The present Application for Patent is related to co-pending U.S. patent application Ser. No. 12/038,724, filed Feb. 27, 2008, and entitled “COHERENT SINGLE ANTENNA INTERFERENCE CANCELLATION FOR GSM/GPRS/EDGE,” assigned to the assignee hereof, and expressly incorporated by reference herein.
1. Field
The present invention relates to wireless communication and, in particular, relates to coherent single antenna interference cancellation.
2. Background
In many communication systems utilizing GSM, GPRS, EDGE or the like, a receiver's ability to properly decode a received signal depends upon the receiver's ability to maintain accurate symbol timing. As wireless communications become ever more prevalent, however, increasing amounts of interference can negatively impact a receiver's ability to maintain this timing.
According to one aspect of the subject technology, a method for estimating timing in a wireless communication comprises the steps of receiving a plurality of symbol bursts corresponding to a plurality of time slots and selecting a subset of symbols from a first symbol burst of the plurality of symbol bursts. The subset comprises a first midamble symbol. The method further comprises the steps of calculating, for each symbol in the subset, a corresponding midamble estimation error, and determining the lowest calculated midamble estimation error to determine a timing for the first symbol burst. The method further comprises the steps of processing the first symbol burst utilizing the timing determined for the first symbol burst, and processing a second symbol burst of the plurality of symbol bursts utilizing the timing determined for the first symbol burst.
According to another aspect of the subject technology, a receiver comprises an antenna configured to receive a plurality of symbol bursts corresponding to a plurality of time slots, and a timing estimator configured to select a subset of symbols from a first symbol burst of the plurality of symbol bursts. The subset comprises a first midamble symbol. The receiver further comprises a midamble estimator configured to calculate, for each symbol in the subset, a corresponding midamble estimation error, and a processor. The processor is configured to determine the lowest calculated midamble estimation error to determine a timing for the first symbol burst, process the first symbol burst utilizing the timing determined for the first symbol burst, and process a second symbol burst of the plurality of symbol bursts utilizing the timing determined for the first symbol burst.
According to yet another aspect of the subject technology, a receiver comprises means for receiving a plurality of symbol bursts corresponding to a plurality of time slots, and means for selecting a subset of symbols from a first symbol burst of the plurality of symbol bursts. The subset comprises a first midamble symbol. The receiver further comprises means for calculating, for each symbol in the subset, a corresponding midamble estimation error, means for determining the lowest calculated midamble estimation error to determine a timing for the first symbol burst, means for processing the first symbol burst utilizing the timing determined for the first symbol burst, and means for processing a second symbol burst of the plurality of symbol bursts utilizing the timing determined for the first symbol burst.
According to yet another aspect of the subject technology, a machine-readable medium comprises instructions for estimating timing in a wireless communication. The instructions comprise code for receiving a plurality of symbol bursts corresponding to a plurality of time slots and selecting a subset of symbols from a first symbol burst of the plurality of symbol bursts. The subset comprising a first midamble symbol. The instructions further comprise code for calculating, for each symbol in the subset, a corresponding midamble estimation error, determining the lowest calculated midamble estimation error to determine a timing for the first symbol burst, processing the first symbol burst utilizing the timing determined for the first symbol burst, and processing a second symbol burst of the plurality of symbol bursts utilizing the timing determined for the first symbol burst.
It is understood that other configurations of the subject technology will become readily apparent to those skilled in the art from the following detailed description, wherein various configurations of the subject technology are shown and described by way of illustration. As will be realized, the subject technology is capable of other and different configurations and its several details are capable of modification in various other respects, all without departing from the scope of the subject technology. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
Each TDMA frame, such as exemplary TDMA frame 102, is further partitioned into eight time slots, which are labeled as time slots 0 through 7. Each active wireless device/user is assigned one time slot index for the duration of a call. User-specific data for each wireless device is sent in the time slot assigned to that wireless device and in TDMA frames used for the traffic channels.
The transmission in each time slot is called a “burst” in GSM. Each burst, such as exemplary burst 103, includes two tail fields, two data fields, a training sequence (or midamble) field, and a guard period (GP). The number of bits in each field is shown inside the parentheses. GSM defines eight different training sequences that may be sent in the training sequence field. Each training sequence, such as midamble 104, contains 26 bits and is defined such that the first five bits are repeated and the second five bits are also repeated. Each training sequence is also defined such that the correlation of that sequence with a 16-bit truncated version of that sequence is equal to (a) sixteen for a time shift of zero, (b) zero for time shifts of ±1, ±2, ±3, ±4, and ±5, and (3) a zero or non-zero value for all other time shifts.
One approach to locating a midamble in a burst of symbols serially compares hypotheses regarding the midamble position to determine which hypothesis provides the highest correlation energy between the known midamble sequence and the hypothesized position in the burst of symbols. This method is very sensitive to interference from multi-paths of the same midamble sequence, which can cause the correlation energy of inaccurate hypotheses to be affected by time-delayed copies thereof. This method is also sensitive to co-channel and adjacent channel interference.
According to one aspect of the present invention, the foregoing semi-coherent timing estimation method is very robust under strong interference conditions. Accordingly, in a frame with multiple time slots, the timing estimation may be performed on one time slot, and the estimated timing can be propagated to the subsequent slots, providing exceptional savings in computational loads at the receiver, while still delivering a very robust timing estimation. Since each time slot is of the same duration (e.g., in GSM, 156.25 symbols long or 577 μs), propagation of the timing estimation is computationally trivial. According to one aspect, the timing of a timeslot TSn+1 can simply be determined by adding the duration of the time slots in that communication format to the timing of the previous time slot: Timing(TSn+1)=Timing(TSn)+156.25 Ts. According to one aspect, the foregoing method for timing estimation may be performed for the first time slot in a frame, and the resultant estimated timing may be propagated to every subsequent time slot in the same frame. Alternately, timing estimation may be performed for any one of the time slots in a frame, including but not limited to the first slot, and the resultant timing estimation may be propagated to any subsequent time slot in the same frame, whether or not the time slots are contiguous (e.g., a timing estimate could be propagated to a non-contiguous time slot by merely adding the appropriate duration to the timing estimate, such as the duration of two time slots, the duration of three time slots, etc.). For example, in accordance with one aspect, multiple time slots within a frame may be assigned to the same user, and it may be desirable to propagate a timing estimate determined according to the foregoing method for a first time slot assigned to that user to subsequent time slots assigned to the same user within the same frame.
Rather than utilizing a determined correlation energy to select which hypothesis regarding the midamble timing is accurate, timing estimator 230 performs single antenna interference cancellation (“SAIC”) to provide an estimate of the symbols making up the training sequence, which are compared against the previously-known symbols of that training sequence to determine an estimation error therefor.
To begin the search for the first midamble symbol, timing estimator 230 opens a “window” around the estimated beginning of the midamble sequence. The position of the first symbol of the midamble sequence can be estimated for a given burst, based upon the known structure of each burst. For example, as illustrated in
As can be seen with reference to
While in the present exemplary aspect, window 105 has been illustrated as consisting of exactly 11 symbols, the scope of the present invention is not limited to such an arrangement. Rather, as will be readily apparent to one of skill in the art, any window size (up to the size of the entire data burst) may be selected. For example, in accordance with one aspect of the subject technology, the size of the search window may be chosen to be twice the size of the expected minimum propagation delay. Alternatively, the search window size may be parameterized based on any other metric known to those of skill in the art.
According to one aspect, a channel estimate ĥ is generated by timing estimator 230 by correlating the received samples (corresponding to the hypothesized delay) with the reference samples (i.e., the known midamble sequence) for each hypothesis. Based on the correlation Rys(Δ) between received signal y and midamble sequence s for a hypothesized delay Δ, the channel estimate may be calculated as follows:
To test the hypothesis corresponding to each channel estimate, interference suppressor 240 performs SAIC on each estimated channel. SAIC is a method by which oversampled and/or real/imaginary decomposition of a signal is used to provide virtual antennas with separate sample sequences, such that weights may be applied to the virtual antennas to form a beam in the direction of a desired transmitter and a beam null in the direction of an undesired interference source. In general, SAIC may be achieved with one or multiple actual antennas at the receiver by using space-time processing, where “space” may be virtually achieved with inphase and quadrature components, and “time” may be achieved using late and early samples.
For example, given a set of spatial and temporal samples at a time k:
where sk is the midamble/quasi-midamble signal at time k, sk is a (ν+1)×1 midamble/quasi-midamble vector, and xk is a M×1 received midamble/quasi-midamble vector, a set of spatial temporal samples can be defined as
where Xk is a M×(L+1)×1 vector of spatial temporal samples with a spatial length of M and a temporal length of L+1. Accordingly, a spatial/temporal structured matrix can be constructed, such that
[X]=[XkXk+1 . . . Xk+p−ν],
where [X] is a M (L+1)×p−ν matrix, and p is the length of the midamble or quasi-midamble (data aided).
Accordingly, given [X] and {tilde over (s)}k=[sk, sk+1, . . . sk+p−ν], (ν+1)×p−ν, a suppression filter WSAIC can be computed according to one aspect of the subject disclosure by estimating a reference sequence of symbols at the channel output:
WSAIC=arg min∥W[X]−{tilde over (Z)}∥2 (4)
where W=(ν+1)×M(L+1) and {tilde over (Z)}={tilde over (s)}k,(ν+1)×(p−ν).
The foregoing equation can be rewritten as
WSAIC={tilde over (Z)}[X]†,(ν+1)×M(L+1) (5)
or, more particularly, as
WSAIC={tilde over (s)}k[X]T{[X][X]T}−1. (6)
The output of interference suppressor 240 is in the form Ŝ, where Ŝ represents an estimate of the midamble sequence. The difference between the estimated and known midamble sequences is determined according to Equation 7, below:
∥S−Ŝ∥2=em(ti) (7)
to obtain a midamble estimation error em(ti) for each time ti. Each time ti is equal to the hypothesized position Δi plus an offset Ts from the beginning of the burst:
ti=Δi+Ts (8)
Once the midamble estimation error em(ti) for each time ti is determined, timing decision block 260 determines which hypothesis corresponds to the lowest estimation error em, and the other hypothesized timing values are discarded.
According to one aspect of the subject disclosure, data processor 270 comprises a soft output generator that receives the signal from timing decision block 260 and generates soft decisions that indicate the confidence in the detected bits. A soft output generator may implement an Ono algorithm, as is well known to those of skill in the art. Data processor 270 may further comprise a de-interleaver that de-interleaves the soft decisions, and passes the soft decisions to a Viterbi decoder that decodes the deinterleaved soft decisions and outputs decoded data.
According to one aspect of the present invention, the foregoing semi-coherent timing estimation method is very robust under strong interference conditions. Accordingly, in a frame with multiple time slots, the timing estimation may be performed on one time slot, and the estimated timing can be propagated to the subsequent slots. Since each time slot is of the same duration (e.g., in GSM, 156.25 symbols long or 577 μs), propagation of the timing estimation is computationally trivial. According to one aspect, the timing of a timeslot TSn+1 can simply be determined by adding the duration of the time slots in that communication format to the timing of the previous time slot: Timing (TSn+1)=Timing (TSn)+156.25 Ts.
While in the foregoing exemplary embodiments, the interference suppression filter has been described as a single antenna interference cancellation filter, the scope of the present invention is not limited to such an embodiment. Rather, as will be apparent to those of skill in the art, the subject technology has application to systems with more than one antenna, which may perform, for example, dual antenna interference cancellation (“DAIC”), or any other multiple-antenna interference cancellation method, well known to those in the art.
Computer system 600 may be coupled via I/O module 608 to a display device (not illustrated), such as a cathode ray tube (“CRT”) or liquid crystal display (“LCD”) for displaying information to a computer user. An input device, such as, for example, a keyboard or a mouse may also be coupled to computer system 600 via I/O module 608 for communicating information and command selections to processor 604.
According to one aspect, timing estimation is performed by a computer system 600 in response to processor 604 executing one or more sequences of one or more instructions contained in memory 606. Such instructions may be read into memory 606 from another machine-readable medium, such as data storage device 610. Execution of the sequences of instructions contained in main memory 606 causes processor 604 to perform the process steps described herein. One or more processors in a multi-processing arrangement may also be employed to execute the sequences of instructions contained in memory 606. In alternative aspects, hard-wired circuitry may be used in place of or in combination with software instructions to implement various aspects. Thus, aspects are not limited to any specific combination of hardware circuitry and software.
The term “machine-readable medium” as used herein refers to any medium that participates in providing instructions to processor 604 for execution. Such a medium may take many forms, including, but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media include, for example, optical or magnetic disks, such as data storage device 610. Volatile media include dynamic memory, such as memory 606. Transmission media include coaxial cables, copper wire, and fiber optics, including the wires that comprise bus 602. Transmission media can also take the form of acoustic or light waves, such as those generated during radio frequency and infrared data communications. Common forms of machine-readable media include, for example, floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH EPROM, any other memory chip or cartridge, a carrier wave, or any other medium from which a computer can read.
Those of skill in the art would appreciate that the various illustrative blocks, modules, elements, components, methods, and algorithms described herein may be implemented as electronic hardware, computer software, or combinations of both. Furthermore, these may be partitioned differently than what is described. To illustrate this interchangeability of hardware and software, various illustrative blocks, modules, elements, components, methods, and algorithms have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application.
It is understood that the specific order or hierarchy of steps or blocks in the processes disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps or blocks in the processes may be rearranged. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. Pronouns in the masculine (e.g., his) include the feminine and neuter gender (e.g., her and its) and vice versa. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
Number | Name | Date | Kind |
---|---|---|---|
5267249 | Dong | Nov 1993 | A |
5887035 | Molnar | Mar 1999 | A |
6259730 | Solondz | Jul 2001 | B1 |
6480558 | Ottosson et al. | Nov 2002 | B1 |
6587522 | Wheeler et al. | Jul 2003 | B1 |
6615030 | Saito et al. | Sep 2003 | B1 |
6628707 | Rafie et al. | Sep 2003 | B2 |
6765894 | Hayashi | Jul 2004 | B1 |
6771689 | Solondz | Aug 2004 | B2 |
6834197 | Nakahara et al. | Dec 2004 | B2 |
6907092 | Yakhnich et al. | Jun 2005 | B1 |
6931030 | Dogan | Aug 2005 | B1 |
6985516 | Easton et al. | Jan 2006 | B1 |
7013147 | Kuwahara et al. | Mar 2006 | B1 |
7107031 | Kristensson et al. | Sep 2006 | B2 |
7116735 | Yamada et al. | Oct 2006 | B2 |
7187736 | Buckley et al. | Mar 2007 | B2 |
7200172 | Pukkila et al. | Apr 2007 | B2 |
7295636 | Onggosanusi et al. | Nov 2007 | B2 |
7298806 | Varma et al. | Nov 2007 | B1 |
7308056 | Pukkila et al. | Dec 2007 | B2 |
7313189 | Yoshida et al. | Dec 2007 | B2 |
7620662 | Kassai et al. | Nov 2009 | B2 |
7693210 | Margetts et al. | Apr 2010 | B2 |
7706430 | Guo et al. | Apr 2010 | B2 |
8396440 | Canpolat et al. | Mar 2013 | B2 |
20020132625 | Ogino et al. | Sep 2002 | A1 |
20020181557 | Fujii | Dec 2002 | A1 |
20030112370 | Long et al. | Jun 2003 | A1 |
20030119451 | Jang et al. | Jun 2003 | A1 |
20040001563 | Scarpa | Jan 2004 | A1 |
20040017311 | Thomas et al. | Jan 2004 | A1 |
20040043746 | Hiramatsu | Mar 2004 | A1 |
20040081248 | Parolari | Apr 2004 | A1 |
20040116122 | Zeira et al. | Jun 2004 | A1 |
20040203913 | Ogino et al. | Oct 2004 | A1 |
20040223538 | Zeira | Nov 2004 | A1 |
20050084045 | Stewart et al. | Apr 2005 | A1 |
20050111408 | Skillermark et al. | May 2005 | A1 |
20050147024 | Jung et al. | Jul 2005 | A1 |
20050153695 | Cho | Jul 2005 | A1 |
20050232174 | Onggosanusi et al. | Oct 2005 | A1 |
20050265465 | Hosur et al. | Dec 2005 | A1 |
20050277429 | Laroia et al. | Dec 2005 | A1 |
20060109938 | Challa et al. | May 2006 | A1 |
20060126765 | Shin et al. | Jun 2006 | A1 |
20060146953 | Raghothaman et al. | Jul 2006 | A1 |
20060146969 | Zhang et al. | Jul 2006 | A1 |
20060203943 | Scheim et al. | Sep 2006 | A1 |
20060209982 | De Gaudenzi et al. | Sep 2006 | A1 |
20060227853 | Liang et al. | Oct 2006 | A1 |
20060234715 | Cho et al. | Oct 2006 | A1 |
20070058709 | Chen et al. | Mar 2007 | A1 |
20070063897 | Matsuda | Mar 2007 | A1 |
20070071145 | Perets | Mar 2007 | A1 |
20070121764 | Chen et al. | May 2007 | A1 |
20070127608 | Scheim et al. | Jun 2007 | A1 |
20070183483 | Narayan et al. | Aug 2007 | A1 |
20070201548 | Badri-Hoeher et al. | Aug 2007 | A1 |
20070273698 | Du et al. | Nov 2007 | A1 |
20080019467 | He | Jan 2008 | A1 |
20080031368 | Lindoff et al. | Feb 2008 | A1 |
20080125070 | Grieco et al. | May 2008 | A1 |
20080212462 | Ahn et al. | Sep 2008 | A1 |
20080227456 | Huang et al. | Sep 2008 | A1 |
20080232439 | Chen | Sep 2008 | A1 |
20080298521 | Wu | Dec 2008 | A1 |
20080298524 | Koorapaty et al. | Dec 2008 | A1 |
20090052591 | Chen | Feb 2009 | A1 |
20090058728 | Mostafa et al. | Mar 2009 | A1 |
20090092178 | Sayana et al. | Apr 2009 | A1 |
20090207944 | Furman et al. | Aug 2009 | A1 |
20090213971 | Park et al. | Aug 2009 | A1 |
20100027702 | Vijayan et al. | Feb 2010 | A1 |
20100029213 | Wang | Feb 2010 | A1 |
20100029262 | Wang et al. | Feb 2010 | A1 |
20100040035 | Shapiro et al. | Feb 2010 | A1 |
20100046660 | Sikri et al. | Feb 2010 | A1 |
20100046682 | Sikri et al. | Feb 2010 | A1 |
20100054212 | Tang | Mar 2010 | A1 |
20100202544 | Osseirar et al. | Aug 2010 | A1 |
20100248666 | Hui et al. | Sep 2010 | A1 |
20100278227 | Sikri et al. | Nov 2010 | A1 |
20100296556 | Rave et al. | Nov 2010 | A1 |
20100310026 | Sikri et al. | Dec 2010 | A1 |
20110051859 | Canpolat et al. | Mar 2011 | A1 |
20110051864 | Chalia et al. | Mar 2011 | A1 |
20110305303 | Sikri et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
1207835 | Feb 1999 | CN |
1736101 | Feb 2006 | CN |
1906862 | Jan 2007 | CN |
0396403 | Nov 1990 | EP |
0969608 | Jan 2000 | EP |
1347611 | Sep 2003 | EP |
1404047 | Mar 2004 | EP |
1411693 | Apr 2004 | EP |
1569399 | Aug 2005 | EP |
1681775 | Jul 2006 | EP |
1699194 | Sep 2006 | EP |
1699195 | Sep 2006 | EP |
1928138 | Jun 2008 | EP |
2000059290 | Feb 2000 | JP |
2000261397 | Sep 2000 | JP |
2001166026 | Jun 2001 | JP |
3210915 | Sep 2001 | JP |
2001257626 | Sep 2001 | JP |
2001267987 | Sep 2001 | JP |
2002507342 | Mar 2002 | JP |
2002539711 | Nov 2002 | JP |
2003051762 | Feb 2003 | JP |
2004048307 | Feb 2004 | JP |
2004112094 | Apr 2004 | JP |
2004511189 | Apr 2004 | JP |
2005065197 | Mar 2005 | JP |
2005510940 | Apr 2005 | JP |
2006191587 | Jul 2006 | JP |
2009545219 | Dec 2009 | JP |
20010085143 | Sep 2001 | KR |
1020050097552 | Oct 2005 | KR |
2211531 | Aug 2003 | RU |
2233033 | Jul 2004 | RU |
2280329 | Jul 2006 | RU |
2301493 | Jun 2007 | RU |
2319307 | Mar 2008 | RU |
365717 | Aug 1999 | TW |
200640202 | Nov 2006 | TW |
9857509 | Dec 1998 | WO |
9912273 | Mar 1999 | WO |
0035117 | Jun 2000 | WO |
0055992 | Sep 2000 | WO |
0232003 | Apr 2002 | WO |
WO02067444 | Aug 2002 | WO |
03047124 | Jun 2003 | WO |
2004010573 | Jan 2004 | WO |
WO2004066666 | Aug 2004 | WO |
2004107768 | Dec 2004 | WO |
2005053177 | Jun 2005 | WO |
2007000620 | Jan 2007 | WO |
2007029958 | Mar 2007 | WO |
2007060093 | May 2007 | WO |
WO2007060229 | May 2007 | WO |
WO2008012265 | Jan 2008 | WO |
WO2009108586 | Sep 2009 | WO |
WO2009140338 | Nov 2009 | WO |
2011028978 | Mar 2011 | WO |
Entry |
---|
3GPP Draft; TR 25.814-V1.5.0, 3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Network; Physical Layer Aspects for evolved UTRA (Release 7), 3GPP: France, May 26, 2006, (XP050102001), pp. 1-125. |
Huaiyu, D. et al., “Asymptotic spectral efficiency of multi cell MIMO systems with frequency-flat fading,” IEEE Transactions on Signal Processing, IEEE Service Center, New York, NY, US, vol. 51, No. 11, Nov. 1, 2003, pp. 2976-2988, XP011102811. |
International Search Report and Written Opinion—PCT/US2009/053962, International Search Authority—European Patent Office—Nov. 19, 2009. |
Meyr, H. et al., “Chapter 5: Synthesis of Synchronization Algorithms” and “Chapter 8: Frequency Estimation,” Jan. 1, 1998, Digital Communication Receivers: Synchronization, Channel Estimation, and Signal Processing; John Wiley and Sons, Inc.: New York, pp. 271-323,445, XP002547568. |
Pais, A.V., et al., “Indoor DS-CDMA system deployment and performance with successive interference cancellation,” Electronics Letters: GB, vol. 40, No. 19, Sep. 16, 2004, pp. 1200-1201, XP006022654. |
Ritt: “Performance of IDMA-based inter-cell interference cancellation,” 3GPP Draft TSG-RAN WG1 #44-bis Meeting, R1-060895, 3rd Generation Partnership Project (3GPP), Athens, Greece; Mar. 27, 2006, XP050101801, pp. 1-5. |
Sawahashi M., et al., “Multipath Interference Canceller for Orthogonal Multiplexed Channel and its Performance in W-CDMA Forward Link,” Technical Report of the Institute of Electronics, Information and Communication Engineers, Jan. 12, 2001, vol. 100, No. 558, pp. 27-33, RCS2000-195. |
Chunguang, W., et al., “Enhanced OTDOA Technology in 3G Location Service”, Shanghai Research Institute of China Telecom, Shanghai 200122, China, Aug. 31, 2005. |
Natali F.D., “AFC Tracking Algorithms” IEEE Transactions on Communications, IEEE Service Center, Piscataway, NJ, US, vol. COM-32, No. 8, Aug. 1, 1984, pp. 935-947, XP000758571 ISSN: 0090-6778 abstract p. 941, section C. |
Olivier J.C., et al., “Single antenna interference cancellation for synchronised GSM networks using a widely linear receiver” (Feb. 1, 2007) pp. 131-136, XP006028092. |
The study of Interference Cancellation based on Multi-User Detection, Mar. 27, 2008. |
Number | Date | Country | |
---|---|---|---|
20100046595 A1 | Feb 2010 | US |