This disclosure relates generally to the field of geophysical prospecting and, more particularly, to simulating reservoirs that contain hydrocarbons. Specifically, exemplary implementations relate to methods and apparatus for improving the stability and efficiency of computer simulations of multiphase flow in reservoirs.
This section is intended to introduce various aspects of the art, which may be associated with exemplary embodiments of the present disclosure. This discussion is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present disclosure. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
Hydrocarbons are widely used for fuels and chemical feedstocks. Hydrocarbons are generally found in subsurface rock formations that can be termed “reservoirs.” Removing or extracting hydrocarbons from the reservoirs depends on numerous physical properties of the rock formations, such as the permeability of the rock containing the hydrocarbons, the ability of the hydrocarbons to flow through the rock formations, and the proportion of hydrocarbons present, among others.
Often, mathematical models termed “simulation models” are used to simulate hydrocarbon reservoirs and optimize the production of the hydrocarbons. The goal of a simulation model is generally to simulate the flow patterns of the underlying geology in order to optimize the production of hydrocarbons from a set of wells and surface facilities. In this regard, reservoir simulation plays an increasingly important role in recovery of hydrocarbon owing to the rapid increase in computing power in the past decades. By performing numerical simulation, engineers may evaluate different well drill patterns, facility designs, and field operation strategies to optimize production. Reservoir simulation may also be used to quantify uncertainties in ultimate recovery and economic since assumptions often have to be made about reservoir structures and properties due to limited availability of data.
One type of reservoir simulation model is a computational fluid dynamics simulation where a set of partial differential equations which govern multi-phase, multi-component fluid flow through porous media and the connected facility network is approximated and solved. The set of governing differential equations may vary with the physical process being modeled in the reservoir and may include volume balance, mass conservation, energy conservation, among others. The simulation is an iterative, time-stepping process where a particular hydrocarbon production strategy is optimized.
Input to a reservoir simulation model may include a grid, permeability and porosity data, initial reservoir fluid distribution, displacement and capillary pressure curves, parameters for phase equilibrium and fluid property calculations, well placement specifications and controls, and choice of discretization method for the governing partial differential equations and time stepping scheme. The number of cells in a simulation grid may range from at least a few hundred thousand for small or mid-size models to at least one million or more for large models.
The model setup and numerical solution techniques may have a significant impact on the performance of the reservoir simulator. Specifically, with the complexities of existing practical reservoir models, it may be challenging to conduct a successful simulation study. Common problems encountered in reservoir simulations include: failure of simulation before desired end time is reached; instability where pressure, rates and/or well behavior oscillate with time; and slow run-time performance, which makes simulation less attractive, especially for uncertainty quantification. These problems may be caused by the flow through cells with small pore volumes (hereafter referred to as small cells).
A simulation grid may contain some small cells in at least part of the reservoir model or for simulating flow in wells. For example, small cells may appear near pinch-outs 110 in the reservoir (shown in the illustration 100 in
A computer-implemented method for reservoir simulation of a reservoir in a subsurface and wells is disclosed. The subsurface and wells are divided into a first set of cells and a second set of cells, with at least one aspect of the first set of cells being different from the second set of cells. The method comprises: processing, in an iteration of the reservoir simulation, at least some cells in the first set of cells for at least one of flow rates, compositions or flow derivatives in order to generate reservoir simulation data; eliminating some or all of the cells in the first set of cells from further processing in the iteration of the reservoir simulation; and processing, in the iteration of the reservoir simulation, cells in the second set of cells using the reservoir simulation data.
The present application is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary implementations, in which like reference numerals represent similar parts throughout the several views of the drawings. In this regard, the appended drawings illustrate only exemplary implementations and are therefore not to be considered limiting of scope, for the disclosure may admit to other equally effective embodiments and applications.
The methods, devices, systems, and other features discussed below may be embodied in a number of different forms. Not all of the depicted components may be required, however, and some implementations may include additional, different, or fewer components from those expressly described in this disclosure. Variations in the arrangement and type of the components may be made without departing from the spirit or scope of the claims as set forth herein. Further, variations in the processes described, including the addition, deletion, or rearranging and order of logical operations, may be made without departing from the spirit or scope of the claims as set forth herein.
It is to be understood that the present disclosure is not limited to particular devices or methods, which may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” include singular and plural referents unless the content clearly dictates otherwise. Furthermore, the words “can” and “may” are used throughout this application in a permissive sense (i.e., having the potential to, being able to), not in a mandatory sense (i.e., must). The term “include,” and derivations thereof, mean “including, but not limited to.” The term “coupled” means directly or indirectly connected. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. The term “uniform” means substantially equal for each sub-element, within about ±10% variation.
As used herein, “hydrocarbon management” or “managing hydrocarbons” includes any one or more of the following: hydrocarbon extraction; hydrocarbon production, (e.g., drilling a well and prospecting for, and/or producing, hydrocarbons using the well; and/or, causing a well to be drilled, e.g., to prospect for hydrocarbons); hydrocarbon exploration; identifying potential hydrocarbon-bearing formations; characterizing hydrocarbon-bearing formations; identifying well locations; determining well injection rates; determining well extraction rates; identifying reservoir connectivity; acquiring, disposing of, and/or abandoning hydrocarbon resources; reviewing prior hydrocarbon management decisions; and any other hydrocarbon-related acts or activities, such activities typically taking place with respect to a subsurface formation. The aforementioned broadly include not only the acts themselves (e.g., extraction, production, drilling a well, etc.), but also or instead the direction and/or causation of such acts (e.g., causing hydrocarbons to be extracted, causing hydrocarbons to be produced, causing a well to be drilled, causing the prospecting of hydrocarbons, etc.). Hydrocarbon management may include reservoir surveillance and/or geophysical optimization. For example, reservoir surveillance data may include, well production rates (how much water, oil, or gas is extracted over time), well injection rates (how much water or CO2 is injected over time), well pressure history, and time-lapse geophysical data. As another example, geophysical optimization may include a variety of methods geared to find an optimum model (and/or a series of models which orbit the optimum model) that is consistent with observed/measured geophysical data and geologic experience, process, and/or observation.
As used herein, “obtaining” data generally refers to any method or combination of methods of acquiring, collecting, or accessing data, including, for example, directly measuring or sensing a physical property, receiving transmitted data, selecting data from a group of physical sensors, identifying data in a data record, and retrieving data from one or more data libraries.
As used herein, terms such as “continual” and “continuous” generally refer to processes which occur repeatedly over time independent of an external trigger to instigate subsequent repetitions. In some instances, continual processes may repeat in real time, having minimal periods of inactivity between repetitions. In some instances, periods of inactivity may be inherent in the continual process.
If there is any conflict in the usages of a word or term in this specification and one or more patent or other documents that may be incorporated herein by reference, the definitions that are consistent with this specification should be adopted for the purposes of understanding this disclosure.
As discussed above, reservoir simulations may encounter several problems, including simulation failure, instability, and slow performance. These problems may be caused by the physics of multiphase flow, including near super-critical phase behavior, a large amount of flow through the small cells, wells operating near stability minimum, among other problems. Simulation performance problems may also be caused by the numerical procedure, such as the use of explicit or semi-implicit schemes, lack of an effective time step control, inappropriate choice of convergence tolerance, etc.
Further, though the volume of small cells may be small (as compared to bulk cells), the small cells may have a significant impact on reservoir performance prediction if permeability values are relatively large for those small cells. In fact, for small cells created to represent wellbores or thin fractures, transmissibility values between neighboring small cells may be several orders of magnitude larger than those between bulk cells in the bulk of reservoir. This is contrasted with the size, such as the volume (for well cells) or pore volume (for reservoir cells), of the small cells, which is smaller than the size of the bulk cells. Since small cells may represent physically different porous material, relative permeability and capillary pressure curves may either be quite different for those cells or the concept is not applicable at all. This uncertainty further increases the complexity for the modeling and simulation.
Thus, the combination of small volume and large transmissibility may pose a challenge for reservoir simulation. Specifically, failure or slowdown of the entire simulation run may be due to the presence of a small number of small cells in the model. From the point of view of numerical computation, small cells with large transmissibility may make the condition number of the linear system worse, leading to non-convergence of the linear solver or an increase in errors in solutions.
For explicit numerical schemes, small cells may also force the simulator to take very small time steps to avoid numerical instability associated with a large Courant-Friedrichs-Lewy (CFL) number. For more computationally expensive fully implicit methods, small cells with a relatively large transmissibility value often cause potential differences between neighboring cells, for example, potential difference between well cell 1 and well cell 2 as illustrated in
Further, as discussed in the background, one solution is to simply eliminate the small cells, such as by rendering the small cells inactive. To allow flow to still go through those cells, new connections may be created and transmissibility values computed between cells which are neighbors of the small cell. As discussed herein, the term “connection” may mean either a physical interface or an artificial interface between two cells. Further, rather than making the small cell inactive, the cell may also be merged with a larger neighboring cell. Specifically, a connectivity matrix may be used for background cells that are neighbors of pinch cells. This type of methodology may be applicable for modeling single phase flow; however, for multiphase flow, it may be impossible to accurately compute using that technique flows into the bulk of reservoir cells from pinch cells when multiple pinch cells exist at the same time. This is because for multiphase flow, upstream weighting is used for numerical stability. As discussed in more detail below, multiphase flow, which is the simultaneous flow of materials with two or more thermodynamic phases, may be present, including with regard to a gas phase, an oil phase, and a water phase. Complex fluid behaviors may be present in such a multiphase flow, such as a gas component dissolving in an oil phase, an oil component vaporized into a gas phase, etc.
Unfortunately, cells on the upstream side may have been eliminated using the above-referenced connectivity matrix technique. As a result, the connectivity matrix technique may effectively force compositions to be the same for flows going from any small cell to neighboring cells in the bulk, which may not be consistent with the physics of multiphase flow in reservoir. For purposes of an example, small cells for modeling well perforations are considered, as shown in the illustration 500 in
The cell elimination techniques discussed above are performed before the simulation time stepping begins and so may be regarded as preprocessor steps. Another class of elimination technique common in reservoir simulation is the elimination of variables for treating loosely coupled systems. In that case, the system may be divided into several sub-systems and unknowns associated with each sub-system may be solved separately to reduce the size of each individual solution step. An outer iteration loop may be necessary to ensure that solutions from different sub-systems are consistent. For nonlinear problems which have small cells with large transmissibility values, unfortunately, the approach to eliminate those cells by solving a sub-system consisting only of small cells likely will not work because the same issues (e.g., small pressure/potential differences and flow reversal) will still arise.
Thus, in one or some embodiments, a semi-elimination technique is performed in which one set of cells (e.g., one, some, or all of the small cells) are at least partly processed prior to elimination from further reservoir simulation (e.g., with another set of cells, such as the bulk cells, being processed after elimination of the small cells). As one example of the semi-elimination technique, one or more aspects of the small cell(s) are determined and then used in processing the remaining cells (such as the bulk cells) after the small cell(s) are eliminated. Various aspects of the small cells for determination prior to elimination are contemplated, including any one, any combination, or all of: flow rates; compositions; or flow derivatives.
Thus, one or a set of small cells may be subject to the determination as to the at least one aspect prior to elimination in order to significantly reduce or eliminate the difficulties in simulation time stepping or Newton convergence, particularly when flow rates in those small cells are large. The semi-elimination technique is specifically applicable when steady-state is assumed at any given time within the region of small cells and in which basis functions are utilized to construct the pressure field there. The steady state assumption is reasonable provided that the cells affected are small in volume. With semi-elimination technique, no additional iterative solution procedure may be necessary.
Further, the semi-elimination technique may be used with a variety of numerical schemes, such as any version of implicit or any version of explicit formulation (e.g., fully implicit, sequentially implicit, implicit pressure/explicit saturations (IMPES), and others) for solving the governing equations in reservoir simulation. The discussion below focuses on the fully implicit method. However, the semi-elimination technique may be equally applied to any other numerical schemes, including those listed herein.
In one or some embodiments of the semi-elimination method, small cells are involved when determining flow rates and compositions as well as in the computation of flow derivatives. During those steps, upstream weighting may be applied the same way as for all other cells (such as bulk cells). As a result, this technique captures the effect of variation in flow composition within the small cell region. The small cells are then eliminated in the linear system constructed for the solver. Since small cells are not present in the linear solver step or in the subsequent update of solution variables, the aforementioned problems related to the condition number of the linear system, CFL limitation on time stepping, or reversal of flow direction for numerical reasons, are largely avoided. By construction, mass conservation is honored in semi-elimination, which is also beneficial for Newton convergence.
In this regard, at least some of the small cells (and potentially all of the small cells) and at least some of the bulk cells (and potentially all of the bulk cells) are subject to the same processing, such as determination of the flow rates, compositions, and/or flow derivatives. After which, at least some (and optionally all) of the small cells are eliminated from further processing while the bulk cells and remaining small cells are further processed (such as solving the set of equations). As one example, all of the small cells are eliminated from further processing in the present iteration. As another example, at least some, but not all, of the small cells are eliminated from further processing in the present iteration (e.g., at least 50% (by number or by volume) of the number of small cells are eliminated; at least 60% (by number or by volume) of the number of small cells are eliminated; at least 70% (by number or by volume) of the number of small cells are eliminated; at least 80% (by number or by volume) of the number of small cells are eliminated; at least 90% (by number or by volume) of the number of small cells are eliminated; or at least 95% (by number or by volume) of the number of small cells are eliminated).
The small cell determination aspect may be used after the small cell(s) are eliminated. As one example, flow composition variation (such as multiphase flow computation) may be determined for the small cells. The flow composition variation is used in further processing of bulk cells, such as using them for inflows/outflow computation for the neighboring bulk cells (e.g., in solving the linear system for the reservoir simulation after elimination of one, some, or all of the small cells). Specifically, the small cells except for those that at the boundary (e.g., a well cell at the top of well perforation) for enforcing flow controls may be eliminated (such as from the linear and nonlinear solution procedures). This process (of only partly processing the small cells and fully processing the bulk cells and remaining small cells) may be iteratively performed, such as at each Newton iteration or any other numerical approximation that produces successively better approximations of the set of functions (e.g., bisection method; linear interpolation method; fixed point iteration; secant method; direct iteration; etc.). Thus, any discussion below regarding Newton iteration may likewise be applied to any other similar type of numerical approximation.
In one or some embodiments, the semi-elimination method may be divided into three parts: (1) construction of pressure basis (such as at the beginning of simulation); (2) multiphase flow and derivative computation at each Newton iteration; and (3) elimination of small cells in the linear system at each Newton iteration. An example of this sequence is illustrated in
At 610, the pressure basis is constructed. In one or some embodiments, the semi-elimination methodology may include a pre-processing step for deriving pressure relationships that will be used later during the Newton iteration for computing flow rates and performing cell elimination. For example, at the beginning of the simulation, a set of pressure basis may be obtained by solving a system of linear equations. The rank of the system may be the same as the number of small cells in the set and each equation corresponds to single phase steady-state problem for a small cell, such as according to:
ΣjTij(pis−pj)=0 (1)
where Tij is transmissibility, pis is pressure in a small cell, and pj is pressure in neighboring cells. Equation (1) may be rewritten using matrix and vector notations as the following:
Tsps=Tbpb (2)
where ps and pb are vectors of pressure in small cells and pressure in neighboring cells in the bulk of reservoir, respectively. By inverting Ts, a matrix (Sij) is obtained for computing pressure in each small cell (pis) as a linear combination of pressure in cells which are neighbors belonging to the bulk of reservoir (pjb) according to the following:
pis=ΣjSij*pjb (3).
In reservoir simulation, pressure basis may be updated during time stepping to reflect changes in values of phase mobility, density, and other fluid or flow properties.
When only a subset of small cells are eliminated, similar derivation may be performed to compute pressure in each small cell (to be eliminated) as a linear combination of pressure in cells which are neighbors belonging to the bulk of reservoir or remaining subset of small cells.
At 620, at least one aspect of flow (e.g., multiphase flow rate and/or derivative computation) for one, some, or all of the small cells is determined. Rates and derivatives of flows entering or leaving a cell may be used for solving the typical volume and mass balance equations, which are a basis for numerical reservoir simulation. In this step, small cells may be retained for purposes of processing (e.g., not eliminated) since those elements may play a role in determining the amount of flow as well as composition entering a cell in the bulk from a small cell. In contrast, variation in flow composition is lost if small cells are merged or eliminated before this step. In this regard, this is an example of at least partly processing the small cell(s) prior to elimination from the reservoir simulation.
In reservoir simulation, computation of flow may be performed in every time step for explicit schemes or every Newton iteration for iterative methods. The flow computation for a connection between two bulk cells may be performed in a particular manner, such as illustrated in United States Patent Application Publication No. 2013/0080128 A1, incorporated by reference herein in its entirety. The discussion below focuses on connections between bulk cells and small cells. To facilitate presentation of the computational procedure, connections between small cells may also be included in the discussion.
At a high level, flow rates are first computed separately for each phase and then combined to produce the mass rates for each component needed for solving the mass balance equations. The computation of individual phase flow may involve the following: (1) construction of pressure field within the set of small cells; (2) reordering of the resulting pressure values; (3) determination of flow direction for each connection between neighboring cells; (4) computation of flows from bulk cells to small cells using upstream weighting; and (5) partition of flows among outgoing connections attached to each small cell. The example sequence is provided for illustration purposes only and is not considered to be limiting.
During the simulation, the pressure field may change from time step to time step and between Newton iterations. At each Newton iteration (or time step for sequential or IMPES method), unknowns associated with small cells are eliminated in the final linear system, (e.g., pressure and other variables are only solved for cells in the bulk of reservoir). In order to compute flows into or out of the small cells, phase pressure in each small cell may be reconstructed from potential values at neighboring cells in the bulk of reservoir using the basis transmissibility matrix (Sij) according to the following:
pis,α=ΣjSij(pjb+pc,jb,α−gρjb,αhjb) (4)
where α is index for the phase, pjb, pc,jb,α, ρjb,α, and hjb are cell pressure, phase capillary pressure, phase density, and cell depth, respectively, for a neighboring cell with index j in the bulk of reservoir. The term pis,α on left hand side of Equation (4) is loosely called pressure here, even though it actually plays the same role as phase potential. Further, this method for constructing pressure is linear, accurate and fast, owing to the basis matrix obtained from the preprocessing step. This step is thus advantageous compared to any local solution procedure, which may require iteration and may therefore encounter convergence problems.
To facilitate determination of flow directions, small cells may then be reordered based on the phase pressure obtained using Equation (4) according to the following:
p0s,α>p1s,α>p2s,α (5)
To simplify the notations, fictitious single phase flow rate (rijα) may be defined as:
rijα=Tij(pis,α−pjs,α) (6)
along each connection between two small cells and:
rijα=Tij(pis,α−pjb−pc,jb,α+gρjb,αhjb) (7)
along each connection between a small cell and a neighboring cell in the bulk of reservoir.
The methodology for computing actual mass rates in each phase (hereafter referred to as phase mass rates) may take a different form depending on the flow direction relative to the small cell. First, the computation of phase mass rates is performed with the small cell which has the highest value of pressure (e.g., p0s,α after reordering). The computation may then be performed for cells with smaller pressure values sequentially based on the decreasing order of pressure. With the small cell which has the largest pressure, computation of flows is performed first for all neighbors in the bulk of reservoir flowing into that cell and then for all neighbors receiving flows from it. For flows into the small cell, the following formula may be used:
Ul,ijα=λjαxl,jαrijα (8)
where subscript l is material component index, j is index for the cell in the bulk, i is index for the small cell, λjα60 and xi,jα are phase mobility and density of component l in phase α, respectively, for the cell in the bulk, and rijα is the corresponding single phase flow rate, defined in Equation (7). It is evident that Equation (8) is consistent with upstream weighting. By assuming no accumulation for small cells, the combined mass rates (Ul,iα,tot in) from all inflow connections may then be partitioned among all neighbors receiving flows from the small cell based on fractions of single phase flow rate according to the following:
Ul,ijα=Ul,iα,tot in*frijα (9)
where
where subscript j and j′ are index of bulk cells or small cells connected to cell i on the downstream side. In Equations (9) and (10) above, upstream weighting may be reinterpreted since the upstream cell in this case is a small cell which will be eliminated during the solution step and therefore does not have phase mobility or density values associated with it. Further, mobility and density values from bulk cells further upstream (instead of property values associated with bulk cells downstream) may influence the computation of rates for the outflowing connections attached to the small cell.
For small cell 0 (820), there are three outflowing connections: (i) connection between small cell 0 (820) and small cell 2 (840); connection between small cell 0 (820) and small cell 1 (850); and connection between small cell 0 (820) and bulk cell 6 (860) in the bulk. Equation (6) is used to compute single phase rate (rijα) for the first two connections, and Equation (7) for the third connection. From the computed values of rijα, the value of single phase flow fraction as defined by Equation (10), frijα, may be evaluated for each of the three outflowing connections. Finally, the outflowing phase rates may be obtained from Ul,iα, tot in, rijα, and frijα, using Equation (9).
After small cell 0 (820) has been processed, the procedure moves to the next small cell, small cell 1 (850), based on the decreasing order of pressure, see illustration 900 in
After computation of mass rates is completed for each phase and for all connections attached to small cells, the total mass flow rate for each material component along a connection between a small cell and its neighbor is obtained by summing up corresponding phase mass rates according to the following:
Ul,ij=ΣαUl,ijα (11).
When only a subset of small cells are eliminated, similar derivation may be performed to compute flow rates between a small cell in the remaining subset of small cells and a neighboring small cell which is eliminated.
The description for computing flow rates associated with small cells may be regarded as a computational approximation technique for treating small cells effectively in simulation. This approximation is justified because it is a natural generalization of the classical method for determining transmissibility and flow rates between two neighboring cells in reservoir.
In the illustration 1000 in
In Step 2, fictitious single phase flow rate may be computed using p*:
In Step 3, upstream direction may be determined and actual phase flow rate may be obtained using the following:
Ul,01α=λkαxl,kαrα (14)
where k is 0 if cell 0 is on the upstream side, and 1 otherwise. Compared to the semi-elimination procedure disclosed herein, the treatment of pressure in small cells is similar to that for interface pressure (p*) and the use of basis function for reconstructing pressure in small cells may be regarded as a generalization of Step 1. Similarly, reordering of pressure values in small cells and the sequential procedure for computing phase mass rates are generalization of Equations (13) and (14). With the disclosed method, flow rates for outflowing connections may be obtained by partitioning the total inflow rates. By comparison, inflow rates at the interface between the two cells may be directly set to be the flow rates leaving the interface because there is only one flow stream on either side of that interface.
At 630, one, some, or all of the small cells are eliminated. As discussed above, small cells with a large transmissibility value pose a serious challenge to both linear and nonlinear solution procedures. For the linearized system, large transmissibility values mean that large numbers may appear in the matrix, potentially making it ill-conditioned. As a result, accuracy of solutions from the solver may be compromised. For the nonlinear solution loop, errors from the linear solution coupled with the small pressure/potential differences between small cells may lead to unphysical flow reversal and flip in upstream direction, causing the nonlinear iteration to fail to converge. To avoid these problems, in one or some embodiments, small cells except for those at the boundary for enforcing flow controls may be eliminated from the linear and nonlinear solution procedures. In this step, “numerical connections” may be created so that full implicitness of the solution scheme can be preserved. Of note, pressure differences between small cells, though potentially small, may still be accounted for even after those cells are eliminated. Further, mass conservation is preserved after small cells are removed owing to the assumption that there is no accumulation in small cells.
The first step of cell elimination is to construct mass balance equations for each cell in the bulk of reservoir and in the subset of small cells which are not eliminated. Using flow rates (Ul,ij) computed previously, mass balance equations take the following form:
Nl,in+1−Nl,in=ΔtΣjUl,ij (15)
where Δt is time step size, and Nl,in and Nl,in+1 are masses of material component l in cell i at the beginning and end of the time step, respectively. In Equation (15), summation on the right hand side is over all attached connections which may include those between two bulk cells or between a bulk cell and a small cell. As discussed previously, mass rates for connections between two bulk cells are performed according to that illustrated in United States Patent Application Publication No. 2013/0080128 A1. Computation of rates for connections between a bulk cell and a small cell is described previously.
The next step for solving the mass balance equations is to perform linearization to obtain a linear system of equations from Equation (15). For connections between two bulk cells, a standard linearization procedure, which makes use of chain rule and derivatives of fluid properties (e.g., phase volume, saturation, density, viscosity, etc.), capillary pressure, and relativity permeability, yields derivatives of mass rates as functions of system unknowns (e.g., pressure, compositions, saturations, etc.) for the cells on both sides of the connection. For connections between a bulk cell and a small cell, a more involved procedure is performed to obtain derivatives of mass rates. It is evident from the procedure for computing Ul,ij that those rates conceptually depend on variables associated with all bulk cells which are neighbors to at least one small cell. In order to eliminate small cells in the final linear system, derivatives of Ul,ij are computed with respect to variables associated with all relevant bulk cells.
The derivative computation may be performed using the same sequential procedure disclosed above for computing phase mass rates. In a particular implementation, the computation of phase mass rates and derivatives may be combined and performed at the same time. To obtain the desired derivatives, partial derivatives of rates with respect to pressure and other variables associated with cells attached to the connection may first be computed. With the upstream weighting for inflow connections and flow partitioning for outflow connections, the only variable involved that is associated with small cells is pressure. Since pressure values in small cells may be expressed in terms of phase potentials for neighboring cells in the bulk, the second step is to apply chain rule to convert derivatives with respect to pressure in small cells into derivatives with respect to pressure and other unknown variables associated with the neighboring bulk cells.
Again, taking the set of small cells, bulk cells, and the ordered pressure values as illustrated in
In Equation (16),
may be computed based on derivatives of relative permeability and fluid properties if k=1 and is 0 otherwise. Term
may be calculated using Equation (7), while
may be obtained using the pressure basis (see Equation (4)).
After derivatives of rates for all inflow connections to small cell 0 (820) are computed, a simple summation yields the derivatives of the total inflow rates for the small cell. The computation of derivatives of outflow rates from the cell may be based on Equations (9) and (10) according to the following:
where j′ in the summation on the right side of Equation (17) is either the index of the small cell (0) or the index of other small cells connected to cell 0 on the downstream side. In Equation (17), computation of
may be based on the definition of single phase rate and pressure basis matrix.
When only a subset of small cells are eliminated, similar derivation may be performed to compute derivatives of flow rates between a small cell in the remaining subset of small cells and a neighboring small cell which is eliminated.
At 640, the reservoir simulation is continued on the remaining cells using the determined at least one aspect of flow in the small cells. After which, at 650, it is determined whether to continue iterating. If so, flow chart moves back to 620. If not, flow chart moves to end of Newton iteration for the time step. Specifically, the structure of the linear system after small cells are eliminated may be different compared to that before the elimination because elimination may introduce additional non-zero off-diagonal entries in the matrix. This has an implication on the matrix assembly procedure and the code implementation, which is an important issue for numerical computation. Typically for two-point flux approximation discretization, the matrix assembly is based on the node and connection concept. With that, the right hand side and diagonal terms in the matrix are stored on nodes and off-diagonal terms are stored on connections. To facilitate implementation of the disclosed technique and conform as much as possible to the existing implementation principles, “computational” non-neighboring connections may be created between cells in the bulk of reservoir which are neighbors of small cells, which is shown in the illustration 1100 in
Within each time step, Newton iteration is repeated until solutions converge. Optionally, Newton iteration may be restarted after time step size is reduced if solutions fail to converge. The computational tasks in each Newton iteration include: (a) compute values and derivatives of fluid properties, capillary pressure, relative permeability for one, some or all bulk cells in the bulk of reservoir (see 1214); (b) compute flow rates and derivatives between neighboring cells in the bulk of reservoir (see 1216); (c) compute flow rates and derivatives between small cells and neighboring cells in the bulk of reservoir (see 1218); d) assemble linear system by eliminating small cells using computational non-neighboring connections and solve the linear system (see 1220); e) update solutions for bulk cells in the bulk of the reservoir (see 1222). Thereafter, the system determines at 1224 if the Newton loop has converged. If so, flow chart 1200 loops back to 1208. If not, flow chart 1200 loops back to 1214.
Various ways are contemplated for computing flow rates and derivatives between small cells and neighboring cells in the bulk of reservoir, such as illustrated in
At 1340, it is determined whether the flow chart illustrated in
In all practical applications, the present technological advancement must be used in conjunction with a computer, programmed in accordance with the disclosures herein. For example,
The computer system 1400 may also include computer components such as non-transitory, computer-readable media. Examples of computer-readable media include a random access memory (RAM) 1406, which may be SRAM, DRAM, SDRAM, or the like. The computer system 1400 may also include additional non-transitory, computer-readable media such as a read-only memory (ROM) 1408, which may be PROM, EPROM, EEPROM, or the like. RAM 1406 and ROM 1408 hold user and system data and programs, as is known in the art. The computer system 1400 may also include an input/output (I/O) adapter 1410, a graphics processing unit (GPU) 1414, a communications adapter 1422, a user interface adapter 1424, a display driver 1416, and a display adapter 1418.
The I/O adapter 1410 may connect additional non-transitory, computer-readable media such as storage device(s) 1412, including, for example, a hard drive, a compact disc (CD) drive, a floppy disk drive, a tape drive, and the like to computer system 1400. The storage device(s) may be used when RAM 1406 is insufficient for the memory requirements associated with storing data for operations of the present techniques. The data storage of the computer system 1400 may be used for storing information and/or other data used or generated as disclosed herein. For example, storage device(s) 1412 may be used to store configuration information or additional plug-ins in accordance with the present techniques. Further, user interface adapter 1424 couples user input devices, such as a keyboard 1428, a pointing device 1426 and/or output devices to the computer system 1400. The display adapter 1418 is driven by the CPU 1402 to control the display on a display device 1420 to, for example, present information to the user such as subsurface images generated according to methods described herein.
The architecture of computer system 1400 may be varied as desired. For example, any suitable processor-based device may be used, including without limitation personal computers, laptop computers, computer workstations, and multi-processor servers. Moreover, the present technological advancement may be implemented on application specific integrated circuits (ASICs) or very large scale integrated (VLSI) circuits. In fact, persons of ordinary skill in the art may use any number of suitable hardware structures capable of executing logical operations according to the present technological advancement. The term “processing circuit” encompasses a hardware processor (such as those found in the hardware devices noted above), ASICs, and VLSI circuits. Input data to the computer system 1400 may include various plug-ins and library files. Input data may additionally include configuration information.
Preferably, the computer is a high performance computer (HPC), known to those skilled in the art. Such high performance computers typically involve clusters of nodes, each node having multiple CPU's and computer memory that allow parallel computation. The models may be visualized and edited using any interactive visualization programs and associated hardware, such as monitors and projectors. The architecture of system may vary and may be composed of any number of suitable hardware structures capable of executing logical operations and displaying the output according to the present technological advancement. Those of ordinary skill in the art are aware of suitable supercomputers available from Cray or IBM or other cloud computing based vendors such as Microsoft, Amazon.
It is intended that the foregoing detailed description be understood as an illustration of selected forms that the invention can take and not as a definition of the invention. It is only the following claims, including all equivalents, which are intended to define the scope of the claimed invention. Further, it should be noted that any aspect of any of the preferred embodiments described herein may be used alone or in combination with one another. Finally, persons skilled in the art will readily recognize that in preferred implementation, some or all of the steps in the disclosed method are performed using a computer so that the methodology is computer implemented. In such cases, the resulting physical properties model may be downloaded or saved to computer storage.
The following example embodiments of the invention are also disclosed.
Embodiment 1: A computer-implemented method for reservoir simulation of a reservoir in a subsurface and wells, the subsurface and wells being divided into a first set of cells and a second set of cells, at least one aspect of the first set of cells being different from the second set of cells, the method comprising:
Embodiment 2: The method of embodiment 1:
Embodiment 3: The method of any of embodiments 1 or 2,
Embodiment 4: The method of any of embodiments 1-3,
Embodiment 5: The method of any of embodiments 1-4,
Embodiment 6: The method of any of embodiments 1-5,
Embodiment 7: The method of any of embodiments 1-6,
Embodiment 8: The method of any of embodiments 1-7,
Embodiment 9: The method of any of embodiments 1-8,
Embodiment 10: The method of any of embodiments 1-9,
Embodiment 11: The method of any of embodiments 1-9,
Embodiment 12: The method of any of embodiments 1-11,
Embodiment 13: The method of any of embodiments 1-12,
Embodiment 14: The method of any of embodiments 1-13,
Embodiment 15: The method of any of embodiments 1-14,
Embodiment 16: The method of any of embodiments 1-15,
Embodiment 17: The method of any of embodiments 1-16,
Embodiment 18: The method of any of embodiments 1-17,
Embodiment 19: The method of any of embodiments 1-17,
Embodiment 20: The method of any of embodiments 1-19,
Embodiment 21: The method of any of embodiments 1-20,
Embodiment 22: The method of any of embodiments 1-21,
The equations above include certain nomenclature, subscripts and superscripts.
This application claims the benefit of U.S. Provisional Application No. 62/946,555, filed on Dec. 11, 2019, the disclosure of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
7565278 | Li et al. | Jul 2009 | B2 |
8583411 | Fung | Nov 2013 | B2 |
9058445 | Usadi et al. | Jun 2015 | B2 |
9212538 | Shetty et al. | Dec 2015 | B2 |
20100094605 | Hajibeygi | Apr 2010 | A1 |
20100138202 | Mallison | Jun 2010 | A1 |
20130080128 | Yang et al. | Mar 2013 | A1 |
20140214388 | Gorell | Jul 2014 | A1 |
20150100293 | Hoteit | Apr 2015 | A1 |
20160334532 | Wiik | Nov 2016 | A1 |
20170212773 | Pecher | Jul 2017 | A1 |
20180232950 | Brewer et al. | Aug 2018 | A1 |
20180329112 | Lee et al. | Nov 2018 | A1 |
20190309603 | Sepehrnoori | Oct 2019 | A1 |
20220178228 | Arora | Jun 2022 | A1 |
Number | Date | Country | |
---|---|---|---|
20210182460 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62946555 | Dec 2019 | US |