Semiconductor composite sensor

Information

  • Patent Grant
  • 6211772
  • Patent Number
    6,211,772
  • Date Filed
    Friday, September 5, 1997
    26 years ago
  • Date Issued
    Tuesday, April 3, 2001
    23 years ago
Abstract
A semiconductor composite sensor using a plurality of semiconductor piezoresistive gauge elements connected in series. The piezoresistive elements are separated so that a high potential terminal of one of the resistive elements having the same resistance values and the substrate of the other of the resistive elements will be connected with equal potential values. Potential difference values between semiconductor regions serving as respective resistive elements and the substrates are made equal.
Description




BACKGROUND OF THE INVENTION




The present invention relates to sensors for detecting the flow rate or pressure in chemical plants, iron mills and power plants, and in particular to highly reliable semiconductor composite sensors which continue to have high accuracy even if they are used for a long period of time.




As pressure sensors using the piezoresistance effect of silicon, various techniques have been proposed heretofore.




For example, two piezoresistive elements formed in the same n-type semiconductor region subjected to p-n separation are known as described in “Miniature Piezoresistive Strain and Pressure Sensors with On-Chip Circuitry,” by Susumu Sugiyama et al., PROCEEDINGS OF THE 3RD SENSOR SYMPOSIUM (1983).




As another example of a conventional technique, a similar structure is disclosed in JP-A-3-76139 (UM) as well. Furthermore, a semiconductor pressure sensor based upon the piezoresistance effect is disclosed in JP-B-60-32993 as well, which corresponds to U.S. patent application Ser. No. 619,866 filed on Oct. 6, 1975.




SUMMARY OF THE INVENTION




In theses techniques, however, two piezoresistive elements are connected in series in an n-type substrate having the same potential. Therefore, the potential difference between the resistance region and the substrate differs from piezoresistive element to piezoresistive element. Due to the difference in influence of the potential of the substrate exerted upon the resistance region, it was difficult to realize the same resistance value.




An object of the present invention is to provide a semiconductor composite sensor capable of having high accuracy and high reliability.




In accordance with the present invention, a semiconductor composite sensor includes at least two piezoresistive elements connected together, the two piezoresistive elements being identical in shape, and semiconductor regions having respective individual potential values and respectively surrounding the two piezoresistive elements, potential difference values between the two piezoresistive elements and the semiconductor regions being respectively made constant.




In order to provide two semiconductor regions with respective indidividual potential values, the semiconductor regions are disposed so as not to cause electric interference between the semiconductor regions and the semiconductor regions are supplied respectively with voltages from different supply sources.




In forming a bridge circuit by using the above described piezoresistive elements, at least two piezoelectric elements connected in series are made identical in shape, and a semiconductor region surrounding one piezoresistive element located on the voltage supply source side is supplied with the voltage of the voltage supply source whereas a semiconductor region surrounding the other piezoresistive element is supplied with the voltage of the voltage supply source minus a voltage drop across the piezoresistive element located on the voltage supply source side.




When at least two identical piezoresistive elements are to be connected in series, they are disposed so as to be covered by electrodes located on the negative side of the piezoresistive elements or electrodes located on the positive side of the piezoresistive elements. If one piezoresistive element is covered by an electrode of negative side at this time, the other piezoresistive element is also covered by an electrode of negative side. The same holds true for the electrodes of positive sides as well.




According to the present invention, semiconductor regions surrounding two or more piezoresistive elements are provided for respective piezoresistive elements and semiconductor regions are disposed so as not to cause mutual electric interference. Therefore, each semiconductor region is able to have an individual potential. No matter what potential each piezoresistive element has, therefore, the reverse bias voltage between the piezoresistive element and the semiconductor region can be made equal by making the potential difference with respect to each semiconductor region surrounding each piezoresistive element constant. Therefore, the width of a depletion layer appearing between the piezoresistive element and the semiconductor region can be made identical. That is to say, the width of the depletion layer interferring with the piezoresistive element can also be made constant. Especially when the same resistive elements are used, therefore, a change of resistance caused by influence of the depletion layer can be made constant.




According to the present invention, an input or output terminal electrode of piezoresistive elements is disposed so as to cover each of two identical piezoresistive elements connected in series. Therefore, accumulation layers are formed between the electrodes and the piezoresistive elements. Voltage drop values across two piezoresistive elements and influence of electrodes exerted upon piezoresistive elements can be made constant. The width of the appearing accumulation layers can be made constant. With respect to the electric influence of the surface of the semiconductor layer, therefore, the electrodes serve as shields and changes of piezoresistive elements caused by influence of the accumulation layers can be made constant.




According to the present invention, when a bridge circuit is formed by uisng four piezoresistive elements, at least two piezoresistive elements connected in series in the bridge circuit are made identical. Potential difference values with respect to semiconductor regions respectively surrounding two piezoresistive elements are made equal by applying a voltage equal to a voltage applied to a piezoresistive element located on an electrically positive side to a semiconductor region surrounding the piezoresistive element of the positive side and included in two semiconductor regions and applying the voltage applied to the positive side minus a voltage drop across the piezoresistive element of positive side to a semiconductor region surrounding a piezoresistive element of negative side.




Thus, a semiconductor composite sensor having not only high accuracy but also high reliability and a reduced output drift is obtained. Furthermore, in forming a bridge, all piezoresistive elements, semiconductor regions surrounding the piezoresistive elements, and electrodes disposed on the piezoresistive elements are made identical and subjected to the same voltage condition. By doing so, all resistance values can be made equal under any condition and environment of use. Therefore, an output correction circuit becomes unnecessary, and a highly accurate, highly reliable semiconductor composite sensor is obtained.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a sectional view showing a first embodiment of the present invention;





FIG. 2

is a sectional view showing an example of application of the first embodiment of the present invention;





FIG. 3

is a circuit diagram showing an example of application of the first embodiment of the present invention;





FIG. 4

is a diagram illustrating the operation of the first embodiment of the present invention;





FIG. 5

is a diagram illustrating the operation of the first embodiment of the present invention in detail;





FIG. 6

is an energy band diagram on a p-layer surface of the first embodiment of the present invention;





FIG. 7

is an energy band diagram on an n-layer surface of the first embodiment of the present invention;





FIG. 8

is a diagram illustrating the operation in the case where the first embodiment of the present invention is not applied;





FIG. 9

is a detailed diagram illustrating the operation in the case where a reverse bias voltage is high in

FIG. 8

;





FIG. 10

is a detailed diagram illustrating the operation in the case where the reverse bias voltage is low in

FIG. 8

;





FIGS. 11A through 11J

are sectional views showing the fabrication process of the first embodiment shown in

FIG. 1

;





FIG. 12

is a top view of a first resistor element used for the present invention;





FIG. 13

is a top view of a second resistor element used for the present invention;





FIG. 14

is a sectional view showing a second embodiment of the present invention;





FIG. 15

is a sectional view showing a third embodiment of the present invention;





FIG. 16

is a sectional view showing a fourth embodiment of the present invention;





FIG. 17

is a top view showing a first embodiment of a contact portion of a resistive element according to the present invention;





FIG. 18

is a sectional view showing the first embodiment of the contact portion of the resistive element according to the present invention;





FIG. 19

is a top view showing a second embodiment of a contact portion of a resistive element according to the present invention;





FIG. 20

is a sectional view showing the second embodiment of the contact portion of the resistive element according to the present invention;





FIG. 21

is a diagram illustrating the operation of a fifth embodiment of the present invention;





FIG. 22

is a diagram illustrating the operation of the fifth embodiment of the present invention in detail;





FIG. 23

is an energy band diagram on a p-layer surface of the fifth embodiment of the present invention;





FIG. 24

is an energy band diagram on an n-layer surface of the fifth embodiment of the present invention;





FIG. 25

is a diagram illustrating the operation of a sixth embodiment of the present invention;





FIG. 26

is a diagram illustrating the operation in the case where the first or second embodiment has not been applied to

FIG. 25

; and





FIG. 27

shows a differential pressure transmitter having a semiconductor composite sensor of the present invention.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Hereafter, embodiments of the present invention will be described by referring to drawing. Throughout all Figures, like components are denoted by like numerals.





FIG. 1

is a schematic sectional view showing a first embodiment of a semiconductor composite sensor according to the present invention. In

FIG. 1

, numerals


11


through


15


denote n-type semiconductor regions formed on p-type semiconductor regions


31


through


33


. Numerals


51


and


52


denote p-type semiconductor regions functioning as piezoresistive elements. Adjacent to ends of the piezoresistive element


51


, p


+


-type semiconductor regions


41




a


and


41




b


each having a high impurity concentration are formed. Adjacent to ends of the piezoresistive element


52


, p


+


-type semiconductor regions


42




a


and


42




b


each having a high impurity concentration are formed. An n


+


-type semiconductor region


21


having a high impurity concentration is formed so as to surround the outside of the p-type semiconductor region


51


and the p


+


-type semiconductor regions


41




a


and


41




b


via the n-type semiconductor region


11


. An n-type semiconductor region


22


having a high impurity concentration is formed so as to surround the outside of the p-type semiconductor region


52


and the p


+


-type semiconductor regions


42




a


and


42




b


via the n-type semiconductor region


12


. Furthermore, a p


+


-type semiconductor region


61


having a high impurity concentration and featuring the present invention is formed so as to surround the outside of the n


+


-type semiconductor region


21


via the n-type semiconductor region


11


and so as to be linked with p-type semiconductor regions


31


and


32


. A p


+


-type semiconductor region


62


having a high impurity concentration is formed so as to surround the outside of the n


+


-type semiconductor region


22


via the n-type semiconductor region


12


and so as to be linked with the p-type semiconductor region


32


and a p-type semiconductor region


33


. Numerals


81


through


88


denote insulating films each including silicon dioxide or a composite film of silicon dioxide and phosphorus glass formed on the surface of the semiconductor. Openings are provided for these insulating films. On the p


+


-type semiconductor regions


41




a


and


41




b


each having a high impurity concentration, electrodes


71




a


and


71




b


are formed respectively so as to be in ohmic contact with the regions


41




a


and


41




b


, respectively. On the n


+


-type semiconductor region


21


, an electrode


71




c


is formed so as to be in ohmic contact with it. On the p


+


-type semiconductor regions


42




a


and


42




b


each having a high impurity concentration, electrodes


72




a


and


72




b


are formed respectively so as to be in ohmic contact with the regions


42




a


and


42




b


, respectively. On the n


+


-type semiconductor region


22


, an electrode


72




c


is formed so as to be in ohmic contact with it. Furthermore, on the p


+


-type semiconductor region


61


, an electrode


70


is formed so as to be in ohmic contact with it. Numeral


91


denotes an electric conductor. The electric conductor


91


strides over a p-n junction formed by the p


+


-type semiconductor regions


41




a


and


41




b


each having a high impurity concentration and the n-type semiconductor region


11


. The electric conductor


91


also strides over an n


+


-n junction formed by the n


+


-type semiconductor region


21


having a high impurity concentration and the n-type semiconductor region


11


. The electric conductor


91


covers the surface of the n-type semiconductor region


11


sandwiched between the p


+


-type semiconductor region


41




a


or


41




b


and the n


+


-type semiconductor region


21


having a high impurity concentration and covers the surface of the p-type semiconductor region


51


. Furthermore, the electric conductor


91


is electrically connected to the electrode


71




a


. Numeral


92


denotes an electric conductor. The electric conductor


92


strides over a p-n junction formed by the p


+


-type semiconductor regions


42




a


and


42




b


each having a high impurity concentration and the n-type semiconductor region


12


. The electric conductor


92


also strides over an n


+


-n junction formed by the n


+


-type semiconductor region


22


having a high impurity concentration and the n-type semiconductor region


12


. The electric conductor


92


covers the surface of the n-type semiconductor region


12


sandwiched between the p


+


-type semiconductor region


42




a


or


42




b


and the n


+


-type semiconductor region


22


having a high impurity concentration and covers the surface of the p-type semiconductor region


52


. Furthermore, the electric conductor


92


is electrically connected to the electrode


72




a


. Furthermore, an electrode terminal


101


is taken out from the electrode


71




a


. The electrodes


71




b


,


71




c


and


72




a


are electrically connected together, and an electrode terminal


103


is taken out from them. The electrodes


72




b


and


72




c


are electrically connected together, and an electrode terminal


102


is taken out from them. Thus, the p-type semiconductor regions


51


and


52


functioning as piezoresistive elements are connected in series between the electrode terminals


101


and


102


. If the p-type semiconductor regions


51


and


52


have equal resistance values, then the potential of the electrode terminal


103


can be kept at a potential equivalent to half of a voltage applied between the electrode terminal


101


and the electrode terminal


102


.





FIG. 2

is a schematic sectional view showing an application example of the second embodiment of a semiconductor composite sensor including a resistance bridge of the present invention. In

FIG. 2

, numerals


11


through


18


denote n-type semiconductor regions, which are formed on p-type semiconductor regions


31


through


35


. Numerals


50


through


53


denote p-type semiconductor regions functioning as piezoresistive elements. Adjacent to ends of the piezoresistive element


50


, p


+


-type semiconductor regions


40




a


and


40




b


each having a high impurity concentration are formed. Adjacent to ends of the piezoresistive element


51


, p


+


-type semiconductor regions


41




a


and


41




b


each having a high impurity concentration are formed. Adjacent to ends of the piezoresistive element


52


, p


+


-type semiconductor regions


42




a


and


42




b


each having a high impurity concentration are formed. Adjacent to ends of the piezoresistive element


53


, p


+


-type semiconductor regions


43




a


and


43




b


each having a high impurity concentration are formed. An n


+


-type semiconductor region


20


having a high impurity concentration is formed so as to surround the outside of the p-type semiconductor region


50


and the p


+


-type semiconductor regions


40




a


and


40




b


via the n-type semiconductor region


16


. An n


+


-type semiconductor region


21


having a high impurity concentration is formed so as to surround the outside of the p-type semiconductor region


51


and the p


+


-type semiconductor regions


41




a


and


41




b


via the n-type semiconductor region


11


. An n


+


-type semiconductor region


22


having a high impurity concentration is formed so as to surround the outside of the p-type semiconductor region


52


and the p


+


-type semiconductor regions


42




a


and


42




b


via the n-type semiconductor region


12


. An n


+


-type semiconductor region


23


having a high impurity concentration is formed so as to surround the outside of the p-type semiconductor region


53


and the p


+


-type semiconductor regions


43




a


and


43




b


via the n-type semiconductor region


17


. Furthermore, a p


+


-type semiconductor region


60


having a high impurity concentration and featuring the present invention is formed so as to surround the outside of the n


+


-type semiconductor region


20


via the n-type semiconductor region


16


and so as to be linked with p-type semiconductor regions


31


and


34


. A p


+


-type semiconductor region


61


having a high impurity concentration is formed so as to surround the outside of the n


+


-type semiconductor region


21


via the n-type semiconductor region


11


and so as to be linked with p-type semiconductor regions


31


and


32


. A p


+


-type semiconductor region


62


having a high impurity concentration is formed so as to surround the outside of the n


+


-type semiconductor region


22


via the n-type semiconductor region


12


and so as to be linked with the p-type semiconductor regions


32


and


33


. A p


+


-type semiconductor region


63


having a high impurity concentration is formed so as to surround the outside of the n


+


-type semiconductor region


23


via the n-type semiconductor region


17


and so as to be linked with the p-type semiconductor regions


33


and


35


. For brevity of description, insulating films formed on the semiconductor surface and described with reference to

FIG. 1

are omitted in FIG.


2


.




In

FIG. 2

, electrodes


70




a


,


70




b


and


70




c


;


71




a


,


71




b


and


71




c


;


72




a


,


72




b


and


72




c


; and


73




a


,


73




b


and


73




c


are formed on respective semiconductor regions of high impurity concentrations, namely, p


+


-type regions


40




a


and


40




b


and n


+


-type regions


20


; p


+


-type regions


41




a


and


41




b


and n


+


-type region


21


; p


+


-type regions


42




a


and


42




b


and n


+


-type region


22


; and p


+


-type regions


43




a


and


43




b


and n


+


-type region


23


so as to be in ohmic contact therewith.




Via those electrodes, the p


+


-type semiconductor regions


40




a


and


41




a


are electrically connected together. An electrode terminal


101


is taken out from the p


+


-type semiconductor regions


40




a


and


41




a


thus connected together. The p


+


-type semiconductor region


40




b


, the n


+


-type semiconductor region


20


, and the p


+


-type semiconductor region


43




a


are electrically connected together, and an electrode terminal


104


is taken out therefrom. The p


+


-type semiconductor region


41




b


, the n


+


-type semiconductor region


21


, and the p


+


-type semiconductor region


42




a


are electrically connected together, and an electrode terminal


103


is taken out therefrom. The p


+


-type semiconductor region


42




b


, the n


+


-type semiconductor region


22


, the p


+


-type semiconductor region


43




b


, and the n


+


-type semiconductor region


23


are electrically connected together, and an electrode terminal


102


is taken out therefrom.




The electrode terminals


101


through


104


heretofore described are used as terminals of the resistance bridge circuit.





FIG. 3

is a circuit diagram of a circuit


300


obtained when the piezoresistive elements according to the present invention shown in

FIGS. 1

or


2


are used in a semiconductor composite sensor. In

FIG. 3

, RgL


1


, RgL


2


, RgT


1


and RgT


2


are piezoresistive elements of a differential pressure sensor. The p-type semiconductor region


52


shown in

FIG. 2

functioning as a piezoresistive element is included in the RgL


1


. The p-type semiconductor region


53


is included in the RgT


1


. The p-type semiconductor region


50


is included in the RgL


2


. The p-type semiconductor region


51


is included in the RgT


2


.




The electrode terminal


101


is connected to the ground which functions as a reference potential. A positive voltage is applied to the electrode terminal


102


. Under this state, a bridge output ΔEd proportionate to the differential pressure is obtained between the electrode terminals


103


and


104


.




As a result of application of piezoresistive elements according to the present invention to such a circuit configuration, a semiconductor pressure sensor having high accuracy and high reliability can be obtained. Hereafter, operation of the semiconductor pressure sensor will be described by referring to drawing.





FIG. 4

is a schematic sectional view obtained when a voltage is applied between ends of resistive elements connected in series as shown in

FIG. 1

which is a basic configuration of the present invention. In the case where the electrode terminal


101


is provided with the ground potential and 3 V is applied to the electrode potential


102


, the potential of the electrode terminal


103


becomes 1.5 V provided that the piezoresistive elements


51


and


52


have the same value. In this case, a depletion layer


201


spreads on both sides of a p-n junction formed between the n-type semiconductor region


11


and a p-type semiconductor including the p


+


-type semiconductor regions


41




a


and


41




b


and the piezoresistive element


51


. The depletion layer


201


has the same shape as a depletion layer


202


which spreads on both sides of a p-n junction formed between the n-type semiconductor region


12


and a p-type semiconductor including the p


+


-type semiconductor regions


42




a


and


42




b


and the piezoresistive element


52


. Basically, values of the piezoresistive elements


51


and


52


can be made equal to a predetermined value. On both sides of a p-n junction formed between the n-type semiconductor region


11


and each of the p


+


-type semiconductor region


61


and the p-type semiconductor regions


31


and


32


, a depletion layer


211


produced by a reverse bias voltage of 1.5 V spreads. As for the piezoresistive element shown on the left part of

FIG. 4

, the potential of the n-type semiconductor region


12


is 3 V. Therefore, a depletion layer


212


produced by a reverse bias voltage of 3 V spreads on both sides of a p-n junction formed between the n-type semiconductor region


12


and each of the p


+


-type semiconductor region


62


and the p-type semiconductor regions


32


and


33


. The depletion layer


212


becomes irrelevant to values of resistive elements forming the bridge. Therefore, a bad influence is not exerted upon improvement in accuracy or reliability.





FIGS. 5 through 7

are detailed diagrams illustrating that the present invention is effective in improving accuracy and reliability.

FIG. 5

shows the case where


71




a


is at ground potential and


71




b


and


71




c


are at a potential of 1.5 V. First of all, the inside of the semiconductor will be described. The n-type semiconductor region


11


is at a potential of 1.5 V. The p


+


-type semiconductor region


41




a


is at ground potential. Between the n-type semiconductor region


11


and the p


+


-type semiconductor region


41




a


, therefore, a reverse bias voltage of 1.5 V is applied. However, the n-type semiconductor region


11


and the p


+


-type semiconductor region


41




b


have the same potential. Therefore, the depletion layer


201


spreads largely on the side of the p


+


-type semiconductor region


41




a


. The width of the depletion layer spreading on both sides of the p-n jucntion formed between the p-type semiconductor region


51


and the n-type semiconductor region


11


becomes narrower as the location approaches the p


+


-type semiconductor region


41




b


. On the side of the p


+


-type semiconductor region


41




b


, the width becomes the width of the depletion layer existing in the thermal equilibrium state. Among such depletion layers, the depletion layer spreading in the n-type semiconductor region is irrelevant to the resistance value. The depletion layer spreading in the p-type semiconductor region


52


functioning as a piezoresistive element narrows the passage through which a current flows and consequently increases the resistance value. In

FIG. 5

, characters in parentheses represent piezoresistive elements shown in the left part of FIG.


4


. The spread of the depletion layer


202


within the semiconductor is completely the same as that of the depletion layer


201


. The reason will now be described. Since the p


+


-type semiconductor region


42




a


is at a potential of 1.5 V and the n-type semiconductor region


12


is at a potential of 3 V, a reverse bias voltage of 1.5 V is applied between the n-type semiconductor region


12


and the p


+


-type semiconductor region


42




a


. Furthermore, since the n-type semiconductor region


12


and the p


+


-type semiconductor region


42




b


have the same potential, the depletion layer


202


spreads largely on the side of the p


+


-type semiconductor region


42




a


. The width of the depletion layer spreading on both sides of the p-n jucntion formed between the p-type semiconductor region


52


and the n-type semiconductor region


12


becomes narrower as the location approaches the p


+


-type semiconductor region


42




b


. On the side of the p


+


-type semiconductor region


42




b


, the width beomes the width of the depletion layer existing in the thermal equilibrium state.




Subsequently, the semiconductor surface will now be described. First of all, the surface on the p-type semiconductor region


51


will be described. If the electrode


71




a


and an electric conductor


91


keeping in contact with the electrode


71




a


are at ground potential and the electrode


71




b


is at a potential of 1.5 V, the p-type semiconductor region


51


has such a potential distribution that the right end thereof is at ground potential and the left end thereof is at a potential of 1.5 V. As a result, an electric field effect action is not effected between the surface of the right end of the p-type semiconductor region


51


and the electric conductor


91


. An electric field effect action is effected between the electric conductor


91


, having a negative potential of 1.5 V with respect to the surface of the left end, and the surface of the left end. As shown in

FIG. 6

, therefore, an accumulation layer


301


having holes accumulated therein is formed on the p-type semiconductor region. This accumulation layer


301


becomes significant as the location moves to the left in the p-type semiconductor region


51


. In

FIG. 6

, V


G


represents the potential of the electric conductor


91


effectively having a negative potential with respect to the p-type semiconductor region


51


.




The depletion layer spreading in the p-type semiconductor region


51


functioning as a piezoresistive element narrows the passage through which a current flows and consequently increases the resistance value. However, the accumulation layer formed on the p-type semiconductor region


51


functions to decrease the resistance value. As a whole, therefore, a change in resistance value is canceled.




The surface on the n-type semiconductor region


11


will now be described. If the electric conductor


91


is at ground potential and the electrode


71




c


is at a potential of 1.5 V, the n-type semiconductor region


11


is also at a potential of 1.5 V in the same way. As a result, an electric field effect action is effected between the surface of the n-type semiconductor region


11


and the electric conductor


91


. As shown in

FIG. 7

, therefore, a depletion layer


201


depleted of electrons is formed on the n-type semiconductor region


11


. In

FIG. 7

, V


G


represents the potential of the electric conductor


91


effectively having a negative potential with respect to the n-type semiconductor region


11


. Since this depletion layer


201


is not in a current passage, it becomes irrelevant to values of resistive elements forming the bridge. Therefore, a bad influence is not exerted upon improvement in accuracy or reliability.




In the above, the operation of the piezoresistive element


51


included in RgT


2


has been described referring to reference numerals in parenthesis shown in

FIGS. 5

,


6


and


7


. Note that the operation of the piezoresistive element


52


included in RgL


1


will be omitted as parts having non-parenthesized reference numerals correspond to those in parenthesis shown in

FIGS. 5

,


6


and


7


, respectively, and function similarly.





FIG. 8

is a diagram illustrating the operation of

FIG. 4

referred to in description of the present invention in the case where the p


+


-type semiconductor regions


61


and


62


each having a high impurity concentration are removed, and it is a schematic sectional view in the case where a voltage is applied across resistive elements connected in series. When the electrode terminal


101


is connected to ground potential and 3 V is applied to the electrode terminal


102


, the potential of the electrode terminal becomes 1.5 V provided that the piezoresistive elements have the same value. In this case, a depletion layer


201


spreads on both sides of a p-n juction formed between an n-type semiconductor region


10


and a p-type semiconductor including the p


+


-type semiconductor regions


41




a


and


41




b


and the piezoresistive element


51


. The depletion layer


201


has a shape different from that of a depletion layer


202


spreading on both sides of a p-n juction formed between an n-type semiconductor region


10


and a p-type semiconductor including the p


+


-type semiconductor regions


42




a


and


42




b


and the piezoresistive element


52


. Basically, values of the piezoresistive elements


51


and


52


cannot be made equal to a predetermined value.




The reason will now be described in detail by referring to

FIGS. 9 and 10

.

FIG. 9

shows the case where


71




a


is at ground potential


71




b


is at a potential of 1.5 Volts equivalent to that of the electrode terminal


103


, and


71




c


are at a potential of 3 V equivalent to that of the electrode terminal


102


. First of all, the inside of the semiconductor will now be described. The n-type semiconductor region


10


is at a potential of 3 V, and the p


+


-type semiconductor region


41




a


is at ground potential. Between the n-type semiconductor region


10


and the p


+


-type semiconductor region


41




a


, therefore, a reverse bias voltage of 3 V is applied. However, the n-type semiconductor region


10


is at 3V and the p


+


-type semiconductor region


41




b


is at 1.5 V. Therefore, the depletion layer


201


spreads largely on the side of the p


+


-type semiconductor region


41




a


. The width of the depletion layer spreading on both sides of the p-n junction formed between the p-type semiconductor region


51


and the n-type semiconductor region


10


becomes narrower as the location approaches the p


+


-type semiconductor region


41




b


. On the side of the p


+


-type semiconductor region


41




b


, the width beomes the depletion layer width spread by a reverse bias voltage of 1.5 V. Among such depletion layers, the depletion layer spreading in the n-type semiconductor region is irrelevant to the resistance value. The depletion layer spreading in the p-type semiconductor region


51


functioning as a piezoresistive element narrows the passage through which a current flows and consequently increases the resistance value.

FIG. 10

shows the case where


72




a


is at a potential of 1.5 V and


72




b


and


72




c


are at a potential of 3 V equivalent to that of the electrode terminal


102


. Since the n-type semiconductor region


10


is at a potential of 3 V and the p


+


-type semiconductor region


42




a


is at a potential of 1.5 V, and a reverse bias voltage of 1.5 V is applied between the n-type semiconductor region


10


and the p


+


-type semiconductor region


42




a


. Since the n-type semiconductor region


10


is at a potential of 3 V and the p


+


-type semiconductor region


42




b


is at a potential of 3 V, however, the depletion layer


202


spreads largely on the side of the p


+


-type semiconductor region


42




a


. The width of the depletion layer spreading on both sides of the p-n junction formed between the p-type semiconductor region


51


and the n-type semiconductor region


10


becomes narrower as the location approaches the p


+


-type semiconductor region


42




b


. On the side of the p


+


-type semiconductor region


42




b


, the width beomes the depletion layer width spreading in the thermal equilibrium state.




As heretofore described, the width of the depletion layer


201


is largely different from that of the depletion layer


202


. Especially, the width of the depletion layer spreading in the p-type semiconductor region


51


functioning as the piezoresistive element is wider than the width of the depletion layer spreading in the p-type semiconductor region


52


. Even if resistive elements eventually having the same diffusion shape are formed, the substantial resistance value of the p-type semiconductor region


51


becomes higher than the resistance value of the p-type semiconductor region


52


. Even if a pressure is not applied, therefore, the balance of the resistance bridge circuit shown in

FIG. 3

is lost and consequently a pressure sensor having high accuracy is not obtained.




The semiconductor surface will now be described. First of all, the surface on the p-type semiconductor regions


51


and


52


is nearly the same as that described with reference to

FIGS. 5 and 6

and will not be described. The surface on the n-type semiconductor region


10


will now be described. If the electric conductor


91


is at ground potential and the electrode


71




c


is at a potential of 3 V, the n-type semiconductor region


10


is also at a potential of 3 V in the same way. As a result, an electric field effect action of 3 V is effected between the surface of the n-type semiconductor region


10


and the electric conductor


91


. As shown in

FIG. 9

, therefore, a depletion layer


201


depleted of electrons is formed on the n-type semiconductor region


10


located directly under the electric conductor


91


. As shown in

FIG. 10

, however, the electric conductor


92


is at a potential of 1.5 V and the n-type semiconductor region


10


is at a potential of 3 V. Between the surface of the n-type semiconductor region


10


and the electric conductor


91


, an electric field effect action of 1.5 V is effected. Therefore, the width of the depletion layer


202


on the surface of the n-type semiconductor region


10


becomes narrower than the depletion layer


201


. Since the leak current, for example, is proportionate to the volume in the depletion layer, the leak current of the resistive element including the p-type semiconductor region


51


becomes larger than that of the resistive element including the p-type semiconductor region


52


. An imbalance is thus caused in leak currents of the resistive elements forming the bridge. As a result, a bad influence is exerted upon improvement in accuracy and reliability.




A method for fabricating a semiconductor composite sensor according to the present invention will now be described.

FIGS. 11A

,


11


B,


11


C,


11


D,


11


E,


11


F,


11


G,


11


H,


11


I and


11


J show respective successive processing steps of a fabrication method for a semiconductor composite sensor according to the present invention shown in FIG.


1


. As shown in

FIG. 11A

, a Si wafer having the n-type semiconductor region


10


formed on a p-type semiconductor region


30


by epitaxial growth is first subjected to thermal oxidation to form a silicon dioxide film


80


on the obverse and form a silicon dioxide film


89




a


on the reverse. As shown in

FIG. 11B

, openings are formed in portions of the silicon dioxide film


80


on the obverse by using the conventional photoetching technique. In the openings


611


, impurities such as boron are doped by using the ion implantation method or the thermal diffusion method. The p


+


-type semiconductor regions


61


each having a high impurity concentration are thus formed so as to be linked with the p-type semiconductor region


30


. As shown in

FIG. 11C

, openings are then formed in portions of the silicon dioxide film


80


on the obverse by using the conventional photoetching technique. In the openings


411




a


and


411




b


, impurities such as boron are doped by using the ion implantation method or the thermal diffusion method. The p


+


-type semiconductor regions


41




a


and


41




b


, each having a high impurity concentration, are thus formed. As shown in

FIG. 11D

, openings are then formed in portions of the silicon dioxide film


80


on the obverse by using the conventional photoetching technique. In the openings


210


, impurities such as phosphorus are doped by using the ion implantation method or the thermal diffusion method. The n


+


-type semiconductor regions


21


each having a high impurity concentration, are thus formed. As shown in

FIG. 11E

, openings are then formed in portions of the silicon dioxide film


80


on the obverse by using the conventional photoetching technique. In the opening


511


, impurities such as boron are doped by using the ion implantation method or the thermal diffusion method. The p-type semiconductor region


51


functioning as a piezoresistive element is thus formed. As shown in

FIG. 11F

, the electric conductor film


90


, such as a polycrystal silicon film or so-called doped polycrystal silicon film containing impurities such as phosphorus or boron, is then formed on the silicon dioxide film


80


on the obverse by using the CVD method using monosilane as a principal raw material, the plasma CVD method, or the plasma CVD method using a microwave. On the reverse, a silicon nitride film


89




b


is formed by using the plasma CVD method. As shown in

FIG. 11G

, the electric conductor film


90


formed on the obverse is then worked by using the conventional photoetching technique to form electric conductor films


91


each having a predetermined size. Among the silicon dioxide films formed on the semiconductor obverse, openings are formed in portions of the semiconductor regions


61


,


41




a


,


41




b


and


21


, each having a high impurity concentration and openings


610


,


410




a


,


410




b


and


210


are thus formed. As shown in

FIG. 11H

, metal such as aluminum, is evaporated on semiconductor regions, each having a high impurity concentration, of the above described openings by using the conventional sputtering method. The electrodes


70


,


71




a


,


71




b


and


71




c


are formed so as to have respective predetermined shapes by using photoetching. As shown in

FIG. 11I

, at least a portion of the silicon nitride film


89




b


and the silicon dioxide film


89




a


of the reverse located directly under the piezoresistive element


51


is worked by using conventional photolithography or dry etching. An opening


300


is thus formed on the p-type semiconductor region


30


. Finally, as shown in

FIG. 11J

, the p-type semiconductor region


30


is etched via the opening


300


by using alkaline etching or dry etching to fabricate a semiconductor composite sensor.





FIGS. 12 and 13

are top view patterns seen from the surface of piezoresistive elements shown in FIG.


3


.

FIG. 12

corresponds to RgL


1


and RgL


2


of

FIG. 3

, whereas

FIG. 13

corresponds to RgT


1


and RgT


2


of FIG.


3


. Among characters shown in

FIGS. 12 and 13

, characters identical with those shown in

FIGS. 1 and 2

will not be described. In

FIG. 12

, the piezoresistive element


51


of the p-type semiconductor region shown in

FIG. 1

is divided into three parts:


51




a


,


51




b


and


51




c


. Furthermore, p


+


-type semiconductor regions


451




a


and


451




b


, each having a high impurity concentration, are newly added in order to link


51




a


with


51




b


and link


51




b


with


51




c


. As shown in

FIG. 12

, the n


+


-type semiconductor region


21


having a high impurity concentration is formed so as to surround the p-type semiconductor regions


51




a


,


51




b


and


51




c


and the p


+


-type semiconductor regions


41




a


,


41




b


,


451




a


and


451




b


via the n-type semiconductor region


11


. Even if the surface of the n-type semiconductor region


11


should be inverted to p-type, such an arrangement prevents occurrence of the problem that the piezoresistive elements


51




a


,


51




b


and


51




c


are connected and consequently the resistance value is significantly reduced. Furthermore, the electric conductor


91


is connnected to the electrode


71




a


and the electrodes


71




b


and


71




c


are isolated, the electric conductor


91


and the electrode


71




a


are at the same potential. As seen from the surface of the electric conductor


91


, the electric conductor


91


covers surfaces of the piezoresistive elements


51




a


,


51




b


and


51




c


and the n-type semiconductor region


11


. Therefore, the charge possessed by the external atmosphere such as moisture or other contaminants can be shielded, high reliability being thus achieved.




In

FIG. 13

, the piezoresistive element


52


of the p-type semiconductor region shown in

FIG. 1

is divided into four parts:


52




a


,


52




b


,


52




c


and


52




d


. Furthermore, p


+


-type semiconductor regions


452




a


,


452




b


and


452




c


, each having a high impurity concentration, are newly added in order to link


52




a


with


52




b


, link


52




b


with


52




c


and link


52




c


with


52




d


. Other operations are the same as those described with reference to FIG.


12


and will not be described.





FIGS. 14 through 16

are sectional views respectively showing second, third and fourth embodiments of the present invention. In

FIGS. 14 through 16

, components denoted by the same characters as those of

FIG. 1

will not be described. By referring to

FIGS. 1 and 4

according to the present invention, features and operations of the present invention have been described in detail. Instead of the p


+


-type semiconductor regions


61


and


62


shown in

FIG. 1

according to the present invention, insulators


611


and


621


shown in

FIG. 14

may be used. When in the presence of the insulators the electrode terminal


101


is at ground potential and a voltage of 3 V is applied to the electrode terminal


102


, the potential difference between the n-type semiconductor region


11


and the p


+


-type semiconductor region


41




a


having a high impurity concentration becomes 1.5 V and the potential difference between the n-type semiconductor region


12


and the p


+


-type semiconductor region


42




a


having a high impurity concentration equally becomes 1.5 V. A semiconductor composite sensor having high accuracy and high reliability can thus be obtained.




In

FIG. 1

showing the first embodiment of the present invention, the electric conductors


91


and


92


, each having a shield function, are formed under the electrodes


71




a


and


72




a


, respectively. Even if elecric conductors


911


and


921


are formed respectively above the electrodes


71




a


and


72




a


as shown in

FIG. 15

, the effects of the present invention can be achieved. Since in this case the electric conductors can be disposed after the electrodes


71




a


and


72




a


have been disposed, process steps for semiconductor fabrication can be simplified.





FIG. 16

shows an embodiment using the insulators


611


and


621


shown in FIG.


14


and the electric conductors


911


and


921


formed respectively above the electrodes


71




a


and


72




a


. In each of

FIGS. 14 through 16

, a highly accurate and highly reliable semiconductor composite sensor, which is a feature of the present invention, can be derived.





FIG. 17

is a top view showing a first embodiment of a contact portion of a piezoresistive element.

FIG. 18

is a sectional view seen along a line A-A′ in FIG.


17


. In the contact portion shown in

FIGS. 17 and 18

, the electrode


71




b


and the electrode


71




c


connected to the same potential shown in

FIG. 1

are formed as a common electrode


71


. As shown in

FIG. 17

, the electrode


71


is isolated from the electric conductor


91


. As shown in

FIG. 18

, the n


+


-type semiconductor region


21


having a high impurity concentration is connected to the p


+


-type semiconductor region


41




b


. By doing so, an advantage that electrodes can be taken out easily is obtained.





FIG. 19

is a top view showing a second embodiment of a contact portion of a piezoresistive element.

FIG. 20

is a sectional view seen along a line B-B′ in FIG.


19


. In the contact portion shown in

FIGS. 19 and 20

as well, the electrode


71




b


and the electrode


71




c


connected to the same potential shown in

FIG. 1

are formed as a common electrode


71


. As shown in

FIG. 19

, the electrode


71


is isolated from the electric conductor


91


. As shown in

FIG. 20

, the n


+


-type semiconductor region


21


is formed shallower than the p


+


-semiconductor region


41




b


and the n


+


-type semiconductor region


21


is connected to the p


+


-semiconductor region


41




b


. By doing so, not only an advantage that electrodes can be taken out easily is obtained, but also the type of region having a high impurity concentration which is not covered by an electrode can be made only n-type. Thus, higher reliability can be achieved. The reason will now be described. As for the impurity concentration, the n-type semiconductor region can be made to have a higher impurity than the p-type semiconductor region. In an insulating film, for example, a harmful substance, such as sodium ions, having positive charge exists. On the surface of the n


+


-type semiconductor region having a high impurity concentration, a so-called accumulation layer having more electrons stored therein than in the substrate is formed. This results in an advantage that a risk of an increase in leak current or occurrence of an imbalance in the resistance bridge circuit is completely eliminated.





FIG. 21

is a diagram illustrating the operation of a fifth embodiment of the present invention. In

FIG. 21

, components having the same characters as those of

FIG. 1

will not be described. In

FIG. 1

showing the first embodiment according to the present invention, the electric conductors


91


and


92


serving as the shield layer are connected to the electrodes


71




a


and


72




a


, i.e., electrodes of lower potential side of two piezoresistive elements connected in series. The embodiment shown in

FIG. 21

has a feature that the electric conductor


91


is connected to electrodes of high potential side. In the case where the electric conductor


91


is connected to the electrodes of low potential side, depletion layers are formed on the surface of the n-type semiconductor as described with reference to FIG.


5


. In the case where the electric conductor


91


is connected to the electrodes of high potential side, there are no changes in spread of the depletion layers


201


,


211


,


202


and


212


within the semiconductor, but there is a difference in that an accumulation layer is formed on the surface of the n-type semiconductor. Details thereof will now be described by referring to

FIGS. 22 through 24

.

FIG. 22

shows the case where


71




a


is at ground potential and


71




b


and


71




c


are at a potential of 1.5 V. The inside of the semiconductor is identical to that described with reference to FIG.


5


and will not be described.




Therefore, the semiconductor surface which differs from that of

FIG. 5

will now be described. First of all, the semiconductor surface on the p-type semiconductor region


51


will now be described. If each of the electrode


71




b


and the electric conductor


91


keeping in contact with the electrode


71




b


is at a potential of 1.5 V and the electrode


71




a


is at ground potential, the p-type semiconductor region


51


has such a potential distribution that the right end thereof is at ground potential and the left end thereof is at a potential of 1.5 V. As a result, an electric field effect action is not effected between the surface of the left end of the p-type semiconductor region


51


and the electric conductor


91


. An electric field effect action is effected between the electric conductor


91


having a positive potential of 1.5 V with respect to the surface of the right end and the surface of the right end. As shown in

FIG. 23

, therefore, an accumulation layer


221


depleted of holes is formed on the p-type semiconductor region. This depletion layer


221


becomes significant as the location moves to the right in the p-type semiconductor region


51


. In

FIG. 23

, V


G


represents the potential of the electric conductor


91


effectively having a positive potential with respect to the p-type semiconductor region


51


.




The semiconductor surface on the n-type semiconductor region


11


will now be described. If each of the electric conductor


91


and the electrodes


71




b


and


71




c


is at a potential of 1.5 V, the n-type semiconductor region


11


is at a potential of 1.5 V in the same way. As a result, an electric field effect action is not effected between the surface of the n-type semiconductor region


11


and the electric conductor


91


. However, the surface of the depletion layer


201


is at a potential between ground potential and 1.5 V. Between the surface of the depletion layer


201


and the electric conductor


91


, it can be considerd as if an accumulation layer


311


having electrons accumulated therein is formed on the n-type semiconductor region


11


as shown in FIG.


24


. In other words, the electric conductor


91


functions to limit the spread of the depletion layer on the surface of the n-type semiconductor region. In

FIG. 24

, V


G


represents the potential of the electric conductor


91


effectively having a positive potential with respect to the n-type semiconductor region


11


. Since this apparent accumulation layer


311


functions to prevent p-inversion on the surface of the n-type semiconductor region, a plurality of p-type semiconductor regions serving as piezoresistive elements are prevented from being linked and thus the resistance value is prevented from being lowered. This apparent accumulation layer effectively improves accuracy and reliability.




Characters inside and outside parentheses shown in

FIGS. 22 through 24

have the same function. Thus, they are completely the same, and the description will be omitted.





FIG. 25

is a diagram illustrating the operation of a sixth embodiment of the present invention. In

FIG. 25

, components having the same characters as those of

FIG. 4

will not be described. In

FIG. 4

illustrating the operation of the first embodiment according to the present invention, insulating films


83


and


86


are formed respectively on the piezoresistive elements


51


and


52


. However, the embodiment shown in

FIG. 25

has a feature that n


+


-type semiconductor regions


210


and


220


each having a high impurity concentration are newly provided on the piezoresistive elements. A resistive element for sensing the differential pressure is located directly under the n


+


-type semiconductor regions


210


and


220


each having a high impurity concentration. Therefore, variation can be suppressed by the external atmosphere and the potential of the electric conductors


91


and


92


for shielding. In addition, spreads of depletion layers within all semiconductors forming the bridge circuit can be made to have the same shape as described in detail in

FIG. 4. A

semiconductor composite sensor having high accuracy and high reliability can thus be obtained.





FIG. 26

is a diagram illustrating the operation of

FIG. 25

referred to in description of the the sixth embodiment of the present invention in the case where the p


+


-type semiconductor regions


61


and


62


, each having a high impurity concentration, are removed, and it is a schematic sectional view in the case where a voltage of 3 V is applied across piezoresistive elements connected in series by applying ground potential to the electrode terminal


101


and applying a voltage of 3 V to the electrode terminal


102


. Detailed description of the operation is identical to that of FIG.


8


. Only the principal point will now be described. Since the n


+


-type semiconductor region


22


is at a potential of 3 V, the n-type semiconductor region


10


is also at the potential of 3 V. The p


+


-type semiconductor region


41




a


is at ground potential, and the p


+


-type semiconductor region


42




a


is at a potential of 1.5 V. Therefore, the depletion layer


201


becomes wider than the depletion layer


202


. The depletion layer spreading in the p-type semiconductor region


51


becomes wider than the depletion layer spreading in the p-type semiconductor region


52


. Even if piezoresistive elements having the same diffusion shape and impurity concentration dustribution are formed, therefore, the piezoresistive element


51


becomes higher in resistance value than the piezoresistive element


52


. Due to such an imbalance caused in resistance of the bridge circuit, it is difficult to improve the accuracy.





FIG. 27

shows an example of a differential pressure transmitter having a semiconductor composite sensor of the present invention. In

FIG. 27

, numeral


700


denotes a composite sensor substrate having integration of a differential pressure sensor of the present invention, and a static pressure sensor and a temperature sensor to which the present invention has been applied. Numeral


701


denotes a sensor diaphragm for separating a high pressure side from a low pressure side, and


702




a


and


702




b


denote seal diaphragms for separating external environment from a pressure transmission medium (such as silicon oil) contained within the transmitter and receiving the external pressure. Numeral


703


denotes a composite transmitter main body including SUS, and


704




a


and


704




b


denote pressure inlet ports. Numeral


705


denotes a signal processing circuit for amplifying outputs of the sensors and conductng correction calculations. By using a semiconductor composite sensor of the present invention in this intelligent composite transmitter, accurate static pressure values can be detected without being affected by the differential pressure. The output of the differential pressure sensor is also affected by a great static pressure as high as 100 atmosphere or more. Since an accurate static pressure value can be known, however, correction with a high accuracy can be realized. The accuracy of differential pressure detection can be improved.




In applying at least two piezoresistive elements to connection in a semiconductor composite sensor including a composite of a differential pressure sensor using piezoresistive gauge elements, a static pressure sensor and a temperature sensor, the present invention makes it possible to form the same accumulation layers or depletion layers on piezoresistive elements. Therefore, electric influence exerted upon piezoresistive elements can be avoided. The accumulation layers and depletion layers formed at that time are capable of having the same shape in both piezoresistive elements. Changes of resistance values caused by the accumulation layers or depletion layers can be made constant. Furthermore, since the depletion layers in both piezoresistive elements can be provided with the same shape, changes of resistance values caused by depletion layers can be made constant.




Especially when a bridge circuit is to be formed with piezoresistive elements, the present invention makes it possible to align resistance values of piezoresistive elements with high accuracy. And it is possible under any situation and environment of use. Therefore, it is not necessary to consider means of output correction or the like. It thus becomes possible to provide a highly accurate, highly reliable semiconductor composite sensor by the contrivance alone of the sensor configuration.



Claims
  • 1. A semiconductor composite sensor comprising:at least two detection regions, each detection region including: a sensor substrate having a first p-type semiconductor region and a first n-type semiconductor region formed on said first p-type semiconductor region; a piezo-resistive element having a second p-type semiconductor region formed in a part of said first n-type semiconductor region and having a resistance value which changes in accordance with a pressure applied thereto; an isolating means surrounding said piezo-resistive element formed to extend through said first n-type semiconductor region and communicate with said first p-type semiconductor region; the piezo-resistive elements in said detection regions being serially interconnected; and each piezo-resistive element having a first electrode adapted for connection to a higher potential and a second electrode adapted for connection to a lower potential, said first electrode also contacting said first n-type semiconductor region in its associated detection region.
  • 2. The sensor according to claim 1, wherein said isolating means comprises a third p-type semiconductor region.
  • 3. The sensor according to claim 1, wherein four of said detection regions are provided and piezo-resistive elements in said four detection regions are connected to form a bridge circuit.
  • 4. The sensor according to claim 1, wherein said isolating means comprises an insulator.
  • 5. The sensor according to claim 1 further comprising, for each piezo-resistive element formed on said first n-type semiconductor region, a shielding layer including a second n-type semiconductor region formed in a main surface of the first n-type semiconductor region opposite to another main surface thereof contacting with said first p-type semiconductor region, overlying the piezo-resistive element, said second n-type semiconductor region having a larger area and a higher impurity concentration than the piezo-resistive element.
  • 6. A differential pressure transmitter comprising:a lower side pressure inlet port and a higher side pressure inlet port to which respectively lower and higher pressures are introduced; a composite sensor substrate including sensors to detect physical quantities including a differential pressure, a static pressure and a temperature; and a sealing diaphragm and a pressure transmission medium through which respectively introduced lower side and higher side pressures are transmitted to said composite sensor substrate, said composite sensor substrate comprising: at least two detection regions, each detection region including: a sensor substrate having a first p-type semiconductor region and a first n-type semiconductor region formed on said first p-type semiconductor region; a piezo-resistive element having a second p-type semiconductor region formed in a part of said first n-type semiconductor region and having a resistance value which changes in accordance with a pressure applied thereto; an isolating means surrounding said piezo-resistive element formed to extend through said first n-type semiconductor region and communicate with said first p-type semiconductor region; the piezo-resistive elements in said detection regions being serially interconnected; and each piezo-resistive element having a first electrode adapted for connection to a higher potential and a second electrode adapted for connection to a lower potential, said first electrode also contacting said first n-type semiconductor region in its associated detection region.
Priority Claims (1)
Number Date Country Kind
7-012299 Jan 1995 JP
Parent Case Info

This application is a continuation of U.S. Ser. No. 08/591,878, Jan. 26, 1996, now abandoned.

US Referenced Citations (11)
Number Name Date Kind
3265905 McNeil Aug 1966
3430110 Goshgarian Feb 1969
3457123 Van Pul Jul 1969
4321616 Bise Mar 1982
4977101 Yoder et al. Dec 1990
5111068 Kusakabe May 1992
5145810 Matsumi Sep 1992
5200733 Davis et al. Apr 1993
5231301 Peterson et al. Jul 1993
5315149 Compagne May 1994
5416357 Kobayashi et al. May 1995
Foreign Referenced Citations (5)
Number Date Country
35 43 261 Jun 1987 DE
26 44 638 Jan 1988 DE
0 146 709 Jul 1985 EP
60-32993B Jul 1985 JP
3-76139 U Jul 1991 JP
Non-Patent Literature Citations (1)
Entry
“Miniature Piezoresistive Strain and Pressure Sensors with On-Chip Circuitry”, by Sugiyama et al., Proceedings of the 3rd Sensor Symposium, 1983, pp. 209-213.
Continuations (1)
Number Date Country
Parent 08/591878 Jan 1996 US
Child 09/417235 US