The present invention relates to semiconductor apparatuses having a power supply circuit whose output voltage is varied depending on the duty cycle of a voltage setting signal.
In a semiconductor apparatus with a built-in power supply circuit for LEDs used as a backlight of an LCD panel of a cellular phone, for example, the size of IC packaging should be minimized in order to reduce the size of the apparatus. Thus, it is important to reduce the number of terminals used in an IC package. In one method, the number of such terminals may be reduced by assigning multiple functions to a single IC terminal.
For example, in a conventional semiconductor apparatus, a clock signal is supplied to a triangular wave oscillating circuit via a clock signal input terminal, which is an external terminal of the semiconductor apparatus, to generate a triangular wave voltage used for the PWM (pulse wave modulation) control of a switching regulator (see Japanese Laid-Open Patent Application No. 2006-101663, for example). The clock signal is also supplied to a clock pulse detection circuit. The clock pulse detection circuit generates a standby signal if the clock signal remains at a low level for a certain duration of time, thereby terminating the operation of the switching regulator. Thus, the clock signal input terminal doubles as a standby signal input terminal of the switching regulator. However, such a system cannot be utilized when the clock signal of the triangular wave oscillating circuit is generated within the semiconductor apparatus.
Thus, there is a need for a semiconductor apparatus including a power supply circuit, such as a switching regulator, having a reduced number of terminals, wherein a clock signal of a triangular wave oscillating circuit is generated within the semiconductor apparatus. There is also a need for a method of controlling an operation of such a semiconductor apparatus.
In one aspect of the present invention, a semiconductor apparatus includes an input terminal to which an input voltage is applied; an output terminal at which an output voltage is obtained; a power supply circuit unit configured to generate the output voltage from the input voltage, the output voltage having a value corresponding to a duty cycle of a voltage setting signal that is externally applied to the semiconductor apparatus; and a determination circuit unit configured to determine whether the voltage setting signal has a predetermined signal level for the duration of a first predetermined time or longer. The determination circuit unit, when it determines that the voltage setting signal does not have the predetermined signal level for the duration of the first predetermined time or longer, activates the power supply circuit unit, and deactivates the power supply circuit unit when it determines that the voltage setting signal has the predetermined signal level for the duration of the first predetermined time or longer.
In another aspect of the present invention, a method of controlling an operation of a semiconductor apparatus includes generating an output voltage at an output terminal of the semiconductor apparatus from an input voltage applied to an input terminal of the semiconductor apparatus, the output voltage having a value corresponding to a duty cycle of a voltage setting signal externally applied to the semiconductor apparatus; determining whether the voltage setting signal has a predetermined signal level for the duration of a first predetermined time or longer; supplying the output voltage to the output terminal of the semiconductor apparatus when the determining step determines that the voltage setting signal does not have the predetermined signal level for the duration of the first predetermined time or longer; and not supplying the output voltage to the output terminal when the determining step determines that the voltage setting signal has the predetermined signal level for the duration of the first predetermined time or longer.
Other objects, features and advantages of the present invention will become apparent upon consideration of the specification and the appendant drawings, in which:
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, embodiments of the present invention are described.
The power supply circuit 2 produces an output voltage Vout in accordance with the duty cycle of the voltage setting signal Vset, and outputs the output voltage Vout via the output terminal OUT. The determination circuit 3 determines whether a period of the voltage setting signal Vset at a low level or a high level exceeds a first predetermined time. If the determination circuit 3 determines that the period is less than the first predetermined time, it outputs a high-level enable signal EN, thereby activating the power supply circuit 2. If it determines that the period of the voltage setting signal Vset at either the low level or the high level is equal to or more than the first predetermined time, the determination circuit 3 outputs a low-level enable signal EN, which functions as a disable signal, thereby terminating the operation of the power supply circuit 2.
The input end of the duty/voltage converting circuit 11 is connected to the voltage setting signal input terminal SETi. The output end of the duty/voltage converting circuit 11 is connected to a non-inverting input end of the error amplifying circuit 12. An inverting input end of the error amplifying circuit 12 is connected to the feedback terminal FB so that a feedback voltage Vfb is applied to the inverting input end of the error amplifying circuit 12. The resistor R1 is connected between the feedback terminal FB and ground GND. The output end of the error amplifying circuit 12 is connected to a non-inverting input end of the PWM comparator 13. An inverting input end of the PWM comparator 13 receives the triangular wave voltage Vt from the triangular wave oscillating circuit 14. The output end of the PWM comparator 13 is connected to the gate of the switching transistor M1 via the buffer circuit 15.
The source of the switching transistor M1 is connected to ground GND. The inductor L1 is connected between the input voltage Vin and the drain of the switching transistor M1. The anode of the diode D1 is connected to the drain of the switching transistor M1. The cathode of the diode D1 is connected to the output terminal OUT. Between the output terminal OUT and ground GND, the output capacitor C1 is connected. Between the output terminal OUT and the feedback terminal FB, the LEDs 1 and 2 are connected in series.
The duty/voltage converting circuit 11 converts the duty cycle of the input voltage setting signal Vset into a voltage and outputs it as a reference voltage Vr.
The combination of the resistor R2 and the capacitor C2 and the combination of the resistor R3 and the capacitor C3 each form a low-pass filter. Thus, the output signal of the inverter circuit 16 is fed to the two stages of low-pass filters connected in series to generate the reference voltage Vr at the output.
Referring back to
The inverting input end of the PWM comparator 13 receives the triangular wave voltage Vt from the triangular wave oscillating circuit 14. The PWM comparator 13 outputs a high level signal in a period in which the triangular wave voltage Vt is lower than the error voltage Ve. The high-level signal is applied via the buffer circuit 15 to the gate of the switching transistor M1, thereby turning on the switching transistor M1. In response, a current flows from the power supply input terminal IN via the inductor L1 and the switching transistor M1 to ground GND, whereby energy is stored in the inductor L1.
When the triangular wave voltage Vt is equal to or higher than the error voltage Ve, the PWM comparator 13 outputs a low level signal, so that the switching transistor M1 turns off. As a result, the current supply to the inductor L1 is blocked, and a back electromotive force is produced in the inductor L1. Consequently, the voltage at the connecting portion between the inductor L1 and the drain of the switching transistor M1 becomes higher than the input voltage Vin. The output capacitor C1 is charged by the higher voltage at the connecting portion via the diode D1, and the output voltage Vout is stepped up to a voltage higher than the input voltage Vin.
Thus, because the power supply circuit 2 controls the output voltage Vout such that the feedback voltage Vfb is substantially equal to the reference voltage Vr, the current supplied to the LEDs 1 and 2 can be changed by varying the reference voltage Vr. Thus, the illuminance of the LEDs 1 and 2 can be adjusted by the reference voltage Vr. Although not shown in
The source of the PMOS transistor M21 is connected to the input voltage Vin. The depletion-type NMOS transistor M22 is connected between the drain of the PMOS transistor M21 and ground GND. The gate of the PMOS transistor M21 is connected to the gate of the depletion-type NMOS transistor M22, and the connecting portion of the gates is connected to ground GND. The resistor R21 is connected between the drain of the PMOS transistor M21 and the gate of the PMOS transistor M23. The capacitor C21 is connected between the gate of the PMOS transistor M23 and ground GND.
The PMOS transistor M23 and the resistor R22 are connected in parallel between the input voltage Vin and a positive power supply input end of the inverter circuit 21. The input end of the inverter circuit 21 receives the voltage setting signal Vset. The capacitor C22 is connected between the output end of the inverter circuit 21 and ground GND. The output end of the inverter circuit 21 is connected to the input end of the inverter circuit 22. Between the input voltage Vin and the input end of the inverter circuit 22, the PMOS transistors M24 and M25 are connected in series. The gate of the PMOS transistor M24 receives the voltage setting signal Vset. The gate of the PMOS transistor M25 is connected to the output end of the inverter circuit 22. The output end of the inverter circuit 22 is connected to the input end of the inverter circuit 23. The output end of the inverter circuit 23 is connected to the input end of the inverter circuit 24. The output end of the inverter circuit 24 constitutes the output end of the determination circuit 3, where the enable signal EN is obtained.
Referring to the timing chart of
The voltage setting signal Vset remains at the low level for a while following the input of the input voltage Vin, as depicted in
Because the input voltage to the inverter circuit 22 is the voltage VC at the connecting portion C, a high level signal is applied to the input end of the inverter circuit 22. Thus, the inverter circuit 22 outputs a low level signal, which is applied to the gate of the PMOS transistor M25. As a result, the PMOS transistor M25 turns on. Because the gate of the PMOS transistor M24 is supplied with the voltage setting signal Vset, the PMOS transistor M24 is also on. Thus, the connecting portion C is connected to the input voltage Vin via the PMOS transistors M24 and M25. As a result, the connecting portion C has the high level simultaneously with the input of the input voltage Vin due to the output signal of the inverter circuit 21 and the PMOS transistors M24 and M25.
The inverter circuit 22 outputs a low level signal as mentioned above, so that the inverter circuit 23 outputs a high level signal and the inverter circuit 24 outputs a low level signal. Thus, the enable signal EN as the output signal of the determination circuit 3 is at the low level. The low-level enable signal EN acts as a disable signal and as such disables the power supply circuit 2. In other words, immediately after the input of the input voltage Vin, the determination circuit 3 outputs a disable signal and the power supply circuit 2 does not operate. Then, at time t1, the voltage VB at the connecting portion B exceeds the threshold voltage V1 of the PMOS transistor M23 to turn off the PMOS transistor M23. Consequently, only the resistor R22 is connected between the power supply input end of the inverter circuit 21 and the power supply input terminal IN.
At time t2, the voltage setting signal Vset assumes the high level and the PMOS transistor M24 turns off, thereby terminating the connection between the connecting portion C and the input voltage Vin. Further, the inverter circuit 21 outputs a low level signal via the output end of the inverter circuit 21, so that the capacitor C22 is quickly discharged, resulting in the connecting portion C having the low level. The low level signal is output via the inverter circuits 22 through 24, and therefore the enable signal EN as the output signal of the determination circuit 3 assumes the high level. As a result, the power supply circuit 2 starts operating. In this case, the PMOS transistor M25 is turned off because the inverter circuit 22 outputs a high level signal.
At time t3, the voltage setting signal Vset returns to the low level, and the output signal of the inverter circuit 21 tends to reach the high level. However, the rate of increase of the voltage VC is extremely low because the PMOS transistor M23 is off and the capacitor C22 is charged through the resistor R22. At this time, although the PMOS transistor M24 turns on, the output signal of the inverter circuit 22 remains at the high level. Thus, the PMOS transistor M25 is off so that it does not provide connection between the input voltage Vin and the connecting portion C. As a result, the voltage VC does not reach the input threshold voltage V2 of the inverter circuit 22 before the voltage setting signal Vset next assumes the high level, and therefore the enable signal EN remains at the high level. Thereafter, the high-level enable signal EN is continuously output as long as the voltage setting signal Vset repeats between the high and low levels or remains at the high level.
Next, at time t4, as the voltage setting signal Vset assumes the low level and remains at the low level, the voltage VC begins to increase. At time t5, the voltage VC exceeds the input threshold voltage V2 of the inverter circuit 22, and the output signal of the inverter circuit 22 is inverted to the low level. Then, the enable signal EN returns to the low level and becomes a disable signal, terminating the operation of the power supply circuit 2. Further, the PMOS transistor M25 turns on. The PMOS transistor M24 had already turned on when the voltage setting signal Vset assumed the low level. Thus, both the PMOS transistors M24 and M25 are on to connect the connecting portion C to the input voltage Vin and the voltage VC immediately rises to the input voltage Vin.
The status after time t5 is the same as that between time t1 and time t2. Namely, when the voltage setting signal Vset assumes the high level again, the same operation as described above with reference to time t2 is performed, whereby the enable signal EN is output and the power supply circuit 2 is activated. The depletion-type NMOS transistor M22 functions to quickly discharge the capacitor C21 through the resistor R21 upon termination of application of the input voltage Vin.
In the foregoing description, the output voltage Vout is varied depending on the duty cycle of the high level of the voltage setting signal Vset. Alternatively, the output voltage Vout may be varied depending on the duty cycle of the low level of the voltage setting signal Vset. In this case, the operation of the power supply circuit 2 may be terminated by the enable signal EN that is output when the voltage setting signal Vset has the high level for a predetermined time.
It has also been described with reference to
Referring to
When the voltage setting signal Vset has the high level, the capacitor C22 is quickly discharged, so that the voltage VC at the connecting portion C quickly decreases to the low level. As a result, the signal ENB has the low level and the PMOS transistor M21 turns on. The capacitor C21 is then quickly charged and the connecting portion B has the high level, so that the PMOS transistor M23 turns off. Because the enable signal EN has the high level, the power supply circuit 2 starts operating.
When the voltage setting signal Vset has the low level, because the PMOS transistor M23 is off, the inverter circuit 21 is supplied with power via the resistor R22, and the charge time of the capacitor C22 is extended. Unless the connecting portion C has the high level within the period in which the voltage setting signal Vset has the low level, the signal ENB maintains the low level and the enable signal EN maintains the high level, so that the power supply circuit 2 keeps operating.
In the circuit of
Thus, in accordance with the first embodiment of the present invention, the determination circuit 3 of the semiconductor apparatus determines whether the voltage setting signal Vset is applied. If it determines the presence of the voltage setting signal Vset, the determination circuit 3 outputs a high-level enable signal EN to activate the power supply circuit 2. On the other hand, if it determines that the voltage setting signal Vset is not present, the determination circuit 3 outputs a low-level enable signal EN to disable the operation of the power supply circuit 2. In this way, the need for providing a separate external terminal to the semiconductor apparatus for the input of the enable signal can be eliminated, thus reducing the number of terminals of the semiconductor apparatus.
The determination circuit 3 outputs a disable signal to the power supply circuit 2 in a second predetermined time between time t0 immediately after the input of the input voltage Vin and time t1. Therefore, activation of the power supply circuit 2 before the output of the voltage setting signal Vset can be prevented, thereby preventing the output of an erroneous output voltage Vout. Furthermore, up to 100% of the duty cycle of the voltage setting signal Vset can be utilized.
In the foregoing description of the first embodiment, the power supply circuit 2 has been described as being a step-up switching regulator of the asynchronous rectification type. However, this is merely an example; alternatively, the power supply circuit 2 may be a step-up switching regulator of the synchronous rectification type. In this case, the diode D1 may be replaced with a PMOS transistor for synchronous rectification, and the gate of the synchronous rectification transistor may be supplied with a gate signal of the switching transistor M1 having an inverted signal level, so that the synchronous rectification transistor performs an opposite switching operation to the switching transistor M1.
In an embodiment, the power supply circuit 2 may be a step-down switching regulator or an inverting switching regulator, rather than a step-up switching regulator as in the first embodiment. In another embodiment, the power supply circuit 2 may include a linear regulator, such as a series regulator. In this case, the power supply circuit 2 may include an output transistor for controlling the output voltage Vout by performing an operation in accordance with a control signal applied to a control electrode, wherein the error amplifying circuit 12 is configured to amplify a voltage difference between the reference voltage Vr from the duty/voltage converting circuit 11 and the feedback voltage Vfb that is in proportion to the output voltage Vout. Based on the error voltage Ve produced by the error amplifying circuit 12, the current output of the output transistor may be controlled so that the output voltage Vout remains at a predetermined voltage.
Although this invention has been described in detail with reference to certain embodiments, variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.
The present application is based on the Japanese Priority Application No. 2009-064448 filed Mar. 17, 2009, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2009-064448 | Mar 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/000129 | 1/13/2010 | WO | 00 | 9/14/2011 |