The present application claims priority under 35 U.S.C. 119 to Korean Patent Application No. 10-2007-0127512 (filed on Dec. 10, 2007), which is hereby incorporated by reference in its entirety.
Information and communication technologies have rapidly increased and information media, such as computers and the like, may become more popular. Hence, semiconductor apparatuses may be increasingly developed. In addition, semiconductor devices may be more highly integrated in view of a functional aspect. Accordingly, various methods have been studied and developed to reduce a feature size of individual devices formed on and/or over a substrate and to maximize a performance of a device.
A related art method for fabricating a semiconductor device may manufacture a switch transistor having turn-on and turn-off functions using movement of electrons according to a tunneling effect. Such a method, however, may require many process steps, which may reduce yields.
Embodiments relate to a semiconductor device and a method for fabricating the same. Embodiments relate to a semiconductor device having a switch function, and a method for fabricating the same. Embodiments relate to a semiconductor device, which may have a pyro-electric switch transistor using a bi-metal, and a method for fabricating the same.
According to embodiments, a semiconductor may include at least one of the following. A metal film spaced from a semiconductor substrate at a predetermined interval and in which a plurality of etching holes may be formed. A bottom metal pattern disposed on and/or over a space, spaced between the semiconductor substrate and metal film and top metal pattern formed on and/or over the bottom metal pattern. A pillar formed on and/or over the semiconductor substrate and supporting one side of a low surface of the bottom metal pattern. A pad formed on and/or over the semiconductor substrate, with an air layer corresponding to the bottom metal pattern inserted therein.
According to embodiments, a method for fabricating a semiconductor device may include at least one of the following. Forming a pad on and/or over a semiconductor substrate. Forming a first dielectric film having hole covering the pad. Forming a pillar within a hole, a bottom metal pattern, and a top metal pattern, respectively, whose one side may be connected to the pillar by sequentially forming on and/or over the first dielectric film and patterning a bottom metal film and a top metal film gap-filling the holes and having different coefficients of thermal expansion. Forming a second dielectric film on and/or over the first dielectric film to cover the bottom metal pattern and the metal pattern. Forming a metal film in which an etching hole is formed on and/or over the second dielectric film. Removing the first dielectric film and second dielectric film by infiltrating an etching liquid through the etching hole.
Example
Example
Referring to example
Referring to example
Referring to example
A bottom metal film and a top metal film may be made of metal films which may have different coefficients of thermal expansion. According to embodiments, a coefficient of thermal expansion of a top metal film may be larger than a coefficient of thermal expansion of a bottom metal film.
According to embodiments, a top metal film may be aluminum, and a bottom metal film may be nickel. A bottom metal film and a top metal film may be patterned to form bottom metal pattern 121 and top metal pattern 122 on and/or over first dielectric film 115, respectively.
Bottom metal pattern 121 may be connected to pillar 121a within hole 115a. Bottom metal pattern 121 and top metal pattern 122 may be supported by pillar 121a. A vibration type driving body formed having bottom metal pattern 121 and top metal pattern 122 may be a catilever structure.
Referring to example
First contact electrode 131 may be formed at a location corresponding to pillar 121a formed within hole 115a. Bottom metal pattern 121 and top metal pattern 122 may be connected to pillar 121a and may project outward. When current is applied, bottom metal pattern 121 and top metal pattern 122 may bend. Bottom metal pattern 121 and top metal pattern 122 may contact pad 110 if they bend. Bottom metal pattern 121 and top metal pattern 122 may not be bent when first contact electrode 131 is formed on and/or over a bending location. First contact electrode 131 may include at least one of Co, Mo, Ta, W, Ti, Ni, Al, Cu, Pt, Au, and alloys thereof.
Referring to example
According to embodiments, when forming via hole 125a, a deep via hole may be formed, and may penetrate through first dielectric film 115 and second dielectric film 125 and may be connected electrically to pad 110 formed on and/or over semiconductor substrate 100. While the deep via hole is formed, first contact electrode 131, which may be exposed by via hole 125a, may function as an etch stop film. A portion of exposed first contact electrode 131 may thereby be etched. According to embodiments, a separate etch stop film may also be formed on and/or over a top of first contact electrode 131.
Referring to example
Referring to example
A vibration type driving body, which may be connected to pillar 121a and which may project laterally, may be formed on and/or over semiconductor substrate 100. A vibration type driving body may be bent by forming an air layer around the vibration type driving body. This may make it possible to contact pad 110.
Referring to example
Referring to example
Metal wire 133 may thus be formed on and/or over third dielectric film 140 and may be connected to a separate metal pattern that may be formed within contact hole 140a. According to embodiments, metal wire 133 formed on and/or over third dielectric film 140 and metal wire 133 formed within contact hole 140a may be integrally formed by being buried within contact hole 140a.
According to embodiments, if a current is applied to a pyro-electric switch transistor of a vibration type driving body through metal wire 133, second contact electrode 132 and first contact electrode 131, bottom metal pattern 121 and top metal pattern 122, which may have different coefficient of thermal expansion, may be bent. According to embodiments, bottom metal pattern 121 may contact pad 110, and may thereby be conductive. According to embodiments, if current is not applied, bent bottom metal pattern 121 may return to its original place and may no longer contact pad 110. This may control turn-on and turn-off functions of a switch transistor.
According to embodiments, a semiconductor device and the method for fabricating the same may provide a pyro-electric switch transistor using a bi-metal with different coefficient of thermal expansion. It may be possible to easily manufacture such a transistor through a simple process, which may improve yields. According to embodiments, a transistor having a new structure to shorten processes may be provided. This may reduce a manufacturing cost.
It will be obvious and apparent to those skilled in the art that various modifications and variations can be made in the embodiments disclosed. Thus, it is intended that the disclosed embodiments cover the obvious and apparent modifications and variations, provided that they are within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2007-0127512 | Dec 2007 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
6171879 | Chan et al. | Jan 2001 | B1 |
6275320 | Dhuler et al. | Aug 2001 | B1 |
6696369 | Fraser et al. | Feb 2004 | B2 |
6852926 | Ma et al. | Feb 2005 | B2 |
6872902 | Cohn et al. | Mar 2005 | B2 |
20040150939 | Huff | Aug 2004 | A1 |
20040159532 | Tatic-Lucie et al. | Aug 2004 | A1 |
20060038643 | Xu et al. | Feb 2006 | A1 |
20060087716 | Kweon et al. | Apr 2006 | A1 |
20070018761 | Yamanaka et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
1 405 821 | Jul 2004 | EP |
1 272 645 | May 1972 | GB |
10-2006-0036976 | May 2006 | KR |
Number | Date | Country | |
---|---|---|---|
20090146229 A1 | Jun 2009 | US |