Field Of The Invention
The invention relates to a semi-hollow tire and to a wheel or roller carrying such tires allowing the land to be worked.
Discussion Of The Background
Agricultural equipment, such as machines combining wheels, rollers, sowers, soil preparing tools, etc., is often equipped with special tires. Among these tires, some are in the form of tires of the semi-hollow type. Semi-hollow tires, also called semi-hollow pneumatic tires, are tires the casing of which is not inflated. Semi-hollow tires are generally capable of being fitted to a cylindrical structure and abutting one another. Such pneumatic tires are described, for example, in French patent application FR 2 763 279. These tires can also be mounted individually on wheel rims, as described, for example, in FR 2 933 903.
This type of tire is satisfactory. Nevertheless, under certain working conditions, sticky soil, wet soil or mud tend to dirty the equipment and reduce its effectiveness. In order to clean the tires during use, it is known to use metal scrapers. The metal scrapers are of a shape complementary to that of the tires and are integral with the frame. The applicant has found that the presence of such scrapers increases the risk of damage to and perforation of the tires. In the event of accidental contact between the scrapers and the tires, or in the presence of a stone, for example, the tires can be damaged. The applicant has therefore sought to reduce these risks.
The applicant has designed pneumatic tires of the semi-hollow type, the self-cleaning properties of which allow scrapers to be dispensed with. The profiles of the pneumatic tires are particularly adapted so that the tread retains its functional shape during operation while the sidewalls exhibit considerable deformation. The tread during operation exhibits a movement in the radial direction due to the compression of the tire under the weight of the agricultural machine. This movement is not necessarily accompanied by a considerable deformation of the shape of the tread. The radial displacement of the tread improves the detachment of the soil without neutralizing the effectiveness of the agricultural machine.
Some manufacturers of semi-hollow tires have sought to limit the radial compression of the tires, for example by stiffening a significant portion of the sidewalls. Such tires are described, for example, in European patent application EP 0 401 592. The applicant has gone against this a priori and proposes tires in which the deformation of the sidewalls during operation is increased in a controlled manner.
To that end, the invention proposes a tire for an agricultural machine, having an axis of revolution and comprising a tread, a sole situated opposite the tread, and two sidewalls connecting the tread to the sole. The tread, the sole and the two sidewalls together form a casing which defines a chamber inside the tire. At least one of the sidewalls comprises, in this order and in succession in a direction oriented radially from the axis of revolution to the outside, a proximal portion, an intermediate portion and a distal portion. The intermediate portion projects into the chamber in a direction substantially parallel to the axis of revolution in the unloaded state.
Such tires improve behavior in use while facilitating the deformation of the sidewalls and the detachment of soil. The efficiency of the working of the land is improved.
The tire can have the following features, on their own or in combination:
According to another aspect of the invention there is proposed a rolling member for an agricultural machine. The rolling member comprises a substantially cylindrical support capable of rotating about an axis, and at least one tire as described above mounted around the support.
The rolling member equipped with such tires, for example a roller or a wheel, limits the risks of damage to the tools resulting from an accumulation of soil and debris on, around and between the tires. The presence of additional tools such as scrapers for cleaning the tires during the work becomes optional.
The rolling member can have the following features, on their own or in combination:
The present invention will be better understood upon reading the detailed description of several embodiments which are given by way of non-limiting examples and illustrated by the accompanying drawings, in which:
The accompanying drawings are mainly of a certain nature and may not only serve to supplement the invention but also contribute to the definition thereof, where appropriate. It has been found that elements such as the profile geometry of pneumatic tires are difficult to define completely other than by means of the drawing.
Reference is made to the five embodiments shown here, that is to say to
In the examples shown here, the tire 1 is in the unloaded state. Unloaded is here understood as meaning free of external mechanical stresses, and especially that of the resistance of the ground to the weight of the agricultural machine. The tire 1 is in an undeformed state.
The tire 1 has a form of revolution according to an axis XX. In the embodiments of
In other embodiments, for example those shown in
The tire 1 further has a median plane YY perpendicular to the axis of revolution XX. In the embodiment of
The tire 1 has a semi-hollow profile. The tire 1 comprises a tread 7, a sole 11, and two sidewalls 13, 15. The two sidewalls 13, 15 connect the tread 7 to the sole 11. The tread 7, the sole 11 and the two sidewalls 13, 15 together form a casing 17. The casing 17 delimits a chamber 19 inside the tire 1.
The tread 7 is a wall which is arranged to come into contact with the ground during operation. The tread 7 carries the studs 3 and tread patterns 5 of the embodiments of
The sole 11, or internal wall, is a substantially cylindrical wall which is here arranged to be brought into contact with a support 101 of generally cylindrical shape belonging to the rolling member 100. The substantially cylindrical shape of the sole 11 is centred on the axis of revolution XX. In the embodiments shown here, the outer surface of the sole 11 oriented towards the axis of revolution XX, that is to say the radially inner surface, is substantially smooth.
The chamber 19 is a hollow annular space delimited by the tread 7, the sole 11 and the two sidewalls 13, 15. The hollow annular space of the chamber 19 is not inflated but is able to communicate with the ambient medium by means of the orifice 21 (visible in
The presence of the orifice 21 which establishes communication between the chamber 19 and the exterior of the tire 1 allows the pressures to be equalized and facilitates the deformation of the tire 1 during operation.
The hollow annular space of the chamber 19 of a tire 1 preferably occupies a volume smaller than the volume occupied by the material constituting said tire 1.
In the examples described here, the sole 11 is mechanically reinforced by reinforcements 23, or metal cord, which are embedded in the material of the tire 1. The reinforcements 23 provide for better maintenance of the tire 1 in spite of the mechanical stresses to which it is subjected. The sole 11 has greater rigidity, better resistance than the remainder of the tire 1 during operation.
In the embodiments of
In the examples described here, the first sidewall 13 is the symmetrical of the second sidewall 15 relative to the median plane YY. Only the first sidewall 13 is described in detail below, see
Reference will be made to
As can be seen in
The inner surface of the sidewall 13 and the outer surface of the sidewall 13 are substantially continuous. The continuity of the surfaces allows the risk of the occurrence of a stress concentration during operation to be limited. The risks of damage or rupture following deformations are limited.
In the examples described here, the intermediate portion 133 and the distal portion 135 are of substantially identical thicknesses. Furthermore, the thickness of the intermediate portion 133 on the one hand and of the distal portion 135 on the other hand is substantially homogeneous. In a variant, the thicknesses of the intermediate portion 133 and of the distal portion 135 are different.
As can be seen in
In addition to the pure rotational movement of the tire 1 about its axis of revolution XX during use, the inflection point 130 undergoes a displacement oriented principally in a radial direction. The displacement is oriented towards the axis of revolution XX during compression and in the opposite direction during release. The axial component, that is to say parallel to the axis of revolution XX, of the displacement of the inflection point 130 is small relative to its radial component. The distal portion 135 tends to be compressed in the radial direction and to extend in the axial direction and towards the outside of the tire 1. The intermediate portion 133 tends to be compressed in a radial direction and to extend in an axial direction and towards the chamber 19.
The embodiment of
The average axial displacement of the assembly intermediate portion 133 and distal portion 135 is therefore reduced. The axial expansion, that is to say the increase in width, of the tire 1 during operation is limited. Figuratively, the sidewalls 13, 15 undergo an “accordion-like” deformation rather than extending only towards the outside during the compression. As will be described hereinbelow, this small axial expansion permits a tight juxtaposition of the tires on a rolling member 100. This combination of deformations further permits better detachment of the soil from the outer surfaces of the tire 1.
The configuration of the proximal portion 131 can differ according to the embodiments, as can be seen in
In the cutaway view of the embodiment of
In the embodiments of
The sidewall 13 of the embodiment of
In order to facilitate the detachment of the soil which tends to adhere to the tire 1, both to the tread 7 and to the sidewalls 13, 15, it is preferred for the two sidewalls 13, 15 to deform in use. The greater the displacement in the radial direction of the tread 7 relative to the sole 11, the more effective the cleaning by deformation. Furthermore, the axial dimension of the tire 1 is controlled during its use so that the deformation does not cause or causes little widening of the tire 1. In the mounted state on a rolling member 100 and juxtaposed with other tires, the axial extension of the tire 1 is limited.
The invention can be viewed as follows. Each of the two sidewalls 13, 15 carries an inner surface and an outer surface. For at least one of the sidewalls 13, 15, the part of the inner surface carried by the intermediate portion 133 is convex. The part of the outer surface carried by the intermediate portion 133 is concave. The part of the inner surface carried by the distal portion 135 is concave. The part of the outer surface carried by the distal portion 135 is convex. Said sidewall 13, 15 then has a deformation that is controlled during operation in order to facilitate the detachment of mud from the tire 1.
Another way of defining the invention is shown in
It then follows that, for the proximal portion 131, the intermediate portion 133 and the distal portion 135, respectively, the distance between the outer surface on the one hand and the median plane YY on the other hand corresponds to the sum of the distance between the inner surface and the median plane YY, X131, X133 and X135, respectively, to which there is added the corresponding thickness, E131, E133 and E135, respectively.
In the case of symmetry of the tire 1 relative to the median plane YY, the width of the tire 1 in the region of the various portions of the sidewalls 13, 15 is calculated by multiplying by two the distance between the median plane YY and the corresponding outer surface.
The minimum distance X133 between the inner surface of the intermediate portion 133 and the median plane YY is strictly less than the maximum distance X135 between the inner surface of the distal portion 135 and the median plane YY (X133<X135). The minimum distance X133+E133 between the outer surface of the intermediate portion 133 and the median plane YY is strictly less than the maximum distance X135+E135 between the outer surface of the distal portion 135 and the median plane YY (X133+E133<X135+E135). The minimum distance X133+E133 between the outer surface of the intermediate portion 133 and the median plane YY is strictly less than the distance X11 between the axial end surface of the sole 11 and the median plane YY (X133+E133<X11).
Preferably, the minimum distance X133+E133 between the outer surface of the intermediate portion 133 and the median plane YY is strictly less than the maximum distance X135 between the inner surface of the distal portion 135 and the median plane YY (X133+E133<X135). The inflection point 130 at the junction of the intermediate portion 133 and the distal portion 135 is situated at an axial distance X130 from the median plane YY which is between the minimum distance X133+E133 separating the outer surface of the intermediate portion 133 and the median plane YY and the maximum distance X135 separating the inner surface of the distal portion 135 and the median plane YY (X133+E133<X130<X135).
Preferably, the maximum distance X131 between the inner surface of the proximal portion 131 and the median plane YY is strictly greater than the minimum distance X133 between the inner surface of the intermediate portion 133 and the median plane YY (X131<X133). The maximum distance X131+E131 between the outer surface of the proximal portion 131 and the median plane YY is strictly greater than the minimum distance X133+E133 between the outer surface of the intermediate portion 133 and the median plane YY (X133+E133<X131+E131). The thickness E133 of the intermediate portion 133 is substantially identical to the thickness E135 of the distal portion 135 (E133=E135).
The dimensional relationships described above and shown schematically in
In general, the profile of the tires 1 according to the invention includes an intermediate radial position between the sole 11 and the tread 7 for which the casing 17 is of reduced width relative to the adjacent radial positions.
Each tire 1 is made of an appropriate flexible material. The material used may comprise either a natural rubber or one or more synthetic rubbers, or a mixture thereof. The chemical composition of the tires 1 is chosen in combination of the forms described above so that the deformation of said tire 1 on working, that is to say when rolling on the ground, permits the effective detachment of mud.
Reference will now be made to
The rolling member 100 for an agricultural machine, here a roller, comprises a support 101 and at least one tire 1 as described above. The support 101 is substantially cylindrical and capable of rotating about an axis of rotation. In the assembled state, the axis of rotation of the support 101 is coincident with the axis of revolution XX of the tires 1, 99. The cylindrical support 101 is here provided at each of its ends with a flange 105 for providing contact with a rotary shaft.
Reference will now be made to
As is shown in
The roller 100 here has a pitch p of between 60 and 250 millimeters, for example 125, 143, 150 or 167 millimeters. The value of the pitch p is chosen to correspond to the desired width between two furrows and especially according to the standard values of the field in order to adapt to other existing agricultural machines, for example sowers.
Reference will be made to
In
In the example shown here, two spacers 103 are interposed between each tire 1. Three spacers 103 are interposed between each end tire and the flange 105 adjacent thereto. The pitch P of the roller 100 corresponds to the sum of the width of one tire 1 and the width of two spacers 103.
Reference will be made to
The pitch P of the roller 100 corresponds to the sum of the width of one tire 1 and the width of one tire 99. Depending on the form of the tires 1, 99, a plurality of furrows per pitch P, which may or may not be similar, can be created in the ground.
In an embodiment that is not shown, a roller comprising tires 1 as shown in
The tires 1 here comprise a bead 51 which extends radially towards the axis of revolution XX from the radially inner surface of the sole 11. The bead 51 has a shape that is complementary to a receiver 61 formed in the radially outer surface of the wheel rim 71.
The wheel rim 71 is here formed of two rings 73 and 75. The two rings 73 and 75 are of complementary shapes and are assembled on either side of the bead 51. The zone of contact between the two rings 73 and 75 corresponds substantially to the median plane YY of the tire 1. The rings 73 and 75 are held together by fixing means 77, here screws and nuts. The wheel rim 71 further comprises a generally disk-shaped plate 79 which is held between the two rings 73 and 75. The plate 79 is substantially perpendicular and centred on the axis of revolution XX.
A plurality of wheel rims 71 provided with tires 1 can be fastened to one another and/or to cylindrical supports 101. The assembly then forms a single support carrying a plurality of tires 1. The assembly provided with its tires 1 then forms a single rolling member 100.
The embodiments shown in
The tires 1 of the invention can be produced in different dimensions, typically with outside diameters of between 200 and 1000 millimeters and which may be fitted around existing, standard or non-standard, supports 101 of rollers 100. For example, the supports 101 have diameters which can be between 150 and 900 millimeters.
Of course, the invention is not limited to the embodiments described above by way of examples and extends to other variants.
It will be appreciated that the precise form of the tire can be adapted according to different criteria associated with the desired use of the rolling member.
The invention can be used in particular on rollers and wheels for agricultural use, in particular on rollers for agricultural sowers, in order to permit the creation of furrows for receiving grains or seeds. These wheels and rollers can also be used for reconsolidating the soil after sowing. They can be used on their own or in combination with a sower or a soil preparing tool, which may or may not be driven.
The invention is not limited to the examples of tires and rolling members described above, only by way of example, but it includes all variants that the person skilled in the art may envisage within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
12 02979 | Nov 2012 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
595422 | Van Zandt | Dec 1897 | A |
597569 | Van Zandt | Jan 1898 | A |
600781 | Gunther | Mar 1898 | A |
799638 | Ducasble | Sep 1905 | A |
1079515 | Rondeau | Nov 1913 | A |
1185986 | Collins | Jun 1916 | A |
1194120 | Bahen | Aug 1916 | A |
1316773 | Daigre | Sep 1919 | A |
1416303 | Peck | May 1922 | A |
1493922 | Deister | May 1924 | A |
1503432 | Schragin | Jul 1924 | A |
1862269 | Johnson | Jun 1932 | A |
2375992 | Hoy | May 1945 | A |
2601464 | Tanke | Jun 1952 | A |
3977454 | Coran | Aug 1976 | A |
4061171 | Boileau | Dec 1977 | A |
4313482 | Vente | Feb 1982 | A |
4493355 | Ippen | Jan 1985 | A |
5499669 | Hardesty | Mar 1996 | A |
20080318747 | Phely | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
36 12 881 | Nov 1986 | DE |
10 2004 007 601 | Sep 2005 | DE |
10 2005 044 354 | Mar 2006 | DE |
0 076 412 | Apr 1983 | EP |
0 160 612 | Nov 1985 | EP |
0 173 670 | Mar 1986 | EP |
0 401 592 | Dec 1990 | EP |
1 361 078 | Nov 2003 | EP |
1 380 198 | Jan 2004 | EP |
409 854 | May 1910 | FR |
2 763 279 | Nov 1998 | FR |
2 776 239 | Sep 1999 | FR |
2 933 903 | Jan 2010 | FR |
2 071 027 | Sep 1981 | GB |
59084607 | May 1984 | JP |
2001121929 | May 2001 | JP |
2002154302 | May 2002 | JP |
2003136921 | May 2003 | JP |
2012051437 | Mar 2012 | JP |
WO-2013014676 | Jan 2013 | WO |
Entry |
---|
Preliminary Search Report dated May 21, 2013, in French Patent Application No. 12/02979, filed Nov. 7, 2012 (with English translation of category). |
Number | Date | Country | |
---|---|---|---|
20140124112 A1 | May 2014 | US |