Typical coaxial cable includes one or more layers of radio frequency (RF) shielding. One common type of shielding is a conductive tape that attenuates interfering electromagnetic fields in the high frequency range. Another common type of shielding is a conductive braid that attenuates interfering electromagnetic fields in the low frequency range. For example, a typical tri-shield coaxial cable includes a center conductor surrounded by a dielectric, an inner tape, a braid, an outer tape, and a jacket.
Prior to the manufacture of a tri-shield coaxial cable, the inner and outer tapes are each shaped as a flat ribbon. During the manufacture of the cable, the inner tape is folded around the dielectric such that the two edges of the inner tape overlap one another to form a straight seam that runs the length of the cable. The braid is next formed around the inner tape, after which the outer tape is folded around the braid such that the two edges of the outer tape overlap one another to form another straight seam that runs the length of the cable. Finally, the jacket is extruded around the outer tape.
After manufacture and prior to use of the tri-shield coaxial cable, the ends of the cable must be terminated with cable connectors. Prior to termination with a cable connector, a quarter-inch section of the center conductor must be exposed by removing all other layers. In addition, immediately adjacent to the quarter-inch section of the exposed center conductor, a quarter-inch section of the jacket and the outer tape must also be removed, thereby exposing a quarter-inch section of the braid. The braid is then folded back over the jacket so that a circular post (or similar structure) of a cable connector can be inserted between the inner tape and the braid.
Some tri-shield coaxial cables are manufactured such that substantially all of the outer surface of the outer tape is bonded to the inner surface of the jacket. One advantage of this bonding is that the quarter-inch section of outer tape can be removed simultaneously with the quarter-inch section of jacket after the jacket is circumscribed with the cutting edge of a cable preparation tool. One drawback of this bonding, however, is that any flexure of the jacket while the coaxial cable is in service causes a corresponding flexure of the outer tape. This flexure of the outer tape causes micro-cracks to develop in the tape which degrades the shielding effectiveness of the tape. Another drawback is that contact with the aluminum in the outer tape tends to wear down the cutting edge of the cable preparation tool.
Other tri-shield cables are manufactured such that the outer tape is not bonded to the jacket. One advantage of not bonding the outer tape to the jacket is that the outer tape can move independently of the jacket during flexure of the jacket, thus decreasing micro-crack degradation of the outer tape. One drawback with not bonding these two layers, however, is that this independent movement of the outer tape tends to cause the two overlapping edges of the outer tape seam to separate during flexure of the jacket. This separation degrades the shielding effectiveness of the outer tape.
In one embodiment, a coaxial cable comprises: a circumferential conductive tape that includes a plurality of bonding agent strips running along a length of an outer surface of the circumferential conductive tape; and a jacket surrounding the circumferential conductive tape such that the plurality of bonding agent strips bonds the circumferential conductive tape to the jacket.
In another embodiment, a coaxial cable comprises: a center conductor surrounded by a dielectric; an inner conductive tape surrounding the dielectric; a conductive braid surrounding the inner conductive tape; an outer conductive tape surrounding the conductive braid, the outer conductive tape comprising; an aluminum layer; a polymer layer adjacent to the aluminum layer; and a plurality of bonding agent strips running along a length of an outer surface of the aluminum layer; and a jacket surrounding the outer conductive tape such that the plurality of bonding agent strips bonds the outer conductive tape to the jacket.
In another embodiment, a coaxial cable comprises: two diametrically opposed bonding agent strips of an adhesive material attaching a circumferential conductive tape to an outer jacket.
Aspects of example embodiments of the present invention will become apparent from the following detailed description of example embodiments given in conjunction with the accompanying drawings, in which:
Example embodiments of the present invention relate to semi-bonded shielding in a coaxial cable. In the following detailed description of some example embodiments, reference will be made in detail to specific embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical and electrical changes may be made without departing from the scope of the present invention. Moreover, it is to be understood that the various embodiments of the invention, although different, are not necessarily mutually exclusive. For example, a particular feature, structure, or characteristic described in one embodiment may be included within other embodiments. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
With reference first to
With continuing reference to
The center conductor 102 is positioned at the core of the example coaxial cable 100. The center conductor 102 is configured to carry a range of electrical current (amperes) as well as propagate an RF/electronic digital signal. In some example embodiments, the center conductor 102 is formed from solid copper, copper-clad aluminum (CCA), copper-clad steel (CCS), or silver-coated copper-clad steel (SCCCS), although other conductive materials are possible. For example, the center conductor 102 can be formed from any type of conductive metal or alloy. In addition, the center conductor 102 can be solid, hollow, stranded, corrugated, plated, or clad, for example.
The dielectric 104 surrounds the center conductor 102, and generally serves to support and insulate the center conductor 102 from the inner tape 106. Although not shown in the figures, a bonding agent, such as a polymer bonding agent, can be employed to bond the dielectric 104 to the center conductor 102. In some example embodiments, the dielectric 104 can be, but is not limited to, taped, solid, or foamed polymer or fluoropolymer. For example, the dielectric 104 can be foamed polyethylene (PE).
The inner tape 106 surrounds the dielectric 104, and generally serves to minimize the ingress and egress of high frequency electromagnetic fields to/from the center conductor 102. For example, in some applications, the inner tape 106 can shield against electromagnetic fields that are greater than or equal to about 50 MHz. As disclosed in the figures, the inner tape 106 is a laminate tape that includes a polymer layer 106A and an aluminum layer 106B. However, it is understood that the inner tape 106 can instead include, but is not limited to, the following layers: bonding agent/aluminum/polymer, bonding agent/aluminum/polymer/aluminum, or aluminum/polymer/aluminum, for example. It is understood, however, that the discussion herein of tape is not limited to tape having any particular combinations of layers.
The braid 108 surrounds the inner tape 106, and generally serves to minimize the ingress and egress of low frequency electromagnetic fields to/from the center conductor 102. For example, in some applications, the braid 108 can shield against electromagnetic fields that are less than about 50 MHz. The braid 108 can be formed from inter-woven, fine gauge aluminum or copper wires, such as 34 American wire gauge (AWG) wires, for example. It is understood, however, that the discussion herein of braid is not limited to braid. It may be spiral wrapped or served and formed from any particular type or size of wire.
The outer tape 110 surrounds the braid 108, and generally serves to further minimize the ingress and egress of high frequency electromagnetic fields to/from the center conductor 102, in combination with the inner tape 106. As disclosed in the figures, the outer tape 110 is a laminate tape that includes a polymer layer 110A, an aluminum layer 110B, and a strip of bonding agent 111, as discussed in greater detail below. However, it is understood that the outer tape 110 can instead include, but is not limited to, layers of aluminum/polymer/aluminum/bonding agent, for example.
The jacket 112 surrounds the outer tape 110, and generally serves to protect the internal components of the coaxial cable 100 from external contaminants, such as dust, moisture, and oils, for example. In a typical embodiment, the jacket 112 also functions to protect the coaxial cable 100 (and its internal components) from being crushed or otherwise misshapen from an external force. The jacket 112 can be formed from a relatively rigid material such as, but not limited to, polyethylene (PE), high-density polyethylene (HDPE), low-density polyethylene (LDPE), or linear low-density polyethylene (LLDPE), or some combination thereof. The jacket 112 may instead be formed from a relatively less rigid and more pliable material such as, but not limited to, foamed PE, polyvinyl chloride (PVC), or polyurethane (PU), or some combination thereof. The actual material or combination of materials used might be indicated by the particular application/environment contemplated.
With continued reference to
As disclosed in
In some example embodiments, the strip of bonding agent 111 can be heat activated during the manufacture of the coaxial cable 100. For example as the jacket 112 is extruded around the outer tape 110, the heat from this extrusion process can activate the strip of bonding agent 111 thereby semi-bonding the outer tape 110 to the jacket 112.
Semi-bonding the outer tape 110 to the jacket 112 using the strip of bonding agent 111 allows the unbonded portions of the outer tape 110 to move independently of the jacket 112 during flexure of the jacket 112. This decreased flexure of the outer tape 110 decreases the flexure-related micro-crack degradation of the outer tape 110 as compared to a cable in which substantially all of the outer surface of the outer tape is bonded to the jacket. In addition, using the strip of bonding agent 111 along one of the overlapping edges of the seam of the outer tape 110 stabilizes the edge during the flexure of the jacket 112. This stabilization decreases the separation of the two overlapping edges which increases the shielding effectiveness of the outer tape 110 as compared to a cable in which the outer tape is not bonded in any way to the cable jacket.
With reference now to
As disclosed in
Shown in
Unlike the embodiment of the coaxial cable 100 described hereinabove that includes a single bonding agent strop 111, the coaxial cable 200 in this embodiment includes a plurality of bonding agent strips 211. In particular the embodiment includes a first bonding agent strip 211A and a second bonding agent strip 211B. The bonding agent strips 211A, 211B are shown covering an equal amount of the circumferential outer conductive tape 210, although this embodiment is not limiting. The bonding agent strips 211 may be made from a material such as Polyvinyl chloride (hereinafter PVC), Ethylene Acrylic Acid (EAA), and Polyvinylidene Fluoride (PVDF). This list of materials is not exhaustive, however, and any other appropriate adhesive materials may be utilized. Further, the bonding agent strips 211 may be heat activated by the circumferential jacket 212 during the manufacturing process of the coaxial cable 200. The plurality of bonding agent strips 211 may ensure more even tearing of the circumferential outer conductive tape 210 during the stripping process than the single bonding agent strip embodiment described hereinabove with respect to the coaxial cable 100.
The coaxial cable 200 in this embodiment is shown having the first strip 211A positioned along a length of an overlapping edge 214 of the circumferential outer conductive tape 210. The second strip 211B is positioned in a diametrically opposed position with respect to the first strip 211A. The plurality of bonding agent strips 211 may run in a substantially straight line along the length of the circumferential outer conductive tape 210. Alternately, the boding agent strips 211 may run in a zigzagged configuration or any other desirable configuration. The bonding agent strips 211 may run along the entirety, or a substantial portion, of the length of the circumferential outer conductive tape 210. The plurality of bonding agent strips may cover between about 10% and about 33% of the outer surface of the circumferential conductive tap 210. However, in other embodiments, the plurality of bonding agent strips may cover less than 10% or more than 33%. Thus, the bonding agent strips 211 may be wider or narrower than the embodiment shown.
A plurality of axial spaces 216 are also shown between the circumferential outer conductive tape 210 and the circumferential jacket 212. This axial space 216 does not include any adhesive. As such, the circumferential outer conductive tape 210 is movable with respect to the circumferential jacket 212 during elastic deformation from bending the coaxial cable 200. The axial space may run along the length of the coaxial cable 200 similar to the bonding agent strips 211, although only a cross sectional view is shown in the Figures. The axial spaces 216 may help prevent cracking or otherwise damaging the circumferential outer conductive tape 210 and jacket 212 during bending and other elastic deformations of the coaxial cable 200. Depending on the embodiment, the axial spaces 216 may also be wider or narrower.
Referring now to
Referring now to
The example embodiments disclosed herein may be embodied in other specific forms. The example embodiments disclosed herein are to be considered in all respects only as illustrative and not restrictive.
This application is a continuation-in-part application claiming priority to U.S. application Ser. No. 12/560,342 filed Sep. 15, 2009, entitled SEMI-BONDED SHIELDING IN A COAXIAL CABLE.
Number | Date | Country | |
---|---|---|---|
Parent | 12560342 | Sep 2009 | US |
Child | 13170417 | US |