This invention relates to semi-solid molding method and apparatus of the type disclosed in U.S. Pat. No. 6,808,004 and No. 6,901,991 which issued to the assignee of the present invention and the disclosures of which are herein incorporated by reference. The vertical die cast press and the method of using the press for semi-solid molding of metal alloys, as disclosed in these patents, utilizes a shallow shot chamber defined by a water cooled sleeve and a water cooled piston moveable vertically within the sleeve. The '991 patent also discloses the use of an extendable and retractable cooling pin within a central portion of the shot piston which is actuated or moved on its vertical axis by a hydraulic cylinder.
When the vertical die cast press is used fordeveloping a semi-solid slurry within the shot chamber, it is desirable for the slurry to have a uniform consistency or percentage of solids throughout the shot chamber before the slurry is injected or transferred upwardly into the cavity defined by the die set supported above the shot chamber. It is also desirable to minimize the time required to develop the uniform semi-solid slurry within the shot chamber in order to minimize the total cycle time required for molding the slurry into a high strength metal part such as an aluminum vehicle wheel.
As the molten metal within the shot chamber is cooled by the water cooled shot sleeve and the water cooled piston, the more solidified portion of the slurry adjacent the inner surface of the cooling shot sleeve produces a liner or “can” of more solidified metal adjacent the shot sleeve. As disclosed in the above- mentioned patents, this can is trapped by an annular entrapment recess above the shot chamber and opposing the can so that the can collapses and is prevented from flowing inwardly into the more liquid semi-solid metal as it is transferred into the die cavity. However, it has been found desirable to circulate at least some of the cooled pre-solidified metal adjacent the shot sleeve wall and adjacent the top surface of the piston with the more liquified metal so that the uniform slurry is produced more quickly and a greater percentage of the semi-solid metal within the shot chamber is transferred from the shot chamber into the die cavity. A thinner metal can also requires a lesser force to move the shot piston upwardly since there is less pre-solidified can metal to crush into the entrapment recess.
The present invention is directed to an improved method and apparatus for more efficiently producing high strength metal parts from a semi-solid metal and which provides all of the desirable advantages mentioned above. The method and apparatus especially provides for significantly reducing the cycle time for producing a metal part from a semi-solid metal in addition to providing for more uniformity of the grain structure throughout the part. In accordance with the illustrated embodiment of the invention, a vertical die cast press includes a water cooled shot sleeve surrounding a water cooled shot piston movable axially or vertically within the shot sleeve. The shot sleeve and shot piston cooperate to define a shot chamber, and molten metal, such as a molten aluminum alloy, is poured into the shot chamber. A homogenizing member is supported by a multiple axis robot and is inserted into the molten metal within the shot chamber and moved by the robot along an orbital and rotating path for moving the more solidified semi-solid metal adjacent the shot sleeve and shot piston into a more liquified semi-solid metal within a central portion of the shot chamber for more quickly producing a generally homogeneous semi-solid slurry.
The homogenizing member is retracted by the robot, and a die set is positioned over the shot chamber. The shot piston is then moved upwardly by a hydraulic cylinder to transfer the slurry from the shot chamber into a die cavity defined by the die set above the shot chamber. In the embodiment illustrated, the homogenizing member may include a vertical shaft supporting a plurality of radially outwardly projecting L-shaped arms. The arms are maintained under the surface of the semi-solid metal and slurry while the shaft and arms are simultaneously rotated and orbited about the shot chamber at a predetermined RPM.
Other features and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.
Referring to
As also disclosed in the above '991 Patent, the central portion of the shot piston 35 supports an axially extendable and retractable cooling pin 46, and the lower flange portion of the shot piston 35 is secured by circumferentially spaced screws 49 to an annular coupling member 52 having a bottom flange secured by circumferentially spaced screws 54 to a circular plate 56 mounted on the upper end of the piston of a hydraulically actuating injection cylinder. The annular coupling member 52 defines an internal cylindrical bore 58, and a bottom flange of the cooling pin 46 is secured by circumferentially spaced screws to a cylindrical bushing 63 which slides vertically within the bore 58. The cooling pin 46 is extended upwardly and retracted downwardly by a fluid actuating cylinder 65 including a piston 67 having a piston rod 68 with an upper end portion secured to the bushing 63. Cooling fluid or water is supplied to and circulated through the cooling passages 44 and through the passages within the cooling pin 46 by lines 71 connected to a fluid manifold block 72 mounted on the coupling member 52 for vertical movement with the shot piston 35. Cooling fluid or water is also circulated through the passages 32 within the shot sleeve 25 by lines 73 (
The internal surface 33 of the shot sleeve 25 and the top surface of the shot piston head portion 34 define a shot chamber 80 which preferably has a horizontal width substantially greater than its vertical depth, as shown in
The robot 15 is programmed to insert the homogenizing member 85 quickly into the molten metal or aluminum within the shot chamber 80 and then orbit the homogenizing member in an orbital path 98 shown in
Preferably, the torque or forces and moments required to rotate and orbit the homogenizing member 85 are monitored or measured while the homogenizing member 85 is rotated and orbited within the semi-solid slurry. As the slurry thickens, the torque increases so that the torque corresponds to the solid fraction content of the slurry. When the torque reaches and maintains a predetermined level for a predetermined period of time, the homogenizing process is stopped. The homogenizing member 85 is then quickly retracted from the slurry by the robot 15 and moved laterally away from the shot sleeve 25. The shot sleeve 25 and the die set (not shown) may then be quickly brought together either by moving the shot sleeve to the die set or by moving the die set to the shot sleeve. The slurry is then injected upwardly into the die cavity by upward movement of the shot piston 35. The torque or forces and moments required to rotate and orbit the homogenizing member 85 may be monitored by sensing electrical current to the robot motors or by a load cell with strain gauges connected to rotational shafts of the robot. One form of six axis force sensor for a robot is disclosed in U.S. Pat. No. 5,490,427, the disclosure of which is herein incorporated by reference.
The programmed movement of the homogenizing head or member 85 within the molten metal in the shot chamber 80 along the rotational and orbital path shown in
A more homogenous slurry and a reduction of the formation of pre-solidified metal adjacent the inner surface of the shot sleeve and on the top surface of the shot piston, also provide for reducing the volume of molten metal that is poured into the shot chamber 80 to cast a part since a greater percentage of the poured volume of molten metal is used to produce the part. The development of the semi-solid slurry entirely within the shot chamber also contributes to minimizing the poured volume of molten metal to produce the part with the semi-solid slurry.
The use of the six axes programmable robot 15 for moving or simultaneously rotating and orbiting a homogenizing member also provides for adjustably selecting a path and speed which provide the desired semi-solid slurry with a uniform consistency of solids within a minimum time period. As mentioned above, by maintaining the upper ends of the end or tip portions 96 of the homogenizing member 85 below the surface 82 of the molten metal also maintains the metal at the surface more quiescent and minimizes the volume of molten metal that sticks or adheres to the arms 94. This minimizes the metal that must be removed from the homogenizing member between operating cycles. Thus the production efficiency of high strength metal parts, such as aluminum wheels, with the vertical die cast press 10 and the programmable movement of the homogenizing member 85 by the robot 15, is significantly increased. For example, twenty pounds of molten A356 aluminum alloy poured into a ten inch diameter shot chamber 80 to a depth of three inches may be homogenized to the desired percentage of solids in about twenty five seconds.
While the method and form of apparatus herein described constitutes a preferred embodiment of the invention, it is to be understood that the invention is not limited to the precise method and apparatus described, and that changes may be made therein without departing from the scope and spirit of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5490427 | Yee et al. | Feb 1996 | A |
5564312 | Brunman et al. | Oct 1996 | A |
5887640 | Brown et al. | Mar 1999 | A |
5931047 | Ellqvist et al. | Aug 1999 | A |
6250174 | Terada et al. | Jun 2001 | B1 |
6808004 | Kamm et al. | Oct 2004 | B2 |
6901991 | Kamm et al. | Jun 2005 | B2 |
20030141033 | Kamm et al. | Jul 2003 | A1 |
20030196775 | Kamm et al. | Oct 2003 | A1 |
20040055726 | Hong et al. | Mar 2004 | A1 |
20050279479 | Han et al. | Dec 2005 | A1 |
20060151137 | Kuroki et al. | Jul 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070204968 A1 | Sep 2007 | US |