Semiconductor device and method of manufacturing the same

Information

  • Patent Grant
  • 6395612
  • Patent Number
    6,395,612
  • Date Filed
    Wednesday, November 22, 2000
    24 years ago
  • Date Issued
    Tuesday, May 28, 2002
    23 years ago
Abstract
A semiconductor device has a device isolation oxide film, an interlayer insulating film, hydrogen barrier films, a lower electrode, a capacitor insulating film, an upper electrode, an interlayer insulating film and a wiring layer, formed on a silicon substrate. A gate electrode is formed on a gate oxide film between impurity diffusion regions in the silicon substrate. Further, a capacitor portion, comprising the lower electrode, the capacitor insulating film (ferroelectric or high dielectric substance) and the upper electrode, is completely covered with the hydrogen barrier films. The hydrogen barrier films prevent deterioration of the ferroelectric substance and the high dielectric constant material due to reducing conditions in a hydrogen atmosphere. Other device characteristics, however, are not adversely affected because only the capacitor portion is completely covered with the hydrogen barrier films.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a semiconductor device in which a ferroelectric substance material or a high dielectric constant material is mainly used as a capacitor insulating film and a method of manufacturing the same.




2. Statement of the Problem




Recently, development has been made in the area of semiconductor devices concerning a non-volatile memory having a capacitor device region in which a ferroelectric substance material, such as Pb(Zr,Ti)O


3


and SrBi


2


Ta


2


O


9


, having a hysteresis characteristic is used as a capacitor insulating film, and concerning a dynamic random access memory in which a capacitor device region has a large quantity of stored electric charges by using a high dielectric substance material, such as (Sr,Ba)TiO


3


, as the capacitor insulating film.




It has been known that deterioration of an insulating characteristic and a ferroelectric characteristic occurs in the dielectric substance, such as Pb(Zr,Ti)O


3


and (Sr,Ba)TiO


3


, used in the above semiconductor device, when the dielectric substance is subjected to a reduction atmosphere because the dielectric substance is formed by an oxide. In particular, when the dielectric substance is exposed to hydrogen, the device characteristics deteriorate critically. In the extreme case, peeling of an electrode may be caused to occur.




However, a hydrogen atmosphere inevitably is produced in a manufacturing process of the semiconductor device, such as a large scale integrated circuit (“LSI”). For example, a SiO


2


film which is used as an interlayer insulating film is generally formed by the use of a chemical vapor deposition (“CVD”) method. The reaction is represented by SiH


4


+O


2


→SiO


2


+2H


2


. This reaction formula indicates that the hydrogen is generated as a reaction product. Further, the CVD of tungsten (“W”) tends to be widely used to embed a contact hole having a large aspect ratio as the device size becomes small. In this case, the W is deposited by the reaction which is represented by 2WF


6


+3SiH


4


→2W+3SiH


4


+6H


2


. This reaction formula indicates that the reaction is carried out in a very strong reduction atmosphere. In addition, an annealing process is performed in an atmosphere containing the hydrogen to ensure the characteristic of a MOS transistor after the formation of an Al wiring pattern.




Means for preventing the dielectric capacitor from deteriorating due to the hydrogen has been adopted in several semiconductor devices, as known in the art. For example, disclosure is made in Japanese Unexamined Patent Publication No. H4-102367 of a semiconductor device, illustrated in

FIG. 27

, which has a TiN film or a TiON film formed on an interlayer insulating film


16


of a capacitor portion


19


as a hydrogen barrier film


17


. In the structure illustrated in

FIG. 27

, a device isolation oxide film


2


, an interlayer insulating film


6


, a lower electrode


8


, a capacitor insulating film


9


, an upper electrode


10


, an interlayer insulating film


13


, a wiring layer


14


, an interlayer insulating film


16


, and a hydrogen barrier film


17


are successively deposited on a silicon substrate


1


in this order. Further, a gate electrode


5


is formed on a gate oxide film


4


between impurity diffusion regions


3


in the silicon substrate


1


.




Alternatively, AIN or Ti


3


N


4


is formed on an upper electrode


10


of a capacitor portion


19


as a hydrogen barrier film


11


in the structure illustrated in

FIG. 28

in the case of a dielectric memory which is disclosed in Japanese Unexamined Patent Publication No. H7-111318. On the other hand, Si


3


N


4


is formed on the entire surface of the device as a hydrogen barrier film


12


in the structure illustrated in FIG.


29


.




More specifically, a device isolation oxide film


2


, an interlayer insulating film


6


, a lower electrode


8


, a capacitor insulating film


9


, an upper electrode


10


, a hydrogen barrier film


11


, an interlayer insulating film


13


and a wiring layer


14


are successively deposited on a silicon substrate


1


in this order in the structure illustrated in FIG.


28


. Further, a gate electrode


5


is formed on a gate oxide film


4


between impurity diffusion regions


3


in the silicon substrate


1


. In the structure illustrated in

FIG. 29

, a device isolation oxide film


2


, an interlayer insulating film


6


, a lower electrode


8


, a capacitor insulating film


9


, an upper electrode


10


, a hydrogen barrier film


11


, a hydrogen barrier film


12


, an interlayer insulating film


13


and a wiring layer


14


are successively deposited on a silicon substrate


1


in this order. In this case, the hydrogen barrier film


12


is formed to cover the lower electrode


8


, the capacitor insulating film


9


, the upper electrode


10


and the hydrogen barrier film


11


. In addition, a gate electrode


5


is formed on a gate oxide film


4


between impurity diffusion regions


3


in the silicon substrate


1


.




Where the hydrogen barrier film


17


is formed on the interlayer insulating film


16


of the capacitor portion


19


like the conventional semiconductor device illustrated in

FIG. 27

, the hydrogen barrier film


17


must cover the capacitor portion


19


with a space area of several microns or more from the capacitor portion


19


to prevent the invasion of the hydrogen from a lateral direction. However, cell area has been reduced with the high integration of memories, and the cell area of a highly integrated memory of 256 Megabit or more is 1 μm


2


or less, as disclosed in Nikkey Micro Device, March 1995, at page 31. In such a case, the area of the hydrogen barrier film


17


over the capacitor portion


19


must be equal to or less than the cell area. Consequently, the invasion of the hydrogen from the lateral direction cannot sufficiently be prevented. In addition, the conventional semiconductor device is not effective at all for avoiding deterioration of the capacitor portion


19


due to the hydrogen where CVD of W is used for the wiring layer, since the hydrogen barrier film is formed over-the wiring layer


14


.




Further, the other conventional semiconductor device illustrated in

FIG. 28

is not effective at all for avoiding the invasion of the hydrogen from the side portion. In addition, the characteristic of the MOS transistor which is ensured by the hydrogen anneal is hindered after the formation of the Al wiring pattern in the other conventional semiconductor device illustrated in

FIG. 29

, since the Si


3


N


4


film is formed for the entire surface of the device. In this case, the hindrance of the hydrogen annealing effect from the formation of Si


3


N


4


film has been widely known as described in PROCEEDINGS OF THE SYMPOSIUM ON SILICON NITRIDE THIN INSULATING FILMS, 1983, pages 94 to 110.




3. Solution to the Problem




In the semiconductor device according to this invention, the capacitor portion is directly covered with the hydrogen barrier film and further, the hydrogen barrier film, except for a part covering the capacitor portion, is removed. Consequently, the characteristic of the MOS transistor is not adversely affected, and the deterioration of the capacitor portion can be effectively avoided.




According to this invention, there is provided a semiconductor device which has a capacitor portion including a ferroelectric substance material or a high dielectric constant material as a capacitor insulating film. The capacitor portion is covered with a hydrogen barrier film, and the remaining portion excepting the capacitor portion is uncovered with the hydrogen barrier film.




A method of manufacturing the semiconductor device according to this invention includes a step of forming the capacitor portion comprising a lower electrode, a capacitor insulating film of ferroelectric substance material or high dielectric constant material and an upper electrode, a step of forming the hydrogen barrier film for covering the capacitor portion, and a step of removing a part of the hydrogen barrier film by etching.




A feature of the invention is a semiconductor device having a capacitor portion covered by a hydrogen barrier film, and a portion having no hydrogen barrier film.




Another feature of the invention is a contact portion on the capacitor portion, formed by removing a portion of hydrogen barrier film from the capacitor portion.




Another feature of the invention is a nonconductive hydrogen barrier film containing at least one material selected from the group consisting of Si


3


N


4


, SiON and a combination of Si


3


N


4


, SiON and SiO


2


.




Another feature of the invention is an electrically conductive hydrogen barrier film comprising at least one material selected from nitrides of the group consisting of Ti, Zr, Nb, Ta, Hf and W.




Another feature of the invention is the utilization of an electrically conductive hydrogen barrier film as the upper electrode of a memory capacitor.




In a first basic embodiment, the invention comprises a substrate and a transistor portion having a gate oxide film on the substrate, a gate electrode on the gate oxide film, and an impurity diffusion region in the substrate. It further includes a capacitor portion containing a capacitor insulating film and having a surface. A hydrogen barrier film is located on the surface of the capacitor portion. A contact portion is formed on the surface of the capacitor portion by removing a portion of the hydrogen barrier film from the capacitor portion. The contact portion is for electrically contacting the capacitor portion to the transistor portion. The capacitor portion does not overlap the transistor portion.




In one variation of the first basic embodiment of the invention, a nonconductive hydrogen barrier film is formed on an interlayer insulating film, then a lower electrode and a capacitor insulating film are formed. Then an upper electrode and a conductive hydrogen barrier, or alternatively just a conductive hydrogen barrier serving also as an electrode, are formed. These films are patterned, and then the patterned surface is covered with a second nonconductive hydrogen barrier film. A contact hole is made in the second nonconductive hydrogen barrier film to form a contact portion on the conductive film below.




In another variation, the upper electrode is formed on the capacitor insulating film, the films are patterned to form a capacitor, then the second nonconductive hydrogen barrier film is formed to cover the surfaces of the capacitor. Then a portion of the nonconductive hydrogen is removed to form a contact hole and a contact portion on the upper electrode. Then a conductive hydrogen barrier film is formed to fill the contact hole and cover the contact portion and the top of the capacitor portion. Alternatively, an interlayer insulating film can be formed on the second nonconductive hydrogen barrier film, a contact hole made through both the interlayer insulating film and the second nonconductive hydrogen barrier film, and then the contact portion covered with the conductive hydrogen barrier film In another second basic embodiment, the invention comprises a substrate and a transistor portion having a gate oxide film on the substrate, a gate electrode on the gate oxide film, and an impurity diffusion region in the substrate. It further includes a plurality of capacitor portions, each having a lower electrode and a capacitor insulating film, each of the capacitor portions overlapping a transistor portion. Each capacitor portion is located over a plug, which is electrically connected to the transistor portion. A first, nonconductive hydrogen barrier film is formed on an interlayer insulating film. A second, electrically conductive hydrogen barrier film is formed on the first, nonconductive hydrogen barrier film and the plug. A lower electrode is formed on the second, conductive hydrogen barrier film. The lower electrode and the second, conductive hydrogen barrier film are patterned to form a patterned surface. The capacitor insulating film is formed on the patterned surface and then it is removed from the surface except not from the top and side surfaces of the capacitor portion. A third, conductive hydrogen barrier film is formed on the capacitor insulating layer and the first, nonconductive hydrogen barrier film. Then the third, conductive hydrogen barrier film and the first, nonconductive hydrogen barrier film are removed from the underlying interlayer insulating film, but not from the capacitor portion. Thus, the capacitor portions are covered by hydrogen barrier film, but there is a portion between the capacitor portions that is not covered.




A first variation of the second basic embodiment includes a first, electrically nonconductive hydrogen barrier film formed on the plug and on the interlayer insulating film, as described above, but the capacitor insulating film is patterned in the same process as the third, conductive hydrogen barrier film and the nonconductive hydrogen barrier film. In a second variation, no nonconductive hydrogen barrier film is formed on the interlayer insulating layer, and a second, conductive hydrogen barrier film, the capacitor insulating film, and a first, conductive hydrogen barrier film are patterned in the same process.




A feature of the invention is that the capacitor insulating film may contain a ferroelectric substance material or a high dielectric constant material. The ferroelectric substance material is a ferroelectric metal oxide, such as Pb(Zr,Ti)O


3


and SrBi


2


Ta


2


O


9


. The high dielectric constant material is a non-ferroelectric dielectric metal oxide, such as (Sr,Ba)TiO


3


.











Numerous other features, objects and advantages of the invention will become apparent from the following description when read in conjunction with the accompanying drawings.




BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side cross-sectional view showing a basic structure of a semiconductor device according to a first embodiment of this invention.





FIGS. 2-9

are side cross-sectional views showing a method of manufacturing the semiconductor device illustrated in

FIG. 1

with each manufacturing step.





FIG. 10

is a side cross-sectional view showing a basic structure of a modified embodiment of the semiconductor device illustrated in FIG.


1


.





FIG. 11

is a side cross-sectional view showing a basic structure of another modified embodiment of the semiconductor device illustrated in FIG.


1


.





FIG. 12

is a side cross-sectional view showing a basic structure of still another modified embodiment of the semiconductor device illustrated in FIG.


1


.





FIG. 13

shows results from measuring of hysteresis in a capacitor device portion before and after hydrogen anneal of the semiconductor device illustrated in FIG.


1


.





FIG. 14

shows a frequency distribution of Vt measuring value before and after hydrogen anneal of the semiconductor device (transistor) illustrated in FIG.


1


.





FIG. 15

is a side cross-sectional view showing a basic structure of a semiconductor device according to a second embodiment of this invention.





FIGS. 16-24

are side cross-sectional views showing a method of manufacturing the semiconductor device illustrated in

FIG. 15

with each manufacturing step.





FIG. 25

is a side cross-sectional view showing a basic structure of a modified embodiment of the semiconductor device illustrated in FIG.


15


.





FIG. 26

is a side cross-sectional view showing a basic structure of another modified embodiment of the semiconductor device illustrated in FIG.


15


.





FIG. 27

is a side cross-sectional view showing a basic structure of a conventional semiconductor device in which a hydrogen barrier film is formed on an interlayer insulating film.





FIG. 28

is a side cross-sectional view showing a basic structure of another conventional semiconductor device in which a hydrogen barrier film is formed on the upper electrode of the device.





FIG. 29

is a side cross-sectional view showing a basic structure of another conventional semiconductor device in which a hydrogen barrier film is formed on the entire surface of the device.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




By reference to the drawings, a semiconductor device and a method of manufacturing the same in several embodiments is described herein.




It should be understood that the

FIGS. 1-12

,


15


-


26


depicting integrated circuit devices in accordance with the invention are not meant to be actual plan or cross-sectional views of any particular portion of an actual integrated circuit device. In the actual devices, the layers will not be as regular and their thicknesses may have different proportions. The various layers in actual devices often are curved and possess overlapping edges. The figures instead show idealized representations which are employed to depict more clearly and fully the method of the invention than would otherwise be possible. Also, the figures represent only one of innumerable variations of ferroelectric devices that could be fabricated using the method of the invention. For the sake of clarity, the same reference numbers have been used to identify similar elements among the different embodiments of the invention depicted in the figures.




As discussed in the problem statement above, the dielectric substance of the capacitor insulating film is an oxide that may be a ferroelectric oxide, such as Pb(Zr,Ti)O


3


and SrBi


2


Ta


2


O


9


, or it may be a non-ferroelectric dielectric oxide, such as (Sr,Ba)TiO


3


.





FIG. 1

is a side cross-sectional view showing a basic structure of a semiconductor device according to a first embodiment of this invention. In the structure of the semiconductor device, a device isolation oxide


2


, an interlayer insulating film


6


, a hydrogen barrier film


7


, a lower electrode


8


, a capacitor insulating film


9


, an upper electrode


10


, a hydrogen barrier film


11


, a hydrogen barrier film .


12


, an interlayer insulating film


13


and a wiring layer


14


are deposited on a silicon substrate


1


with this order. The capacitor portion


19


comprising the lower electrode


8


, the capacitor insulating film (dielectric film)


9


and the upper electrode


10


is completely covered with the hydrogen barrier films


7


,


11


, and


12


. Further, a gate electrode


5


is formed on a gate oxide film


4


between impurity diffusion regions


3


in the silicon substrate


1


. In this event, the characteristic of the capacitor portion


19


does not deteriorate during a manufacturing process in a reduction atmosphere after the formation of the capacitor portion


19


because the capacitor portion


19


is completely covered with the hydrogen barrier films


7


,


11


, and


12


. Further, a MOS characteristic is effectively ensured by a hydrogen anneal, and Vt of the transistor is not fluctuated because the hydrogen barrier film is removed over the transistor.





FIGS. 2-9

are side cross-sectional views showing a method of manufacturing such a semiconductor device at the respective manufacturing steps.




First, as shown in

FIG. 2

, a transistor portion is fabricated by forming the gate electrode


5


on the gate oxide film


4


between the impurity diffusion regions


3


in the silicon substrate


1


by use of a known CMOS process. Thereafter, a first interlayer insulating film


6


of a BPSG layer is formed, and a first hydrogen barrier film


7


having the film thickness of100 to 2000 Å (for example, 500 Å) is formed on the interlayer insulating film


6


. The hydrogen barrier film


7


is a Si


3


N


4


film that is formed by using a reduced pressure CVD method or a sputtering method. If the film thickness is less than100 Å, the hydrogen barrier film


7


does not provide sufficient b r performance. On the other hand, if film thickness exceeds 2000 Å , warping of the silicon substrate


1


occurs because of stress from the Si


3


N


4


film. Therefore, thicknesses outside the range 100-2000 Å are undesirable. The Si


3


N


4


film due to the reduced pressure CVD method is excessively dense and the content of the hydrogen is also small. Subsequently, as shown in

FIG. 3

, the lower electrode


8


, the capacitor insulating film


9


, the upper electrode


10


and a second hydrogen barrier film


11


are successively deposited on the barrier film


7


. A contact layer, such as SiO


2


, may be also formed between the hydrogen barrier film


7


and the lower electrode


8


. For example, where a contact layer of NSG having a film thickness of 500 Å is formed on the hydrogen barrier film, a lower electrode


8


comprising a Ti film of 500 Å thickness and a Pt layer of 2000 Å thickness is deposited thereon by the use of a sputtering method. Further, the capacitor insulating film


9


having a film thickness of 2000 Å is formed by use of a sol-gel process. Thereafter, the upper electrode


10


of Pt having a film thickness of 200 Å and the hydrogen barrier film


11


of TiN having the film thickness of 500 Å are successively deposited thereon by a sputtering method. The barrier film


11


must be conductive so a conductive nitride, such as TiN and TaN, is used to form it. Further, the film thickness thereof is set to 100 Å or more to obtain a sufficient barrier performance.




Then, as shown in

FIG. 4

, the hydrogen barrier film


11


, the upper electrode


10


, the capacitor insulating film


9


and the lower electrode


8


are processed by etching.




After a third hydrogen barrier film


12


is formed on the entire upper surface, as shown in

FIG. 5

, the hydrogen barrier film


7


and the hydrogen barrier film


12


over the transistor are removed by etching to obtain the condition illustrated in FIG.


6


. For example, the hydrogen barrier film


12


of Si


3


N


4


with a thickness of 500 Å is deposited by sputtering. Then, as shown in

FIG. 6

, the hydrogen barrier films


7


and


12


are removed from interlayer insulating film


6


, but not from the capacitor portion


19


.




Further, the hydrogen barrier film


12


is formed to the same thickness using Si


3


N


4


as the hydrogen barrier film


7


. However, it is desirable to apply a sputtering method as the deposition method because the CVD method has a hydrogen atmosphere that deteriorates capacitance characteristics. Also, a multilayer of Si


3


N


4


and SiO


2


or a film containing oxygen and nitrogen represented by SiON (namely, SiON or one selected from a group of Si


3


N


4


, SiON and SiO


2


) is applicable for the hydrogen barrier film


12


.




Next, as shown in

FIG. 7

, after a second insulating film


13


of SiO


2


is formed by the use of the CVD method, a contact hole is formed as shown in FIG.


8


. After a W film is finally formed by the CVD method as shown in

FIG. 9

, W is embedded into a contact portion


20


by the etch back, and the wiring layer


14


of Al is deposited and patterned. Thereafter, the hydrogen anneal is carried out at 400° C. to form a protection film on the wiring layer


14


.





FIG. 10

is a side cross-sectional view showing a basic structure with respect to a modification of the semiconductor device illustrated in FIG.


1


. In such a semiconductor device, a sequence for forming the hydrogen barrier is different from the semiconductor device illustrated in FIG.


1


. Namely, in this example, the second barrier film


11


is formed after the second interlayer insulating film


13


is formed and the contact hole is etched. Thereafter, the second hydrogen barrier film


11


, except over the capacitor portion


19


, is removed. The same structure as the semiconductor device illustrated in

FIG. 1

can be obtained by the above manufacturing method.




In the structure illustrated in

FIG. 1

, a heat treatment of a high temperature in an atmosphere containing oxygen cannot be performed because the capacitor insulating film


9


is insulated from oxidation after the formation of the second hydrogen barrier film


11


. However, the capacitance characteristic can be improved by performing an oxygen anneal after processing the capacitor insulating film


9


, because the second hydrogen barrier film


11


is not formed at the same time as the capacitor insulating film


9


in this structure.





FIG. 11

is a side cross-sectional view showing a basic structure according to another modification example of the semiconductor device illustrated in FIG.


1


.




In such a semiconductor device, the second hydrogen film


11


is formed after the third hydrogen barrier film


12


is formed and the contact hole of the capacitor portion


19


is etched. Thereafter, in contrast to the semiconductor device illustrated in

FIG. 1

, the hydrogen barrier films


11


and


12


, except on the capacitor portion


19


, are removed. A structure equivalent to the semiconductor device illustrated in

FIG. 1

can be obtained by the above manufacturing method.





FIG. 12

is a side cross-sectional view showing a basic structure according to another modification of the semiconductor device illustrated in FIG.


1


. In such a semiconductor device, in contrast to the semiconductor device illustrated in

FIG. 1

, the first hydrogen barrier film


7


is etched simultaneously with the lower electrode


9


. A structure equivalent to the semiconductor device illustrated in

FIG. 1

can be obtained by this manufacturing method.





FIG. 13

shows the result of measuring the hysteresis curve [polarization (μC/cm2) as a function of voltage(V)] of the capacitor device portion before and after the hydrogen anneal for the semiconductor device illustrated in FIG.


1


. The capacitor insulating film comprised SrBi


2


Ta


2


O


9


. The resulting curve shows that almost no deterioration due to the hydrogen anneal occurred.





FIG. 14

shows a frequency distribution of measured Vt-value before and after the hydrogen anneal (in the case of nMOS and pMOS transistors) for the semiconductor device illustrated in FIG.


1


. It is found from the measurement results that the fluctuation of Vt after the hydrogen anneal is largely reduced.





FIG. 15

shows a side cross-sectional view showing the basic structure of a semiconductor device according to a second embodiment of this invention.




A device isolation oxide film


2


, an interlayer insulating film


6


having a plug


15


, a hydrogen barrier film


7


, a hydrogen barrier film


11


, a lower electrode


8


, a capacitor insulating film


9


, a hydrogen barrier film


12


and a wiring layer


14


are deposited in this order on a silicon substrate


1


. In this case, a capacitor portion


19


comprising the lower electrode


8


and the capacitor insulating film (dielectric film)


9


is completely covered with the hydrogen barrier films


7


,


11


and


12


, and a gate electrode


5


is formed on a gate oxide film


4


between impurity diffusion regions


3


in the silicon substrate


1


. In this example, in contrast to the first embodiment, the lower electrode


8


is connected to a source and a drain of a selection transistor via plug


15


. As in the first embodiment, however, the capacitor portion


19


is covered with the hydrogen barrier films


7


,


11


, and


12


, and the hydrogen barrier films, except on the capacitor portion


19


, are removed. Although the capacitor portion


19


substantially overlaps the transistor portion, as shown in

FIG. 15

, and the hydrogen barrier films


7


,


11


, and


12


are located above the transistor portion, the MOS characteristic is ensured by the hydrogen anneal because the hydrogen sufficiently diffuses from the portion between the capacitor portions


19


from which the hydrogen barrier is removed.





FIGS. 16-24

are side cross-sectional views showing a method of manufacturing the semiconductor device of

FIG. 15

for each manufacturing step.




First, as shown in

FIG. 16

, a first barrier film


7


is formed in the same sequence as the first embodiment, and as shown in

FIG. 17

, a contact hole is formed by the etching. Thereafter, as shown in

FIG. 18

, a plug


15


is formed by an etch back after polysilicon is deposited by using a CVD method.




Next, as shown in

FIG. 19

, the second barrier film


11


and the lower electrode


8


are deposited. TiN, TaN and the like are used as the hydrogen barrier film


11


because it must be conductive. The barrier film


11


has a film thickness of 100 Å or more to obtain sufficient barrier performance. For example, the hydrogen-barrier film


11


of TaN having a film thickness of 500 Å and the lower electrode


8


of Ru are deposited by a sputtering method.




Further, as shown in

FIG. 20

, lower electrode


8


and the hydrogen barrier film


11


are processed by etching, followed by formation of the capacitor insulating film


9


thereon, as shown in FIG.


21


. The capacitor insulating film


9


is processed by etching, as shown in FIG.


22


. For example, after the hydrogen barrier film


11


of TaN film and the lower electrode


8


of Ru layer are etched, (Ba,Sr)TiO


3


is formed as the capacitor insulating film


9


by a CVD method. Thereafter, the etching process is carried out.




Successively, as shown in

FIG. 23

, the third barrier film


12


, which is conductive, is formed, and the wiring layer


14


of a plate line layer is formed thereon. For example, the hydrogen barrier film


12


of TiN having a thickness of 500 Å is formed by the CVD method, and then polysilicon is formed as the plate line layer by CVD to obtain wiring layer


14


. In this case, the CVD method used to form hydrogen barrier film


12


provides a film having excellent step coverage. In the formation of the wiring layer


14


, polysilicon is formed in a reduction atmosphere in which the reaction represented by SiH


4


→Si+2H


2


is performed. However, the capacitor insulating film


9


is not degraded because the hydrogen barrier film


12


of TiN film is in place.




Subsequently, wiring layer


14


and hydrogen barrier films


12


and


7


are removed from between capacitor portions


19


by etching, as shown in FIG.


24


. Thereafter, the second interlayer insulating film


13


and a wiring layer of Al (not shown) are formed thereon. Next, the hydrogen anneal is carried out at 400° C. (Ba,Sr)TiO


3


of the capacitor insulating film


9


in the semiconductor device (nMOS and pMOS transistors) has a dielectric constant of about 300, and the fluctuation of Vt of the transistor is 10% or less in the case of both nMOS and pMOS.





FIG. 25

is a side cross-sectional view showing a basic structure according to one modified embodiment of the semiconductor device illustrated in FIG.


15


. In such a semiconductor device, the etching process after the formation of the capacitor insulating film


9


is omitted, and the capacitor insulating film


9


is etched at the same time with the wiring layer


14


. Basically, the same structure as the semiconductor device illustrated in

FIG. 15

can be obtained using the above manufacturing step. This semiconductor device has the advantage of reducing the manufacturing steps. On the other hand, compared to the semiconductor device depicted in

FIG. 15

, the semiconductor device is subjected more to the damage arising from hydrogen because the capacitor insulating film


9


is exposed at the side. However, a small degree of deterioration can be permitted because the side portion, which does not contact with the lower electrode


8


, does not function in the capacitor.





FIG. 26

is a side cross-sectional view showing a basic structure according to another modified embodiment of the semiconductor device depicted in FIG.


15


. In such a semiconductor device, in contrast to the semiconductor device of

FIG. 15

, the first hydrogen film


7


is omitted and the second hydrogen barrier film


11


is etched at the same time as wiring layer


14


. Basically, the same structure as the semiconductor device illustrated in

FIG. 15

can be obtained by using the above manufacturing process. In this event, although the capacitor insulating film


9


is exposed at the side surface, as in the semiconductor device of

FIG. 25

, this semiconductor device has the advantage that the manufacturing process can be shortened.




As described above, the deterioration of the capacitor insulating film (dielectric film) due to the hydrogen can be completely prevented, and further, excellent capacitance characteristics can be obtained in the semiconductor devices and with the manufacturing methods of this invention, despite manufacturing steps in a reduction atmosphere. Consequently, the yield can be increased as a result of increments of the operating margin. In addition, excellent capacitance characteristics can be obtained because the capacitor portion


19


is directly covered with the hydrogen barrier film. Further, the manufacturing process can be performed using a CVD method for depositing W after the formation of the capacitor portion


19


, without increasing the size of the hydrogen barrier film with respect to the capacitor portion


19


. Consequently, the cell area necessary for the capacitor portion


19


can be reduced, and a contact portion


20


having a high aspect ratio can be formed. In addition, the characteristic deterioration of the capacitor portion


19


with time can be prevented, and the reliability can be improved because the hydrogen barrier film has a high barrier performance for the water in addition to hydrogen.




There has been described a method for fabricating ferroelectric integrated circuits that permits exposure to hydrogen and still results in ferroelectric devices with good electrical properties. It should be understood that the particular embodiments shown in the drawings and described within this specification are for purposes of example and should not be construed to limit the invention which will be described in the claims below. Further, it is evident that those skilled in the art may now make numerous uses and modifications of the specific embodiments described, without departing from the inventive concepts. It is also evident that the steps recited may, in some instances, be performed in a different order; or equivalent structures and processes may be substituted for the various structures and processes described. Consequently, the invention is to be construed as embracing each and every novel feature and novel combination of features present in and/or possessed by the fabrication processes, electronic devices, and electronic device manufacturing methods described.



Claims
  • 1. A method of manufacturing a semiconductor device comprising steps of:forming a lower electrode on a first hydrogen barrier film; forming a capacitor insulating film on said lower electrode; forming an upper electrode on said capacitor insulating film; forming a second hydrogen barrier film on said upper electrode; patterning together said first hydrogen barrier film, said lower electrode, said capacitor insulating film, said upper electrode, and said second hydrogen barrier film to form a patterned surface including a capacitor portion; forming a third hydrogen barrier film on said patterned surface, whereby said third hydrogen barrier film is nonconductive; removing said third hydrogen barrier film from said patterned surface except not from said capacitor portion; and removing a portion of said third hydrogen barrier film on said upper electrode to form a contact portion.
  • 2. A method of manufacturing a semiconductor device comprising steps of:forming a lower electrode on a first hydrogen barrier film; forming a capacitor insulating film on said lower electrode; forming an upper electrode on said capacitor insulating film; patterning together said first hydrogen barrier film, said lower electrode, said capacitor insulating film and said upper electrode to form a patterned surface including a capacitor portion; forming a third hydrogen barrier film on said patterned surface and removing said third hydrogen barrier film except not from said capacitor portion; removing a portion of said third hydrogen barrier film on said upper electrode to form a contact portion; and forming a second hydrogen barrier film to cover said contact portion, said second hydrogen barrier film being conductive.
  • 3. A method of manufacturing a semiconductor device comprising steps of:forming a first, nonconductive hydrogen barrier film on an interlayer insulating film; forming a plug; forming a second, conductive hydrogen barrier film on said plug; forming a lower electrode on said second, conductive hydrogen barrier film; patterning said lower electrode and said second, conductive hydrogen barrier film to form a patterned surface including a capacitor portion; forming a capacitor insulating film on said patterned surface; removing said capacitor insulating film from said patterned surface except not from said capacitor portion; forming a third, conductive hydrogen barrier film on said patterned surface including on said capacitor portion; removing said third, conductive hydrogen barrier film and said first, nonconductive hydrogen barrier film from said interlayer insulating film except not from said capacitor portion.
  • 4. A method of manufacturing a semiconductor device comprising steps of:forming a first, nonconductive hydrogen barrier film on an interlayer insulating film; forming a plug in said first, nonconductive hydrogen barrier film and in said interlayer insulating film; forming a second, conductive hydrogen barrier film on said plug and on said first, nonconductive hydrogen barrier film; forming a lower electrode on said second, conductive hydrogen barrier film; patterning said lower electrode and said second, conductive hydrogen barrier film to form a patterned surface including a capacitor portion; forming a capacitor insulating film on said patterned surface including on said capacitor portion; forming a third, conductive hydrogen barrier film on said patterned surface including on said capacitor portion; removing said third, conductive hydrogen barrier film, said capacitor insulating film and said first, nonconductive hydrogen barrier film from said interlayer insulating film except not from said capacitor portion.
  • 5. A method of manufacturing a semiconductor device comprising steps of:forming a plug in an interlayer insulating film; forming a first, conductive hydrogen barrier film on said plug and on said interlayer insulating film; forming a lower electrode on said first, conductive hydrogen barrier film; patterning said lower electrode to form a patterned surface including a capacitor portion; forming a capacitor insulating film on said patterned surface including on said capacitor portion; forming a second, conductive hydrogen barrier film on said patterned surface including on said capacitor portion; removing said second, conductive hydrogen barrier film, said capacitor insulating film and said first, conductive hydrogen barrier film from said interlayer insulating film, except not from said capacitor portion.
Priority Claims (1)
Number Date Country Kind
9-299789 Oct 1997 JP
RELATED APPLICATIONS

This application is a divisional application of application Ser. No. 09/178,620 filed Oct. 26, 1998 now U.S. Pat. No. 6,188,098.

US Referenced Citations (5)
Number Name Date Kind
5481490 Watanabe et al. Jan 1996 A
5523595 Takenaka et al. Jun 1996 A
5716875 Jones, Jr. et al. Feb 1998 A
5793076 Fazan et al. Aug 1998 A
6249014 Bailey Jun 2001 B1
Foreign Referenced Citations (9)
Number Date Country
0 766 319 Apr 1997 EP
0290061 Feb 1999 EP
7-111318 Apr 1995 JP
7-273297 Oct 1995 JP
9-97883 Apr 1997 JP
9-246497 Sep 1997 JP
11-8355 Jan 1999 JP
2001036026 Feb 2001 JP
2001068639 Mar 2001 JP
Non-Patent Literature Citations (1)
Entry
Achard et al., “Integration Of Ferroelectric Thin Films For Memory Applications”, Science and Technology of Electroceramic Thin Films, Kluwer Academic Publishers, The Netherlands, pp. 353-372 (1995).