a. Technical Field
The present invention relates to hearing devices, and, more particularly, to hearing devices that are semi-permanently positioned in the ear canal for improved energy efficiency, sound fidelity, and inconspicuous wear.
b. Description of the Prior Art
(1) Brief Description of Ear Canal Anatomy and Physiology
The external acoustic meatus (ear canal) is generally narrow and tortuous as shown in the coronal view in
A cross-sectional view of the typical ear canal 10 (
Physiological debris 4 in the ear canal is primarily produced in the cartilaginous region 11, and includes cerumen (earwax), sweat, and oils produced by the various glands underneath the skin in the lateral portion of the cartilaginous region. Cerumen is naturally extruded from the ear canal by the process of lateral epithelial cell migration (see, e.g., Ballachanda, The Human Ear Canal, Singular Publishing, 1950, pp. 195). There is no cerumen production or hair 12 in the bony part of the ear canal. The ear canal 10 terminates medially with the tympanic membrane 18. Externally and lateral to the ear canal are the concha cavity 2 and the auricle 3.
Several types of hearing losses affect millions of individuals. Hearing loss naturally occurs beginning at higher frequencies (4000 Hz and above) and increasingly spreads to lower frequencies with age.
(2) The Limitations of Conventional Canal Hearing Devices.
Conventional hearing devices that fit in the ear of individuals generally fall into one of 4 categories as classified by the hearing aid industry: (1) the Behind-The-Ear (BTE) type which, as the designation indicates, is worn behind the ear and is attached to an ear mold which fit mostly in the concha; (2) the In-The-Ear (ITE) type which fits largely in the auricle and concha areas, extending minimally into the ear canal; (3) the In-The-canal (ITC) type which fits largely in the concha area and extends into the ear canal (see, e.g., Valente M., Strategies for Selecting and Verging Hearing Aid Fittings, Theme Medical Publishing. pp. 255-256, 1994), and (4) the Completely-In-the-Canal (CIC) type which fits completely within the ear canal past the aperture (see, e.g., Chasin, M. CIC Handbook, Singular Publishing, 1997 (referred to hereinafter as “Chasin”), p. 5).
The continuous trend for the miniaturization of hearing aids is fueled by the demand for invisible hearing products in order to alleviate the social stigma associating hearing loss with aging and disability. In addition to the cosmetic advantage of a CIC device 20 (
However, even with these significant advances leading to the advent of CIC technology, there remain a number of fundamental limitations associated with the underlying design and configurations of conventional CIC technology. They include: (a) frequent device handling, (b) acoustic feedback, (c) custom manufacturing & impression taking, (d) limited energy efficiency, (e) size limitation due to space inefficiency of enclosure, and (f) occlusion related problems. These limitations are discussed in more detail below.
(a) Frequent Device Handling:
Conventional CIC devices require frequent insertion and removal from the ear canal. Manufacturers often recommend daily removal for cleaning and maintenance of the CIC device (see, e.g., Users's Instructions, SENSO CIC and Mini Canal, Widex Hearing Aid Co. Feb. 97, pp. 11, 16; and General Information for Hearing aid Users, Siemens Hearing Instruments, Inc. Mar. 98, p. 8). Frequent removal of conventional CICs is also required for relieving the ear from the pressures of the device occluding the cartilaginous region. Furthermore, CIC hearing aid removal is also required in order to replace its battery, typically lasting from 1 to 2 weeks. The manual dexterity required to handle a CIC hearing device frequently poses a serious challenge to the many hearing impaired persons represented by the elderly. These individuals typically suffer from arthritis, tremors, or other neurologic problems that limit their ability to handle a miniature hearing aid.
(b) Acoustic Feedback:
Acoustic feedback occurs when a portion of the sound output, typically from a receiver (speaker), leaks to the input of a sound system such as a microphone of a hearing aid. This leakage often causes a sustained oscillation, which is manifested by “whistling” or “squealing”. Feedback is not only annoying to hearing aid users but also interferes with their communication. Feedback is typically alleviated by occluding (sealing) the ear canal tightly, particularly at the cartilaginous region 11, as illustrated with the CIC hearing device in
(c) Custom Manufacturing & Impression Taking:
Conventional CIC devices are custom made according to an impression taken from the ear of the individual. The device housing 22 (
(d) Limited Energy Efficiency:
The efficiency of a hearing device is generally inversely proportional to the distance or residual volume 25 (
(e) Size Limitation Due to Space Inefficiency of Enclosure:
Since a conventional CIC is frequently handled by a wearer, the enclosure 22 (
(f) Occlusion Related Problems:
(i) Discomfort, irritation and even pain may occur due to canal abrasion caused by frequent insertion and removal of a CIC hearing aid. A removal strand 24 (
(ii) Moisture produced in the cartilaginous ear canal causes damage to the ear canal and the hearing device therein. “The humidity in the occluded portion of the canal increases rapidly. This is worse during hot and humid weather, following exercise” (Chasin, pp. 57-58). It is often recommended that the CIC device should be removed from the ear canal daily to reduce the damaging effects of moisture in the canal.
(iii) Cerumen impaction (blockage of the ear canal by earwax) may occur when cerumen, produced in the cartilaginous region, is pushed and accumulated deeper in the bony region of ear canal by the frequent insertion of a CIC hearing device (e.g., Chasin, p. 27, pp. 56-57). Cerumen can also build up on the receiver of the hearing device causing frequent malfunction. Cerumen contamination due to frequent insertion is probably the most common factor leading to hearing aid damage and repair (see, e.g., Oliveira, et al, The Wax Problem: Two New Approaches, The Hearing Journal, Vol. 46, No. 8).
(iv) The occlusion effect, a common acoustic problem attributable to occlusion of the ear canal by the hearing device, is manifested by the perception of the user's (wearer's) own voice (“self-voice”) being loud and unnatural compared to that with an open (unoccluded) ear canal. This phenomenon is sometimes referred to as the “barrel effect”, since it resembles the experience of talking into a barrel. The occlusion effect, which may be experienced by plugging the ears with fingers while talking, is generally related to self-voice resonating within the ear canal. For hearing aid users, the occlusion effect is inversely proportional to the residual volume 25 (
The above limitations in conventional CIC devices are highly interrelated. For example, when a CIC is worn in the ear canal, movements in the cartilaginous region “can lead to slit leaks that lead to feedback, discomfort, the occlusion effect, and ‘pushing’ of the aid from the ear” (Chasin, pp. 12-14). The relationship between the limitations is often adverse. For example, occluding the ear canal tightly is desired on one hand to prevent feedback. On the other hand, however, tight occlusion leads to various adverse side effects as mentioned above. Attempts to alleviate the occlusion effect by a vent 21 provide an opportunistic pathway for leakage and feedback. For this reason, the vent 21 diameter is typically limited in CIC devices to 0.6 - 0.8 mm (e.g., Chasin, pp. 27-28).
(3) Review of State-of the-Art in Related Hearing Device Technology
Ahlberg et al and Oliviera et al in U.S. Pat. Nos. 4,880,076 and 5,002,151 respectively, disclose a compressible polymeric foam assembly attached to an earpiece of a hearing device. The compressible foam assembly (
Cirillo in U.S. Pat. No. 4,830,139 discloses means for holding a speaker mold (16 in Cirillo's
Sauer et al in U.S. Pat. No. 5,654,530 disclose an insert associated with an ITE device (Sauer's
Garcia et al. in U.S. Pat. No. 5,742,692 disclose a hearing device (10 in Garcia's
Henneberger and Biermans in U.S. Pat. Nos. 4,680,799 and 4, 937, 876, respectively, also disclose hearing aids with conventional housings, which occlude the ear canal and comprise a unitary enclosure for microphone, battery and receiver components therein.
Weiss et al. in U.S. Pat. Nos. 3,783,201 and 3,865,998 disclose an alternate hearing device configuration which fits partially in the ear canal (
Geib in U.S. Pat. No. 3,527,901 discloses a hearing device with housing made of soft resilient material, which encloses the entire body of the device. This approach eliminates conventional rigid enclosures, and is presumably more comfortable to wear. However, the unitary flexible enclosure provides no improvement in space efficiency and also poses serious concerns regarding the reliability of interconnects, and of the device in general, during frequent handling. The disclosed hearing device was not designed to fit entirely in the ear canal, Geib stating that “the hearing aid makes a much better fit within the concha and ear canal of the user thereby providing a more effective seal and reducing the problems of direct acoustic feedback” (col 2, lines 40-43).
Hardt in U.S. Pat. No. 4,607,720 discloses a hearing device which is mass-producible with a soft sealing plug that is serially attached to the receiver. Although the problem of custom manufacturing is addressed, the unitary enclosure (containing major hearing aid components; battery, microphone and receiver) is, as with other prior art proposals, space-inefficient for deep canal fittings.
Voroba et al in U.S. Pat. No. 4,870,688 also disclose a mass-producible hearing aid, which includes a solid shell core (20 in Veroba's
Hartl et al. in U.S. Pat. No. 4,639,556 disclose a hearing aid with a flexible printed circuit board attached to a face-plate. The flexible circuit board and major hearing aid components are also enclosed in a unitary housing (1 in Hartl's
McCarrel et al, Martin, Geib et al, and Adelman, in U.S. Pat. No. 3,061,689, U.S. Pat. No. RE 26,258, U.S. Pat. Nos. 3,414,685 and 5,390,254, respectively, disclose miniature hearing devices with a receiver portion flexibly separate from a main part. The receiver portion insertable into the ear canal with the main part occupying the concha (McCarrel's
Shennib et al in U.S. Pat. No. 5,701,348 disclose an articulated hearing device with flexibly connecting modules, stating that “the main module 12 includes all of the typical components found in hearing devices, except for the receiver” (col. 6, lines 64-66). The main module includes a battery 16, a battery compartment 15, circuit 17 (amplifier) and microphone 14. Because if its articulated design and assorted soft acoustic seal 43, the hearing device disclosed by Shennib is suitable to fit a variety of ear canals without resorting to custom manufacturing, and thus can be mass-producible as disclosed. Although a CIC configuration is disclosed (see Shennib's
It is the principal objective of the present invention to provide a highly space-efficient hearing device, which is suitable to be completely positioned in the ear canal.
Another objective is to provide a design for a hearing device which is mass-producible, and which requires neither custom manufacture nor the taking of individual ear canal impressions.
A further objective of the invention is to provide a hearing device which occludingly seals the ear canal in the bony region, but not at the cartilaginous region, and thus does not interfere with hair and the natural production and elimination of physiologic debris in the ear canal.
Yet another objective is to provide a semi-permanent hearing device which is inserted by a physician, or by other professionals under the supervision of a physician, for long-term use in the ear canal.
Semi-permanent, or alternatively long-term use, is defined herein as continuous placement and use of the hearing device within the ear canal without any removal, daily or otherwise, for at least a month.
The invention provides a semi-permanent hearing device which is completely positioned within the ear canal of an individual for long-term use. The device comprises a sealing retainer substantially positioned in the bony region of the ear canal and a core assembly comprising a receiver assembly coaxially positioned within the sealing retainer.
The core assembly extends from the sealing retainer to the cartilaginous region in a non-occluding fashion, thus minimizing interference with hair and earwax production present in the cartilaginous part of the ear canal. In a preferred embodiment of the invention, the core assembly includes a battery assembly including a battery and a thin enclosure having substantially the shape and dimensions of the battery which is encapsulated therein. A connector having the shape of thin ribbon film provides electrical and flexible mechanical connectivity between the receiver assembly, centrally positioned battery assembly, and microphone assembly positioned in the cartilaginous region. The invention is characterized by the absence of a unitary enclosure or main housing which typically encloses the battery and other components in prior art hearing device designs.
In the preferred embodiment, the hearing device is mass-producible and accommodates a variety of canal shapes and sizes without need for custom manufacturing or canal impressions. This desirable objective is accomplished by virtue of the flexibility of the universal core assembly and conformity of the assorted sealing retainer.
The hearing device of the invention is preferably inserted by a physician, or by another professional under the supervision of a physician, for placement entirely within the ear canal and exceptionally close to the eardrum. The space and energy efficient design allows for a comfortable continuous use within the ear canal for extended periods of time, exceeding one month, without the requirement of daily removal as with conventional CICs. In the preferred embodiments, the device is remotely switched on/off by a remote control for optionally conserving the battery energy while the device remains in the ear canal during sleep or non-use.
The invention eliminates the need for manual insertion and removal by the wearer and is therefore particularly suited for hearing impaired persons of poor manual dexterity.
The above and still further objectives, features, aspects and attendant advantages of the present invention will become apparent from the following detailed description of certain preferred and alternate embodiments and method of manufacture and use thereof constituting the best mode presently contemplated of practicing the invention, when taken in conjunction with the accompanying drawings, in which:
a and 6b are cross-sectional views of the ear canal showing the non-occlusive microphone assembly of an embodiment of the canal device of the present invention positioned in the cartilaginous region, providing substantial air-space and no contact with the walls of the ear canal (
a and 7b are cross-sectional views of the ear canal showing the receiver assembly and sealing retainer of an embodiment of the canal device of the invention positioned in the bony region with occlusion thereof (
a is a detailed view of a moisture-proof debris guard in the form of an adhesive pad showing the adhesive layer and receiver sound port for an embodiment of the canal device of the invention; and
a and 16b are perspective views of a preferred embodiment of the sealing retainer of the canal device, taken respectively from the side (
The present invention provides a semi-permanent hearing device which is adapted to be entirely positioned in the ear canal for long term use. For the sake of additional clarity and understanding in the ensuing detailed description, the disclosures of the aforementioned related co-pending '533 application and '764 application (see section titled “Cross-Reference to Related Applications”, above) are incorporated herein by reference.
The canal hearing device 30 of the invention will be described with reference to
The core assembly 35 extends to the cartilaginous region 11 in a non-occluding fashion, thus minimizing interference with hair and earwax production present in the cartilaginous part of the ear canal 10. The core assembly 35 also includes a battery assembly 50 having a shape and dimensions substantially equivalent to those of the enclosed battery 51, recognizing that battery assembly 50 has a slightly larger size to accommodate snug enclosure of the battery 51 therein. A connector 53, in the shape of thin circuit film or ribbon cable, provides electrical and mechanical connectivity between the receiver assembly 60, the battery assembly 50, and a microphone assembly 40, the latter being positioned in the cartilaginous region 11 when the hearing device is fully inserted and seated in the ear canal for normal use. The connector 53 is enclosed within the thin enclosure 52 of the battery assembly 50 and extends to the microphone assembly 40 and receiver assembly 60 for connection thereto.
In a preferred embodiment, shown in
The microphone assembly 40, battery assembly 50, and receiver assembly 60 each having an individual thin encapsulation 45 (
The connector 53 and battery 51 are encapsulated by a thin disposable enclosure 52 according to the disclosure of the '764 application. The battery assembly 50 minimally occludes the ear canal and is preferably positioned substantially at or beyond the bony-cartilaginous junction 19 (
In order to protect the microphone and receiver of the hearing device 30 from the damaging effects of moisture and debris, microphone debris guard 42 (
When the hearing device 30 is fully inserted in its normal position in the ear canal 10, the microphone assembly 40 is positioned at the cartilaginous region 11 with a substantial air-space 49 all around the microphone assembly (
The alternate ear canal 10′ of
As shown in
The microphone assembly 40 in the preferred embodiment of
A schematic diagram of an electroacoustic circuit of the embodiment in
The acoustic response of a device fabricated according to the embodiment of
The connector 53, in the preferred embodiment shown in more detail in
The lateral and medial sections 83 and 85 respectively of film 54 are flexibly bendable with respect to the main section 87, thus allowing the connected microphone assembly 40 and receiver assembly 60 to articulate within the ear canal during insertion and removal of the hearing device. A crossing section 88 of the connector 53 also bends in the direction of arrow 93 (into the paper) in order to connect conductive pad 92 to the negative terminal 97 (
In another embodiment, shown in
Removal handle 107 may be provided for the removal of the hearing device 100, particularly during an emergency situation, such as infection of the ear canal or irritation therein.
In a preferred embodiment of a remote control, shown in
The encapsulations 45 and 62 of the microphone receiver assemblies 40 and 60, respectively, are each made of thin protective material that substantially conforms to the shape of the components encapsulated therein. The thickness of each encapsulation is preferably less than 0.3 mm in order to minimize occlusion of the microphone assembly 40 (see
In another embodiment of the moisture-proof debris guard, shown in
The present invention, shown with button cell batteries in the above embodiments, is equally suited to accommodate other battery shapes and configurations as they are likely to be available in future hearing aid applications. The thin enclosure of the battery assembly of the present invention, regardless of the type of battery used, conforms substantially to the shape of the enclosed battery with encapsulation thickness not to exceed 0.3 mm for the preferred embodiments of the invention.
For example, in another embodiment of the present invention, shown in
The sealing retainer 70, shown in greater detail in
The molded sealing retainer 70 did not include any rigid core material therein in order to maximize the fit and comfort within the bony region of the ear canal. The sealing retainer 70 was made oval with long diameter DL approximately 1.6 times that of the short diameter Ds. The inferior (lower) portion 74 is relatively pointed to match the shape of typical ear canals in the bony region. The sealing retainer 70 is substantially hollow with air-space 72 between the body 73 of the sealing retainer and the receiver assembly 60 when inserted therein. The medial opening 71 of the sealing retainer is stretchable and is made smaller than the diameter of the receiver assembly 60 in order to provide a tight fit for sealing and securing the receiver assembly and the associated hearing device within the ear canal. Vertical and horizontal cavities 75 and 76, respectively, in the shape of a cross, extend medially from the lateral end of the sealing retainer 70. These cavities, in conjunction with the internal air-space 72, increase the compressibility and conformity of the sealing retainer so that it can be worn more comfortably in the bony region 13 which is known for being extremely sensitive to pressure. Furthermore, the cavities 75 and 76 allow for partial enclosure of the battery assembly (dotted circle) 50 therein as shown in
The sealing retainer 70, made of polyurethane foam material for example as described above, is compressible and subsequently expandable with time, thus allowing for a temporary compression state prior to and during insertion into the ear canal and a subsequent expansion to conform to the ear canal and seal therein.
In a preferred embodiment according to the invention, the sealing retainer 70 was fabricated in an assortment of four sizes (small, medium, large and extra-large) to accommodate the broadest range of ear canals among the population studied. The dimensions of such fabricated assortment are tabulated in Table 1 below. The dimensions were partially derived from measurements of actual ear canal dimensions obtained from cadaver impressions as explained below in the section titled Experiment-A. The sealing retainer may be produced in an assortment of other sizes and shapes as needed to accommodate an even wider diversity of ear canals when studied.
The sealing retainer is preferably disposable and must be biocompatible and hypoallergenic for a safe prolonged wear in the ear canal. The sealing retainer may incorporate a vent 6 as shown in
Certain individuals may have difficulty wearing the sealing retainer due to the sensitivity of their ear canal, medical condition, or other concerns. Therefore, the sealing retainer may be separately inserted, without the core assembly, for a period of time sufficient to assess comfort and appropriateness of wear prior to inserting the entire hearing device semi-permanently. This may represent a “trial wear” for an individual who may be reluctant to wear or purchase the device for whatever reason.
The semi-permanent hearing device of the present invention comprises a disposable battery, disposable battery enclosure, or alternatively a disposable battery assembly with combined battery and enclosure. However, as energy efficiency improvements in battery, circuit and transducer technologies continue to improve, the preferred embodiment may be that of a disposable core assembly with assorted sealing retainers as described above.
Experiment A.
In a study performed by the applicants herein, the cross-sectional dimensions of ear canals were measured from 10 canal impressions obtained from adult cadaver ears. The long (vertical) and short (horizontal) diameters, DL and DS respectively, of cross sections at the center of three regions in the ear canal (see
Results and Conclusion
The diameter dimensions of the ear canal vary significantly among adult individuals. In general, variations occur more so across the short (horizontal) diameters. Furthermore, the ear canal is slightly narrower (long/short ratio) in the bony region than in the other two regions. Although not apparent from the above measurements, the cartilaginous region is expandable which facilitates insertion of wider objects through it towards the deeper region, if necessary.
Experiment B
A test of insertion fit of the semi-permanent canal device was performed using the battery assembly of the invention. The battery assembly was selected because it represents the largest of all assemblies in the hearing device according to the present invention.
Using the 10 cadaver impressions described above in Experiment-A, 10 actual-size ear canal models were fabricated by dip-fanning clear acrylic material (Audacryl-acrylic manufactured by Esschem). Two battery assemblies according to the embodiment of
The thickness of several shells of conventional hearing devices were also measured for comparison analysis (measuring between 0.5 mm and 0.7 mm). For a conventional hearing device enclosing size-10A battery, the added dimensions of (1) the shell (0.5 mm or more, adding a minimum of 1 mm to the dimensions) and (2) other enclosed components, prohibit insertion of the device at the bony-cartilaginous junction (J) area for at least 5 of the above ear canals (2-R, 2-L, 3-R, 3-L and 7-L). This is further exacerbated by the fact that ear canals are often tortuously contoured, thus making it painful if not impossible to insert the conventional CIC device too deeply in seeking to gain access to the bony region of the ear canal. For conventional CIC devices with size-312 battery (larger than 10-A), deep fitting is only likely for very large ear canals, such as 1-R and 1-L.
Results and Conclusion
The first battery assembly (size-10A) was successfully inserted up to the bony-cartilaginous junction (J) region in 9 of the 10 ear canal models, excepting 2-R which has dimensions of 4.0×8.9 mm (DS×DL) as shown in
The second battery assembly (size-312) was successfully inserted up to the bony-cartilaginous junction in 5 of the 10 ear canal models. This is particularly significant, since size-312 batteries are virtually excluded from conventional CIC devices due to their excessive size in conjunction with conventional CIC designs.
The results confirm that the present invention is more space-efficient and would allow the battery assembly to fit in the bony-cartilaginous junction area and beyond for most adult individuals with size-10A batteries and a significant percentage of adult individuals with size-312 batteries.
Experiment C
A prototype of the semi-permanent hearing device according to the embodiment of
The circuit of
Two layers of thin Kapton tape (#042198 GUA distributed by Economic Packaging Corp. of Milpitas, Calif.) were employed to fabricate a thin flexible connector which embedded circuit wires made of 44 AWG Litz wire.
The microphone assembly, comprising microphone amplifier M, reed-switch assembly RS, volume trimmer RG, and lateral section 83 of flexible connector 53 were glued together using cyanoacrylate (#20269, manufactured by Loctite Corp. of Rocky Hill, Conn.). The microphone assembly was then encapsulated by thin moisture proofing silicone material (E4 I manufactured by Wacker, Werk Burghausen of Germany). The receiver assembly, comprising receiver and CR capacitor was similarly encapsulated by silicone material and was flexibly connected to the Kapton tape connector.
The moisture-proof debris guard for the microphone and receiver ports employed Gore-Tex™ material (# VE00105 manufactured by W. L. Gore & Associates of Elkton, Md.) for guard member and polypropylene plastic (#100-8932 distributed by Henry Schein/ZAHN of Esschem of Port Washington, N.Y.) for the body of the guard cap. The guard member material was approximately 0.2 mm in thickness.
A large-sized sealing retainer was fabricated using the above mentioned polymer foam material and fabrication process.
The device, excluding the retainer seal, weighed 0.73 grams, including the 10A battery which weighed 0.29 grams alone.
The subject was provided with a control magnet, in the shape of a bar, for remotely switching the device on or off as desired.
The acoustic response of the prototype device was measured in a standard CIC coupler (Manufactured by Frye Electronics ) and plotted in
Results and Conclusion
There was a slight sound degradation (approximately 4 decibels (dB)) at frequencies of 3000 and above compared to the No Moisture Guard condition. However, this represents a minimal acoustic impact which can be easily compensated for electronically or by the employment of thinner guard material.
The prototype device, including receiver and microphone debris guards according to the embodiment of
It should also be noted that the moisture-proofing provided by the debris guards and enclosures according to the invention can even afford the wearer the opportunity to engage in normal swimming without fear of damage to or loss of fidelity of the hearing device. It would not be recommended that the wearer engage in diving or prolonged underwater swimming, however.
It is also worth emphasis that the sealing retainer itself provides significant advantages for use with a semi-permanent hearing device adapted to be inserted entirely within the ear canal of a wearer past the aperture. The sealing retainer is configured for concentric positioning over a medial part of a core assembly of the hearing device so that the core assembly extends laterally within and makes minimal or no contact with the walls of the cartilaginous region of the ear canal. The core assembly is suspended within and snugly supported at the medial part by the sealing retainer, and is arranged and adapted to protrude medially beyond the sealing retainer in a preferred embodiment. The sealing retainer is further configured for seating securely within and occluding the bony region of the ear canal when the semi-permanent hearing device is fully inserted within the ear canal of the wearer. The sealing retainer is sufficiently soft and yielding to conform itself to the shape of the ear canal in the bony region.
Consequently, the sealing retainer provides acoustic sealing of the bony region to prevent feedback, and the lateral extension of the core assembly avoids substantial interference with hair and production of cerumen and debris in the cartilaginous region.
According to another aspect of the invention, in a method of testing a hearing-impaired individual's tolerance to long-term wearing of a semi-permanent hearing device inserted entirely within the ear canal past the aperture thereof, the testing is performed without requiring the individual to actually wear the entire hearing device. The method includes a first step of inserting the sealing retainer into the ear canal, with the air cavity of the retainer unoccupied by the core assembly, until the retainer is seated securely against the walls in the bony region. The sealing retainer is removed from the ear canal after having been worn by the individual for a period of sufficient length to determine the long-term tolerance. The individual is interviewed to assess his or her view of the level of comfort and sensitivity to the presence of the device in the ear canal. The ear canal is also examined after removal of the sealing retainer.
It is highly desirable to maintain an inventory of assorted sizes and shapes of the sealing retainer for selection of an appropriate fit for the ear canal of the individual.
Although a presently contemplated best mode of practicing the invention has been described herein, it will be recognized by those skilled in the art to which the invention pertains from a consideration of the foregoing description of presently preferred and alternate embodiments and methods of fabrication and use thereof, that variations and modifications of this exemplary embodiments and methods may be made without departing from the true spirit and scope of the invention. Thus, the above-described embodiments of the invention should not be viewed as exhaustive or as limiting the invention to the precise configurations or techniques disclosed. Rather, it is intended that the invention shall be limited only by the appended claims and the rules and principles of applicable law.
This application is a continuation of U.S. patent applications Ser. No. 09/199,669, filed Nov. 25, 1998, titled “Semi-Permanent Canal Hearing Device” which is fully incorporated herein by reference. This application is related to U.S. patent applications: Ser. No. 09/181,533, filed Oct. 28, 1998, titled “Remote Magnetic Activation of Hearing Devices” (referred to herein as the '533 application”); and Ser. No. 09/190,764, filed Nov. 12, 1998, titled “Battery Enclosure for Canal Hearing Devices” (referred to herein as the '764 application”), now U.S. Pat. No. 6,208,741, all of which are fully incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 09199669 | Nov 1998 | US |
Child | 11115907 | Apr 2005 | US |