Annuloplasty rings for mitral or tricuspid heart valve repair, and more particularly a semi-rigid annuloplasty ring and band.
It is well known in the field of heart valve repair to use implantable annuloplasty rings for surgical correction of certain mitral or tricuspid heart valve disorders. Clinical experience has shown that the repair of heart valves, where this technique is possible, produces significantly better long term results than do valve replacements.
Wright, U.S. Pat. No. 5,674,279, the contents of which are expressly incorporated by reference herein, describes in detail various effects of valvular dysfunction, known corrective procedures and various prosthesis that have been used in conjunction with mitral or tricuspid valve repair. Wright is also directed to an annuloplasty ring structure that has experienced considerable success in both mitral and tricuspid valve repair.
Known annuloplasty rings are either completely flexible or have an internal frame in at least a portion of the annuloplasty ring to impart some structural rigidity. Those annuloplasty rings with a rigid internal frame (i.e., a frame is rigid both along a circumferential axis of the frame and radially relative to the circumferential axis) can interfere with normal movement of the mitral valve annulus during diastole and systole. More particularly, during diastole the mitral valve annulus assumes a substantially planar configuration. During systole the anterior leaflet of the mitral valve bows into the left atrium due to aortic pressure, forming the mitral valve annulus into a partially flattened saddle shape. A rigid annuloplasty ring can interfere with the anterior segment of the mitral valve annulus assuming this bowed configuration during systole, leading to a condition known as systolic anterior motion or SAM. Thus, this is one limitation of the Carpentier-Edwards D-Shaped “Classic” semi-closed ring discussed in the Wright '279 patent, and the Carpentier-Edwards “Physio” ring.
Other rings are flexible, such as the Cosgrove-Edwards band, which is a fully flexible C-shaped ring and the Medtronic Duran ring, which is fully flexible and circular. Both of these rings are also discussed in the Wright '279 patent. Because flexible annuloplasty rings can be hard for surgeons to manipulate and implant due to their flexible nature, flexible rings and bands typically require a holder for implantation by a surgeon. Moreover, flexible rings are subject to axial compression or bunching when implantation sutures are tightened and tied during implantation.
The present invention is directed toward overcoming one or more of the problems discussed above.
A first aspect of the embodiments is an annuloplasty ring comprising an elongate
tube of suturable material formed into a ring. A stiffener configured to prevent axial compression and to resist radial deformation of the ring is received in the formed tube in a first circumferential segment of the ring. As used herein, “axial compression” means along a circumferential axis of the ring and “radial deformation” means deformation radially (or transverse) of the circumferential axis. Thus, “radial deformation” includes deformation in the same or opposite direction of blood flow with the annuloplasty ring implanted on a heart valve annulus. As used herein, “resist radial deformation” means providing sufficient radial rigidity to prevent radial deformation of greater than 0.3 inches with a load of 25-75 grams (depending on the ring or band size, which for the embodiments described herein generally vary between about 40-24 mm across the trigones) applied across a major diameter, but to permit a substantially normal range of axial movement of a posterior portion of a mitral valve annulus with the annuloplasty ring installed on a mitral valve annulus and depicted in
Another aspect is a method of making an annuloplasty ring. The method includes providing a length of a close-coiled spring. A pre-formed stiffener is inserted into a cavity formed by the spring coils and axial movement of the stiffener within the cavity is prevented. The close-coiled spring is formed into a ring by securing the ends of the length of close-coiled spring together. A ribbon of suturable material is provided and formed into a ring by securing its ends together. The close-coiled spring formed into a ring is placed into contact with the ring of suturable material and the ring of suturable material is formed into a ring surrounding the close-coiled spring. The method may further include securing the close-coiled spring to the tube to prevent circumferential movement of the close-coiled spring within the tube. The method may further include inserting the close-coiled spring within an elastomeric tube. An elastomeric core may be inserted into the cavity formed by the spring coils with the elastomeric core having a length sufficient such that, with the spring formed in the ring, the elastomeric core prevents axial movement of the stiffener within the cavity.
Yet another aspect is an annuloplasty ring band comprising an elongate tube of suturable material. A stiffener configured to prevent axial compression and to resist radial deformation of the ring is formed into a C-shape and sized and shaped to conform to a posterior portion of a mitral valve annulus extending between left and right trigones of the mitral valve annulus. The stiffener may comprise a close-coiled spring and a metal wire axially received in a lengthwise cavity of the close-coiled spring. A cap of a circular cross section with a chamfered edge may be provided at each end of the softener with the caps being configured to prevent the stiffener ends from protruding through the suturable material. The metal wire may be made of a bio-compatible metal having a diameter in a range of 0.015 and 0.050 inches. The bio-compatible metal may be a Carpenter MP35N alloy.
The semi-rigid annuloplasty ring in accordance with the present embodiments provides a circumferential segment for providing desired axial rigidity while resisting radial deformation and an axiaily rigid and radially flexible circumferential segment which is conformable to valve anatomy when such conformity is required. In the particular application of an annuloplasty ring for a mitral valve repair, an annuloplasty ring in accordance with the present embodiments provides a posterior portion which is axiaily rigid while resisting radial deformation attachable to the mitral valve annulus between the left and right fibrous trigones and an axially rigid but radially flexible anterior segment attachable to the anterior portion of the mitral valve. The flexible annular portion can accommodate bowing of the anterior annulus out of the normal plane of the annulus into the left atrium as a result of aortic pressure during systole of a normally beating heart. The axial stiffness of the anterior segment prevents bunching of the annuloplasty ring suturable material cover during implantation and subsequent implantation suture tying. The semi-rigid annuloplasty band provides many of the advantages of the semi-rigid annuloplasty ring and meets the needs of surgeons that prefer a band with no anterior segment to the ring having an axially rigid and radially flexible circumferential posterior segment.
Unless otherwise indicated, all numbers expressing quantities of ingredients, dimensions reaction conditions and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about”.
In this application and the claims, the use of the singular includes the plural unless specifically stated otherwise. In addition, use of “or” means “and/or” unless stated otherwise. Moreover, the use of the term “including”, as well as other forms, such as “includes” and “included ”, is not limiting. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one unit unless specifically stated otherwise.
A semi-rigid annuloplasty ring 10 is shown in a plan view in
Various markers may be provided on the suturable material to aid a surgeon during installation of the semi-rigid annuloplasty ring 10 onto a valve annulus. For example, the embodiment illustrated in
Within the semi-rigid annuloplasty ring 10 resides a stiffener assembly 28. The stiffener assembly 28 is best viewed in
In the second circumferential segment a silicone rubber core 40 is received in the spring cavity. The silicone rubber core 40 act primarily as stop to prevent circumferential migration of the stiffener wire 38 within the spring cavity. The silicone rubber core 40 also enables the spring of second circumferential segment 36 to prevent axial compression while permitting substantially free radial deformation. As seen in the embodiment illustrated in
In an embodiment where the stiffener assembly 28 is to be used in a semi-rigid annuloplasty ring for mitral valve repair, the first circumferential segment 34 is configured to correspond in shape and size to a posterior portion of the mitral valve annulus with the first circumferential segment 34 extending between the right and left fibrous trigones on installation. The second circumferential segment 36 is configured to correspond to an anterior portion of a mitral valve annulus and the second circumferential segments 36 extends between the right and left fibrous trigones of a mitral annulus upon installation.
The tube of suturable material 12 may he formed in a manner discussed in the Wright '279 patent. With the suturable material formed into a ring having a V-cross section, the stiffener assembly 28 is placed therein with tack stitches 46 (see
Referring again to
Various embodiments of the disclosure could also include permutations of the various elements recited in the claims as if each dependent claim was a multiple dependent claim incorporating the limitations of each of the preceding dependent claims as well as the independent claims. Such permutations are expressly within the scope of this disclosure.
While the invention has been particularly shown and described with reference to a number of embodiments, it would be understood by those skilled in the art that changes in the form and details may be made to the various embodiments disclosed herein without departing from the spirit and scope of the invention and that the various embodiments disclosed herein are not intended to act as limitations on the scope of the claims. All references cited herein are incorporated in their entirety by reference.
This application is a Division of and claims the benefit of U.S. patent application Ser. No. 12/643,073 filed Dec. 21, 2009, now U.S. Pat. No. 8,556,965, issued Oct. 15, 2013, which claims priority from U.S. Provisional Patent Application Ser. No. 61/238,944, filed Dec. 31, 2008, entitled “Semi-Rigid Annuloplasty Ring and Band,” which is hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5201880 | Wright | Apr 1993 | A |
5306296 | Wright | Apr 1994 | A |
5674279 | Wright | Oct 1997 | A |
5843178 | Vanney et al. | Dec 1998 | A |
6143024 | Campbell | Nov 2000 | A |
6187040 | Wright | Feb 2001 | B1 |
6955689 | Ryan | Oct 2005 | B2 |
7485142 | Milo | Feb 2009 | B2 |
7546993 | Walker | Jun 2009 | B1 |
7699892 | Rafiee et al. | Apr 2010 | B2 |
7731138 | Wiesner | Jun 2010 | B2 |
8123801 | Milo | Feb 2012 | B2 |
8353956 | Miller et al. | Jan 2013 | B2 |
8382828 | Roberts | Feb 2013 | B2 |
8556965 | Wright | Oct 2013 | B2 |
8858623 | Miller et al. | Oct 2014 | B2 |
20040236419 | Milo | Nov 2004 | A1 |
20050288778 | Shaoulian et al. | Dec 2005 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060278785 | Wiesner | Dec 2006 | A1 |
20070067028 | Wright | Mar 2007 | A1 |
20070179603 | Wright | Aug 2007 | A1 |
20070299513 | Ryan et al. | Dec 2007 | A1 |
20080065204 | Macoviak et al. | Mar 2008 | A1 |
20080086203 | Roberts | Apr 2008 | A1 |
20080208331 | McCarthy | Aug 2008 | A1 |
20090177277 | Milo | Jul 2009 | A1 |
20100168845 | Wright | Jul 2010 | A1 |
20100211166 | Miller et al. | Aug 2010 | A1 |
20110166649 | Gross et al. | Jul 2011 | A1 |
20110190879 | Bobo et al. | Aug 2011 | A1 |
20130030523 | Padala et al. | Jan 2013 | A1 |
20130116780 | Miller et al. | May 2013 | A1 |
20130131792 | Miller et al. | May 2013 | A1 |
20130190864 | Smolinsky | Jul 2013 | A1 |
20130204361 | Adams et al. | Aug 2013 | A1 |
20130226289 | Shaolian et al. | Aug 2013 | A1 |
20140013602 | Wright | Jan 2014 | A1 |
20140114409 | Green et al. | Apr 2014 | A1 |
20140277420 | Migliazza et al. | Sep 2014 | A1 |
20150081014 | Gross et al. | Mar 2015 | A1 |
Entry |
---|
International Search Report from PCT/US2009/069040, dated Aug. 17, 2010. |
Number | Date | Country | |
---|---|---|---|
20140013602 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61142073 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12643073 | Dec 2009 | US |
Child | 14028909 | US |