This patent application is related to solid state light emitting devices.
Solid-state light sources, such as light emitting diodes (LEDs) and laser diodes, can offer significant advantages over incandescent or fluorescent lighting. Solid-state light sources are generally more efficient and produce less heat than traditional incandescent or fluorescent lights. When LEDs or laser diodes are placed in arrays of red, green and blue elements, they can act as a source for white light or as a multi-colored display. Although solid-state lighting offers certain advantages, conventional semiconductor structures and devices used for solid-state lighting are relatively expensive. The high cost of solid-state light emitting devices is partially related to their relatively complex and time-consuming manufacturing process.
Referring to
The GaN crystal has different electric properties along different crystal directions. The (0001) crystal planes are perpendicular to the c-axis and have the highest electric polarity compared to other planes. The (1-100) crystal planes are perpendicular to the m-axis and are non-polar. Other GaN crystal planes such as (1-101) are semi-polar and have electric polarity less than that of the (0001) crystal planes.
Different crystal planes of GaN crystal also have different optical properties. The internal quantum efficiency (IQE) is the highest for the non-polar (1-100) crystal planes and lower for the semi-polar crystal planes, such as (0001) plane. The polar (0001) crystal planes have the lowest quantum efficiency. In a light emitting device, it is desirable to produce light emission from the non-polar or semi-polar crystal planes to obtain high emission intensity.
Early GaN LEDs had been formed on sapphire, silicon carbide, or spinel substrates (105 in
This patent application discloses light emitting devices that have improved light emission efficiency and light emission intensity compared to conventional GaN LEDs by using semi-polar GaN crystal surfaces as base for quantum wells. The light emission from the disclosed light emitting devices is also highly polarized, which is very useful for many display applications.
The disclosed devices may have certain advantages, including that they can provide single GaN crystals with very low defect density, which improves device reliability and lifetime; they can be tailored in different form factors to suit different applications; and they can be fabricated on a silicon substrate, which is compatible with many microelectronic devices.
In one general aspect, the present invention relates to a light emitting device that can include a silicon substrate comprising a (111) surface and a GaN crystal structure over the (111) surface, wherein the GaN crystal structure can have a first surface along a semi-polar plane of the GaN crystal structure, and a second surface along a polar plane of the GaN crystal structure. Light emission layers that can have at least one quantum well of GaN lie over the first surface of the GaN crystal structure.
In another general aspect, these light emitting devices can include a silicon substrate having a (100) silicon upper surface with a recess in part defined by (111) silicon surfaces. A GaN crystal structure lies over one of the (111) silicon surfaces, and has a first surface along a semi-polar plane of the GaN crystal structure, and a second surface along a polar plane of the GaN crystal structure. The light emission layers have at least one quantum well comprising GaN lie over the first surface of the GaN crystal structure.
Implementations of the light emitting devices may include one or more of the following. The first surface can form an angle between about 52 degrees and about 72 degrees relative to the m-axis of the GaN crystal structure. The first surface can be substantially parallel to the (1-101) GaN crystal plane. The first surface can intercept the (111) surface of the silicon substrate at an angle between about 52 degree and about 72 degrees. The second surface can be substantially parallel to the (0001) GaN crystal plane and perpendicular to the c-axis of the GaN crystal structure. The first surface and the second surface can intercept each other at an angle between about 108 degrees and about 128 degrees.
The GaN crystal structure can be doped and is configured to perform as a lower electrode layer for the light emission layers. The light emitting device can further include an upper electrode layer on the light emission layers, wherein the light emission layers can emit light when an electric field is applied across the light emission layers between the GaN crystal structure and the upper electrode layer. The GaN crystal structure can be doped with silicon. The light emitting device can further include a reflective layer between the (111) surface of the silicon substrate and the GaN crystal structure. The reflective layer can include silicon doped AlGaN or silicon doped AlN. The light emitting device can further include a buffer layer between the reflective layer and the (111) surface of the silicon substrate. The buffer layer can include silicon doped AlN. The silicon substrate can further include a (100) surface and a recess formed in its (100) upper surface, the recess defined in part by the (111) surface. The recess can have the shape of an elongated trench, an inverse pyramid, or a truncated inverse pyramid. The quantum well can be formed by InGaN and GaN.
The following drawings, which are incorporated in and form a part of the specification, illustrate embodiments of the present invention and, together with the description, serve to explain the principles of the invention.
Referring to
A recess 220 in the light emitting device 200 is formed in the (100) upper surface 201 of the silicon substrate 210. A SiN mask (not shown) formed on the (100) upper surface can have square or rectangle openings. The dimensions of each side of these openings can be in the range from tens of microns to a few millimeters. Etching through openings in the SiN mask results the formation of recess 220 having the (111) surfaces 202. The (111) surfaces 202 are tilted at a 54.7° angle relative to the (100) surfaces (the upper surface 201) of the silicon substrate 210. Additional description of the structure, fabrication method and theory behind the light emission device shown in
The buffer and reflective layers 230, shown diagrammatically in
A layer of doped GaN crystal structure 240 more than 1 um thick is deposited on the reflective layer 235 at about 970° C. and at a pressure of about 250 mbar for more than 1 hour. The doped GaN crystal structure 240 comprises GaN doped by silicon. Referring now both to
The doped GaN crystal structure 240 also grows naturally in the (1-101) direction, which defines a surface 241 that is parallel to the (1-101) crystal plane. The surface 241 is at an angle between about 52° and about 72°, or for example, approximately 62°, relative to m-axis of the doped GaN crystal structure 240. The surface 241 is at the same angle relative to the (111) surface 202 of the substrate 210. The (1-100) direction and the (1-101) direction are offset by an approximately that same angle. The surface 241 is semi-polar and has an electric polarity lower than that of the surface 242. The surface 241 and the surface 242 intercept at an angle between about 108° and about 128°, for example, 118°. The doped GaN crystal structure 240 also includes surfaces 243 formed in the deep central portion of the recess 220. The orientations of the surfaces 243 are in part determined by the deposition materials of the quantum well layers 250 used in the deep central region of the recess 220.
The quantum well layers 250 comprise a plurality (for example eight) repetitive, interleaved GaN and InGaN layers, each with a thickness of 20 nm and 3 nm, respectively. The quantum well layers 250 are formed at about 740° C. and at a pressure of about 200 mbar. The buffer layers 231 and 232 (
The buffer layers 231 and 232, the reflective layer 235, and the quantum well layers 250 can be formed using atomic layer deposition (ALD), Metal Organic Chemical Vapor Deposition (MOCVD), Plasma Enhanced Chemical Vapor Deposition (PECVD), Chemical Vapor Deposition (CVD), or Physical vapor deposition (PVD). The doped GaN crystal structure 240 and the doped GaN layer 260 can be deposited by PVD, PECVD, or CVD.
In light emitting operation, an electric voltage is applied across the lower and the upper electrodes that include, respectively, the doped GaN crystal structure 240 and the doped GaN layer 260. The electric current passing through the quantum well layers 250 can cause electrons and holes to recombine, resulting in light emission.
The growth of the doped GaN crystal structure 240 is illustrated in detail in
Details of the light emitting device 200 are shown in perspective views in
An array of light emitting device s 200A-200D can be formed on a common substrate 210, as shown in
The light emitting devices can be made in different shapes and form factors. The recesses in the silicon substrate can have the shapes of an inverse pyramid or a truncated inverse pyramid to provide a substantially square light emitting device. The recesses in the silicon substrate can have the shape of an elongated trench to provide a linear shaped light emitting device. A light emitting device 800, shown in
The presently disclosed light emitting devices can have one or more of the following advantages. First, light emission efficiency and light emission intensity can be significantly increased in comparison with conventional GaN LED devices by using semi-polar GaN crystal surfaces as a base for the quantum wells. The light emission from the disclosed light emitting device is also highly polarized, which is very useful for many display applications. Another advantage of the present light emitting device is to reduce defect density in the GaN crystals, which improves device reliability and lifetime. Additionally, the disclosed light emitting devices can be tailored in different form factors to suit different applications. Furthermore, the disclosed light emitting devices can be fabricated on a silicon substrate, which is more compatible with the fabrication of many microelectronic devices.
The foregoing description and drawings should be considered as illustrative only of the principles of the invention. The described devices may be configured in a variety of shapes and sizes and the scope of the invention is not limited by the dimensions of the preferred embodiments. Numerous applications of the present invention will readily occur to those skilled in the art. Therefore, the invention is not intended to be limited to the specific examples disclosed or the exact construction, operation or dimensions shown and described. Rather, all suitable modifications and equivalents fall within the scope of the invention. For example, one of the GaN crystal structure and the doped GaN layer 260 can be n-doped and the other p-doped. The types of doping in the two components can be switched while still compatible with the presently disclosed light emitting device. The disclosed LED structure may be suitable for emitting green, blue, and other colored lights. Moreover, the recesses can have other shapes than the examples described above. For example, the openings in the mask on the upper surface may have shapes different from squares or rectangles. In another example, a (111) silicon wafer can be used as a substrate to allow trenches having (100) surfaces to form in the substrate.
Number | Name | Date | Kind |
---|---|---|---|
5793062 | Kish, Jr. et al. | Aug 1998 | A |
5838029 | Shakuda | Nov 1998 | A |
5905275 | Nunoue et al. | May 1999 | A |
6233265 | Bour et al. | May 2001 | B1 |
6345063 | Bour et al. | Feb 2002 | B1 |
6426512 | Ito et al. | Jul 2002 | B1 |
6635901 | Sawaki et al. | Oct 2003 | B2 |
6844569 | Lee et al. | Jan 2005 | B1 |
6881981 | Tsuda et al. | Apr 2005 | B2 |
6936851 | Wang | Aug 2005 | B2 |
6949395 | Yoo | Sep 2005 | B2 |
7176480 | Ohtsuka et al. | Feb 2007 | B2 |
7453093 | Kim et al. | Nov 2008 | B2 |
7550775 | Okuyama | Jun 2009 | B2 |
7956370 | Pan | Jun 2011 | B2 |
7968356 | Kim | Jun 2011 | B2 |
8129205 | Rana et al. | Mar 2012 | B2 |
20040113166 | Tadatomo et al. | Jun 2004 | A1 |
20050179025 | Okuyama et al. | Aug 2005 | A1 |
20050199891 | Kunisato et al. | Sep 2005 | A1 |
20060169987 | Miura et al. | Aug 2006 | A1 |
20070200135 | Wang | Aug 2007 | A1 |
20080032439 | Lee et al. | Feb 2008 | A1 |
20080179611 | Chitnis et al. | Jul 2008 | A1 |
20080251808 | Kususe et al. | Oct 2008 | A1 |
20080303042 | Minato et al. | Dec 2008 | A1 |
20080308835 | Pan | Dec 2008 | A1 |
20090032799 | Pan | Feb 2009 | A1 |
20090159869 | Ponce et al. | Jun 2009 | A1 |
20090159870 | Lin et al. | Jun 2009 | A1 |
20090298212 | Pan | Dec 2009 | A1 |
20100078670 | Kim et al. | Apr 2010 | A1 |
20100203662 | Pan | Aug 2010 | A1 |
20100308300 | Pan | Dec 2010 | A1 |
20110108800 | Pan | May 2011 | A1 |
20110114917 | Pan | May 2011 | A1 |
20110175055 | Pan | Jul 2011 | A1 |
20110177636 | Pan et al. | Jul 2011 | A1 |
20110233581 | Sills et al. | Sep 2011 | A1 |
20120043525 | Pan | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
1638162 | Jul 2005 | CN |
2006-045648 | Feb 1994 | JP |
2005-328073 | Nov 2005 | JP |
10-2003-0074824 | Sep 2003 | KR |
10-0649769 | Nov 2006 | KR |
10-0705226 | Apr 2007 | KR |