The present invention relates to a method for assisting with parking a motor vehicle and an associated device.
The invention has highly advantageous applications, since it provides fast, intuitive assistance with parking, while avoiding the use of complicated and costly assistance equipment.
Assistance with parking motor vehicles is becoming increasingly common at the present time. In a world where the urban proportion of the population is increasing, a considerable concentration of human activity is seen, and parking places for motor vehicles are hard to find in cities. In view of this situation, it is increasingly essential to assist drivers of motor vehicles in their parking maneuvers, since free parking places are harder to find and are becoming smaller in size in many cases.
The existing solutions for parking assistance are based on the relatively general-purpose equipment used for assisted steering means, with the aim of reducing the force to be applied to the steering components of vehicles during maneuvering, but above all, essentially, on the fitting of multiple sensors to motor vehicles. These sensors, such as on-board cameras and proximity sensors of the radar or lidar type, for example, can be used to provide the driver with information about the distances between their motor vehicles and potential obstacles. Evidently, this on-board equipment, together with the associated electronic information processing systems, represents an added cost that cannot be disregarded.
Although the effectiveness of this equipment is proven, and some types of equipment even enable parking to take place without any action by the driver, it is desirable to propose parking assistance which is more affordable in financial terms. The aim of the invention is therefore to propose parking assistance which is effective, simple and inexpensive.
For this purpose, the invention proposes a semi-automatic method for assisting with parking a motor vehicle having steerable wheels, comprising the steps of:
The method is remarkable in that it further comprises the following steps:
In specific embodiments, the invention may have one or more of the following characteristics, which may be considered individually or in any technically feasible combination:
The invention also includes a device for assisting with parking a motor vehicle having steerable wheels, the device being provided with means for:
Said device is remarkable in that it further comprises:
According to one embodiment of the device, the movement control member maneuvered by the driver is a lever of the joystick type.
Finally, the invention includes a computer-readable recording medium on which is recorded a computer program comprising program code instructions for executing the steps of the method described above.
The invention will be more readily understood from a reading of the following description. This description is purely illustrative and is to be read with reference to the attached drawings, in which:
a and 4b show schematically the steering angle α of a motor vehicle, associated with the angle β of the movement control member about the transverse axis,
a to 5d show schematically the association between positions of the movement control member and the resulting movements of the motor vehicle, for control instructions belonging to mode 1,
a to 6b show schematically the association between positions of the movement control member and the resulting movements of the motor vehicle, for control instructions belonging to mode 2,
In the description, the same reference numerals are used from one figure to the next to indicate identical or functionally similar parts.
In the description, actions are assigned to devices or programs. This means that these actions are executed by a microprocessor of this device or of the device including the program, said microprocessor then being controlled by instruction codes recorded in a memory of the device. These instruction codes enable the resources of the device to be used, and therefore permit the execution of the action undertaken.
This movement control member 10 can be manipulated by the driver of the motor vehicle 20 and can assume different positions relative to its base 12. When a movement control member 10 of this type is placed in a motor vehicle (not shown in
The movement control member 10 is connected, by means which are not detailed herein and are not the subject of the present invention, to a device for controlling the turning of the steerable wheels 22 of the motor vehicle 20 (see
The movement control member 10 may be moved along two main axes of movement relative to its base 12.
Starting from what is known as a “rest” position N, the movement control member 10 can be moved longitudinally relative to the motor vehicle from forwards (Fw) to backwards (Bw). Depending on the position assumed by the movement control member 10 along the longitudinal axis defined in this way, the motor vehicle 20 is put into forward or reverse movement, without any other action by the driver (no pressure is required on the accelerator or brake pedal, for example).
Starting from the rest position N, the movement control member 10 can be moved transversely relative to the motor vehicle from left (L) to right (R). Depending on the position assumed by the movement control member 10 along the transverse axis defined in this way, the steerable wheels 22 of the motor vehicle 20 are made to steer to the right or left, without any other action by the driver.
Clearly, any combination of these two types of movement of the movement control member is possible.
We shall now explain the steering control mode and the mode of putting the motor vehicle 20 into motion on the basis of the commands received via the movement control member 10.
When the movement control member 10 is not subjected to any movement force, it remains in its rest position N, and the steerable wheels 22, here located at the front 30 of the motor vehicle 20 (see
If a force is exerted on the movement control member 10, it is then inclined transversely at an angle β toward the driver's right (see
One particular angle βM is the angle corresponding to the maximum steering angle αM of the steerable wheels 22. In a prior art control device, any angle β greater than βM causes the steerable wheels to be turned to the maximum extent at the angle αM. The way in which the invention differs from this prior art is detailed below.
We shall now detail, with the aid of
If a force is exerted on the movement control member 10 and it is then inclined longitudinally forwards (arrow Fw) as seen by the driver (see
If a force is exerted on the movement control member 10 and it is then inclined longitudinally backwards (arrow Bw) as seen by the driver (see
The movement speed in the movement instruction mode of mode 1 is related to the position of the movement control member 10 along the longitudinal axis. The farther it is moved from its rest position N, the higher is the vehicle speed, regardless of whether the movement is forward (Fw) or backward (Bw).
c and 5d show two examples of a situation in which the movement control member 10 is placed in a position having a longitudinal component and a transverse component.
This steering control mode and the mode of putting the motor vehicle 20 into motion on the basis of the commands received via the movement control member 10 is known in itself and can be used for controlling a vehicle.
The invention proposes greater parking assistance than that provided by this operating principle. For this purpose, a method for applying the invention comprises the following steps:
Thus movement instruction mode 1 causes the vehicle to be put into motion in a way comparable to those described in
The present invention differs from the prior art in that it combines the movement mode associated with a mode 1 movement instruction with a second movement mode associated with a mode 2 movement instruction, these two movement modes being integrated into a single device. For its part, movement instruction mode 2 causes the vehicle to be put into motion in the way illustrated in
When the angle β of the movement control member 10 about the transverse axis relative to its rest position N is greater than the angle βM which sets the maximum steering angle αm of the steerable wheels 22 of the motor vehicle 20, the motor vehicle performs a maneuver of the “sawtooth” type in place of the driver, who no longer has to personally perform the sequences of steering and counter-steering associated with the alternating forward and backward movements that make up said sawtooth maneuvers. Parking then becomes very easy, with the driver simply supervising the maneuver without having to perform any physical action other than the manipulation of the movement control member 10.
In this sense, the method for parking assistance according to the invention can be described as “semi-automatic”. This is because, although it greatly simplifies the maneuvers, it still requires the presence and attention of the driver throughout the maneuver, for the purpose of observing and assessing the limitations of the available space and for avoiding obstacles (vehicles parked nearby, sidewalks, careless pedestrians, and so forth).
In movement instruction mode 2, the longitudinal component, regardless of whether it is oriented forwards Fw or backwards Bw, is interpreted by the computer executing the method according to the invention as an indication of the direction of the initial movement of the “sawtooth”. Thus, a forward longitudinal component Fw will be interpreted as a command for starting a sawtooth maneuver, beginning with a forward movement. Similarly, a backward longitudinal component Bw will be interpreted as a command for starting a sawtooth maneuver, beginning with a reverse movement. By accentuating the longitudinal component during the maneuver, the driver can thus accentuate the longitudinal movements of the motor vehicle 20 in the direction of this component. Finally, for practical reasons, a zero longitudinal component in mode 2 can be associated with a default initial movement, for example a backward movement.
If the driver releases the movement control member 10, the latter automatically returns to its rest position N, and the motor vehicle 20 is immobilized. The driver is thus fully in control of his motor vehicle 20, and can therefore stop the parking assistance procedure at any moment.
Advantageously, this changeover from parking assistance mode (mode 2) is activated only at low speeds of the motor vehicle 20, for example for a movement speed of the motor vehicle 20 below or equal to 30 km/h. This has the advantage of avoiding the risk of switching over to parking assistance mode at high speed, which would have very dangerous consequences for the motor vehicle 20, its occupants and other road users.
Similarly, the maneuvers activated by the changeover to parking assistance mode are only performed at low speed, so that the driver is allowed sufficient reaction time for his supervision of the parking assistance procedure.
In one embodiment, the method uses haptic feedback at the movement control member 10, in order to give the driver a clear perception of the two types of movement instruction mode. The joystick may, for example, have a friction point when the driver moves from area A to D, or from A to C, or from B to D, or from B to C (see
The message transmitted by haptic feedback may also be supplemented or replaced by audible and/or visual messages providing the driver with an indication of the current movement instruction mode.
In one embodiment of the invention, the method according to the invention may be supplemented with active intelligence, in order to make it self-adaptive to allow for the statistical dispersion of the movements of different drivers using the motor vehicle 20.
Advantageously, the invention may be improved in that, during backward movements Bw in mode 1, allowance is made for the natural and personal tendencies of the driver. This is because some drivers, when moving backwards in a motor vehicle 20, tend to turn the wheel to the right to reverse to the right, while others tend to turn it to the left (this is even more likely if the driver turns himself round to perform the maneuver). This gives rise to considerable difficulty for some drivers when learning to perform backward movements. In this case the control of the movement control member 10 can be configured so that inversion is possible, if the driver so chooses, thus simplifying the backward movements in mode 1.
The invention also relates to the device for assistance with parking associated with the method described above.
Finally, the invention also relates to any type of computer-readable recording medium on which is recorded a computer program comprising program code instructions for executing the steps of the method according to the invention.
In the claims, the term “comprise” does not exclude other elements or other steps. The indefinite article “a” or “an” does not exclude a plural. The various characteristics described and/or claimed may advantageously be combined. Their presence in the description or in various dependent claims does not exclude this possibility. The reference symbols are not to be interpreted as limiting the scope of the invention.
The invention is not limited to the embodiment described, and any modification that a person skilled in the art may make is possible without departure from the invention. For example, the changeover from mode 1 to mode 2 has been described as taking place on the basis of the angle β when it becomes greater than an angle βM. A possible alternative is to compare the transverse and longitudinal components of the position of the movement control member 10 and to change over to parking assistance mode when the transverse component is greater than the longitudinal component. Similarly, the method is adapted for “sawtooth” maneuvers for entering or leaving a parking place, but its use is not expressly limited to this type of maneuver.
Number | Date | Country | Kind |
---|---|---|---|
1351747 | Feb 2013 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/000487 | 2/25/2014 | WO | 00 |