or “bluetooth” system 50 is used to automate volumetric dispensation from a stand-alone pipette header 52. In such a system 50, the computer sends volumetric dispensation data to the pipette header 52. This will automate the volume of a liquid dispensed into a pipette 20 (e.g. 9.5 milliliters) once the operator simply initiates the dispensation of the liquid into a vial 20. A “bluetooth” or wireless card 54 is mounted in the computer 14a, and a “bluetooth” or wireless port/receiver 56 is located in the pipette header 52. As known to one of ordinary skill in the art, the wireless port/receiver 56 can be used to implement control signals and functionality for the pipette header 52.
The software 15 generated spreadsheet 16a (
Not applicable
Not applicable