Semiconductor device comprising various thin-film transistors

Information

  • Patent Grant
  • 11929437
  • Patent Number
    11,929,437
  • Date Filed
    Wednesday, October 13, 2021
    2 years ago
  • Date Issued
    Tuesday, March 12, 2024
    2 months ago
Abstract
A transistor includes oxide semiconductor stacked layers between a first gate electrode layer and a second gate electrode layer through an insulating layer interposed between the first gate electrode layer and the oxide semiconductor stacked layers and an insulating layer interposed between the second gate electrode layer and the oxide semiconductor stacked layers. The thickness of a channel formation region is smaller than the other regions in the oxide semiconductor stacked layers. Further in this transistor, one of the gate electrode layers is provided as what is called a back gate for controlling the threshold voltage. Controlling the potential applied to the back gate enables control of the threshold voltage of the transistor, which makes it easy to maintain the normally-off characteristics of the transistor.
Description
TECHNICAL FIELD

The invention disclosed in this specification relates to a semiconductor device and a method for manufacturing the semiconductor device.


In this specification and the like, a semiconductor device refers to all types of devices that can function by utilizing semiconductor characteristics; an electro-optical device, a light-emitting display device, a semiconductor circuit, and an electronic device are all semiconductor devices.


BACKGROUND ART

A technique for forming a transistor by using a semiconductor thin film formed over a substrate having an insulating surface has attracted attention. Such a transistor is applied to a wide range of semiconductor electronic devices such as an integrated circuit (IC) and an image display device (also simply referred to as display device). A silicon-based semiconductor material is widely known as a material for a semiconductor thin film applicable to the transistor. As another material, an oxide semiconductor has been attracting attention.


For example, a technique is disclosed by which a transistor is manufactured using zinc oxide or an In—Ga—Zn-based oxide as an oxide semiconductor (see Patent Documents 1 and 2).


REFERENCE
Patent Document



  • [Patent Document 1] Japanese Published Patent Application No. 2007-123861

  • [Patent Document 2] Japanese Published Patent Application No. 2007-096055



DISCLOSURE OF INVENTION

In a transistor used in a semiconductor device, it is preferable that a channel be formed at a positive threshold voltage (Vth) which is as close to 0 V as possible. A transistor having a negative threshold voltage tends to be what is called a normally-on transistor that passes a current between a source and a drain even at a gate voltage of 0 V, and a circuit including such a transistor is difficult to control. For this reason, the transistor having the negative threshold voltage is not suited for the use in an integrated circuit of a semiconductor device.


In view of the above, an object of one embodiment of the present invention is to provide a structure of an n-channel transistor including an oxide semiconductor in its channel formation region which has a positive threshold voltage, that is, which enables a normally-off switching element, and to provide a method for forming the structure.


Further, it is important to make transistor characteristics close to the normally-off characteristics even when the transistor cannot become a normally-off transistor due to the material or the manufacturing condition. Thus, another object of one embodiment of the present invention is to provide a structure of a transistor which enables a threshold voltage close to zero even when the threshold voltage is negative, that is, even when the transistor is a normally-on transistor, and to provide a method for forming the structure.


Note that one embodiment of the present invention achieves at least one of the above objects.


In one embodiment of the present invention, a transistor includes oxide semiconductor stacked layers between a first gate electrode layer and a second gate electrode layer through an insulating layer interposed between the first gate electrode layer and the oxide semiconductor stacked layers and an insulating layer interposed between the second gate electrode layer and the oxide semiconductor stacked layers, and the thickness of a channel formation region is smaller than the other regions in the oxide semiconductor stacked layers. Further in this transistor, one of the gate electrode layers is provided as what is called a back gate for controlling the threshold voltage. Controlling the potential applied to the back gate enables control of the threshold voltage of the transistor, which makes it easy to maintain the normally-off characteristics of the transistor. More specifically, the following structures can be employed, for example.


One embodiment of the present invention is a semiconductor device which includes a first gate electrode layer over an insulating surface, a first insulating layer over the first gate electrode layer, oxide semiconductor stacked layers including a first oxide semiconductor layer and a second oxide semiconductor layer and overlapping with the first gate electrode layer with the first insulating layer interposed between the first gate electrode layer and the oxide semiconductor stacked layers, a source electrode layer and a drain electrode layer over and in contact with the second oxide semiconductor layer, a second insulating layer over and in contact with the source electrode layer, the drain electrode layer, and part of the oxide semiconductor stacked layers, and a second gate electrode layer overlapping with the oxide semiconductor stacked layers with the second insulating layer interposed therebetween. In the oxide semiconductor stacked layers, a region in contact with the second insulating layer has a smaller thickness than a region in contact with the source electrode layer and a region in contact with the drain electrode layer.


Another embodiment of the present invention is a semiconductor device which includes a first gate electrode layer over an insulating surface, a first insulating layer over the first gate electrode layer, oxide semiconductor stacked layers including a first oxide semiconductor layer and a second oxide semiconductor layer and overlapping with the first gate electrode layer with the first insulating layer interposed between the first gate electrode layer and the oxide semiconductor stacked layers, a source electrode layer and a drain electrode layer over and in contact with the second oxide semiconductor layer, a second insulating layer over and in contact with the source electrode layer, the drain electrode layer, and part of the oxide semiconductor stacked layers, and a second gate electrode layer overlapping with the oxide semiconductor stacked layers with the second insulating layer interposed therebetween. In the semiconductor device, the first oxide semiconductor layer and the second oxide semiconductor layer have the same constituent elements and different compositions of the constituent elements. Further, in the oxide semiconductor stacked layers, a region in contact with the second insulating layer has a smaller thickness than a region in contact with the source electrode layer and a region in contact with the drain electrode layer.


In the above-described semiconductor devices, it is preferable that the first oxide semiconductor layer include at least indium and gallium, and that an indium content be higher than a gallium content in the first oxide semiconductor layer.


Further in the above-described semiconductor devices, it is preferable that the second oxide semiconductor layer include at least indium and gallium, and that an indium content be lower than or equal to a gallium content in the second oxide semiconductor layer.


Further in the above-described semiconductor devices, it is preferable that at least one of the first gate electrode layer and the second gate electrode layer be a conductive layer having a work function of 5 electron volts or more. For example, at least one of the first gate electrode layer and the second gate electrode layer is preferably an In—Ga—Zn—O film including nitrogen.


The effect of the above-described structures of embodiments of the invention disclosed herein can be explained as follows. Note that the following description is merely one consideration.


A transistor using an oxide semiconductor can be regarded as an accumulation-mode n-channel MOSFET using electrons which are its majority carriers. In an n-channel inversion-mode MOSFET using silicon, an inversion layer is formed in the vicinity of a surface of an active layer (silicon here) by application of a gate voltage, thereby forming a channel. Meanwhile in the accumulation-mode MOSFET, a channel through which a current flows is formed by accumulation of electrons, which are majority carriers, in the vicinity of a surface of an active layer (an oxide semiconductor layer here) in an on state. Further, in an off state, the entire active layer is completely depleted by being applied with a negative gate voltage.


As the on-state current in the accumulation-mode MOSFET, there exist a first current that flows in the vicinity of the surface (accumulation) and a second current that flows through the entire region in the film thickness direction in the active layer. This is largely different from the inversion-mode MOSFET. Here, assuming that the threshold voltage of the first current is Vth_1 and the threshold voltage of the second current is Vth_2, when the gate voltage Vg is lower than the threshold voltage of the second current (Vg<Vth_2), the entire region in the film thickness direction in the active layer is depleted (completely depleted) and the transistor is in an off state. When the gate voltage Vg is increased to be higher than the threshold voltage Vth_2 of the second current and lower than the threshold voltage Vth_1 of the first current (Vth_2<Vg<Vth_1), the width of the depletion layer decreases (partly depleted state), and the second current flows on the back channel side; thus, the transistor is in an on state. When the gate voltage Vg is further increased to be a voltage exceeding the threshold voltage of the first current (Vth_1<Vg), the depletion layer disappears and carriers (electrons) are accumulated in the vicinity of the surface of the active layer; thus, the first current flows.


The threshold voltage Vth_2 of the second current and the threshold voltage Vth_1 of the first current in the accumulation-mode n-channel MOSFET are expressed by Equation 1 and Equation 2 using gradual channel approximation.












th

_

2



=






F

B




-

(

1
+

2



C
S


C

o

x





)






e


N
d



t
S
2



2


ɛ
S




=





F

B




-

(



C

o

x



C
S


+
2

)






e


N
d



t
S



2


C

o

x










[

Equation





1

]







Vt


h

_

1



=

V

F

B






[

Equation





2

]







In Equations 1 and 2, VFB is a flat band voltage, Cs is a capacitance of the active layer, Cox is a capacitance of a gate insulating layer, Nd is a donor density, and ts is a thickness of the active layer.


According to Equation 1, increase in the donor density (Nd) and the thickness (ts) of the active layer moves (shifts) the threshold voltage Vth_2 of the second current in the negative direction. Further, according to Equation 1 and Equation 2, increase in the flat band voltage (VFB), that is, increase in the work function of a gate electrode layer is important in shifting the threshold voltages (Vth_1 and Vth_2) of the accumulation-mode n-channel MOSFET in the positive direction.


Next, dependence of electric characteristics of a transistor that uses an oxide semiconductor on the thickness (TOS) of an oxide semiconductor layer and the donor density (Nd) was calculated with a device simulator.


The transistor structure assumed in the calculation is shown in FIG. 9. Further, calculation conditions are shown in Table 1.


This calculation used a transistor 320 illustrated in FIG. 9, which includes an oxide semiconductor layer 306 formed over an insulating layer 302 with a thickness of 300 nm, a source electrode layer 308a and a drain electrode layer 308b over the oxide semiconductor layer 306, a gate insulating layer 310 that covers the source electrode layer 308a and the drain electrode layer 308b and is partly in contact with the oxide semiconductor layer 306, and a gate electrode layer 112 that overlaps with the oxide semiconductor layer 306 with the gate insulating layer 310 sandwiched therebetween.











TABLE 1







Channel length (L)/Channel width (W)
1/1
[um]


Thickness (Tox) of gate insulating
10
nm/22


layer/Dielectric constant (ε)




Thickness (Tos) of oxide
10, 20, 30, 40, 50
[nm]


semiconductor layer










Thickness of source electrode layer or
50 [nm]/4.6 eV









drain electrode layer/Work function




Work function of gate electrode layer
5.0
[eV]










Parameters
Band gap (Eg)
3.15
[eV]


of oxide
Electron affinity (χ)
4.6
[eV]









semiconductor
Dielectric constant (ε)
15










layer
Electron mobility (μn)
20
[cm2/Vs]



Hole mobility (μp)
0.1
[cm2/Vs]



Nc
5E18
[cm−3]



Nv
5E18
[cm−3]









Donor density (Nd)
1E16, 1E17, 1E18
[cm−3]





* Defect level and tunneling current are not assumed.


* No fixed charge at the interface on the gate insulating layer side.






The IdVg characteristics (Vd=0.1 V) obtained by this calculation are shown in FIGS. 10A to 10C. FIGS. 10A to 10C show transistor characteristics based on the assumption that the density (Nd) of donors contained in the oxide semiconductor layer is 1×1018 cm−3 (FIG. 10A), 1×1017 cm−3 (FIG. 10B), and 1×1016 cm−3 (FIG. 10C).


In the case where the donor density (Nd) is high as shown in FIG. 10A, electric characteristics are favorable with a small thickness of the oxide semiconductor layer (e.g., 10 nm); however, normally-on characteristics are observed with larger thicknesses of the oxide semiconductor layer.


In the case where the donor density (Nd) is reduced to 1×1017 cm−3 as shown in FIG. 10B, the shift of the characteristics in the negative direction in accordance with the increase in the thickness of the oxide semiconductor layer is smaller. Moreover, the on-state current (Ion) is almost uniform without dependence on the thickness of the oxide semiconductor layer. Further, in the case where the donor density (Nd) is reduced to 1×1016 cm−3 as shown in FIG. 10C, almost no shift of characteristics in the negative direction in accordance with the increase in the thickness of the oxide semiconductor layer is seen.


From the above-described calculation results, the decrease in the thickness of the oxide semiconductor layer and the decrease in the density of donors contained in the oxide semiconductor layer are the keys to achieving a normally-off transistor.


A transistor described as one embodiment of the present invention includes oxide semiconductor stacked layers in which a channel formation region is thinner than the other region (e.g., a region in contact with the source electrode layer or the drain electrode layer). This can suppress the shift of the threshold voltage of the transistor in the negative direction.


Next, causes of the normally-on characteristics of the transistor are considered. In this consideration, the transistor with a thickness of the oxide semiconductor layer of 50 nm and a donor density of 1×1018 cm−3, which has characteristics shown in FIG. 10A, is used.


As described above, in the accumulation-mode MOSFET, there exist the first current that flows in the vicinity of the surface of the active layer (accumulation) and the second current that flows through the entire region in the film thickness direction in the active layer as the on-state current. It is known that the first current and the second current can be distinguished from each other by second-order differentiation of the IdVg characteristics. The graph in FIG. 11A shows IdVg characteristics (solid line) of the transistor with a thickness of the oxide semiconductor layer of 50 nm and a donor density of 1×1018 cm−3, and values obtained by the second-order differentiation (thick line).


In FIG. 11A, the line obtained by the second-order differentiation of the IdVg characteristics has two peaks. This indicates that when the gate voltage (Vg) reaches the first peak (Vg=−1.52 V) by sweeping the gate voltage (Vg) in the positive direction from −3 V, the second current starts flowing and when it reaches the second peak (Vg=0.30 V), the first current starts flowing. These numerical results are almost consistent with the calculation results (Vth_2=−1.56 V, Vth_1=0.36 V) obtained by substituting the parameters in Table 1 into Equation 1 and Equation 2 which use gradual channel approximation.


Thus, it is effective to suppress the second current that flows at a low gate voltage rather than the first current, in order to achieve a normally-off transistor.



FIG. 11B shows current density distributions in a film thickness direction at several gate voltages. When a gate voltage Vg of −3 V is applied, the transistor is in an off state and in a completely depleted state without electrons in the channel region. At the gate voltage Vg higher than Vth_2, the channel region is in a partly depleted state; at this time, the second current starts flowing on the back channel side. When Vth_2<Vg<Vth_1, the second current is dominant in the on-state current. When the gate voltage Vg is higher than Vth_1, the second current is not increased and the current density in the vicinity of the interface of the gate insulating layer is increased. At this time, the current density of the second current is about two orders of magnitude smaller than that of the first current. In other words, the first current is dominant when the transistor is in an on state.


The transistor described as one embodiment of the present invention includes a first gate electrode layer and a second gate electrode layer between which the oxide semiconductor layer including the channel formation region is sandwiched. A bias voltage is applied to one of the gate electrode layers to suppress generation of the second current on the back channel side. In this way, the threshold voltage of the transistor can be moved in the positive direction.


Further, a conductive layer having a large work function (e.g., 5 eV or more) can be used as the gate electrode layers, whereby the threshold voltage can be moved in the positive direction. As the conductive layer having a large work function, an In—Ga—Zn—O film including nitrogen at least at a concentration higher than that of the oxide semiconductor layer can be used, for example.


Note that in the case where the gate insulating layer (the insulating layer provided between the gate electrode layer and the oxide semiconductor layer) contains positive ions such as sodium ions, the positive ions move to the interface between the gate insulating layer and the oxide semiconductor layer in response to the application of a positive bias voltage to the gate electrode layer, which causes the threshold voltage of the transistor to move in the negative direction. However, usage of a material with a large work function for the gate electrode layer can move the positive ions at the interface between the oxide semiconductor layer and the gate insulating layer to the gate electrode layer side.



FIG. 12 shows a schematic diagram example of a band structure of an OSFET model which includes an In—Ga—Zn—O film as an oxide semiconductor layer and also includes an In—Ga—Zn—O film including nitrogen as a gate electrode layer. Here, the In—Ga—Zn—O film, which is the oxide semiconductor layer (denoted by OS in FIG. 12), has an electron affinity of 4.6 eV and a band gap of 3.2 eV. The In—Ga—Zn—O film including nitrogen, which is the gate electrode layer (denoted by GE in FIG. 12), has a work function of 5.6 eV and a band gap of 1.8 eV. Note that in FIG. 12, the oxide semiconductor layer is n-type, and the Fermi level EF is located above the center of the band gap.


As shown in FIG. 12, the energy band of the In—Ga—Zn—O film curves upward in the vicinity of the interface with the gate insulating layer (denoted by GI in FIG. 12), and the flat band voltage VFB is higher than 0. Thus, electric field is generated in the gate insulating layer from the interface with the oxide semiconductor layer toward the interface with the gate electrode layer; accordingly, the interface with the oxide semiconductor layer is positively charged and the interface with the gate electrode layer is negatively charged. That is, the positive ions at the interface with the oxide semiconductor layer move to the gate electrode layer side.


In the above-described manner, the usage of the material with a large work function (e.g., the In—Ga—Zn—O film including nitrogen) for the gate electrode layer also has an effect of drawing positive ions at the interface with the oxide semiconductor layer to the gate electrode layer side.


With one embodiment of the present invention, a normally-off transistor or a transistor which has a threshold voltage close to 0 V although being normally-on can be achieved.





BRIEF DESCRIPTION OF DRAWINGS

In the accompanying drawings:



FIGS. 1A and 1B are a plan view and a cross-sectional view, respectively, illustrating one embodiment of a semiconductor device;



FIGS. 2A to 2F illustrate an example of a method for manufacturing a semiconductor device;



FIGS. 3A and 3B are a cross-sectional view and a circuit diagram, respectively, illustrating one embodiment of a semiconductor device;



FIGS. 4A and 4B are a circuit diagram and a perspective view, respectively, illustrating one embodiment of a semiconductor device;



FIG. 5A is a block diagram illustrating one embodiment of a semiconductor device and FIGS. 5B and 5C are circuit diagrams each illustrating part of the semiconductor device;



FIGS. 6A to 6C illustrate electronic devices;



FIGS. 7A to 7C illustrate an electronic device;



FIGS. 8A to 8C illustrate electronic devices;



FIG. 9 illustrates a transistor structure used in calculation;



FIGS. 10A to 10C show Id-Vg characteristics obtained by calculation;



FIG. 11A is a graph showing IdVg characteristics and a line obtained by second-order differentiation of the IdVg characteristics and FIG. 11B shows current density distributions in a film thickness direction at several gate voltages;



FIG. 12 is a schematic view of a band structure in an OSFET model; and



FIG. 13A is a cross-sectional view and FIGS. 13B and 13C are circuit diagrams illustrating one embodiment of a semiconductor device.





BEST MODE FOR CARRYING OUT THE INVENTION

Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the following description, and it will be easily understood by those skilled in the art that the mode and details can be changed in various ways. Therefore, the present invention should not be construed as being limited to the description in the following embodiments.


Note that in structures of the present invention described below, the same portions or portions having similar functions are denoted by the same reference numerals throughout different drawings, and description thereof is not repeated. Further, the same hatching pattern is applied to portions having similar functions, and the portions are not especially denoted by reference numerals in some cases.


Note that in each drawing in this specification, the size, the film thickness, or the region of each component may be exaggerated for clarity in some cases. Therefore, the scale is not limited to those in the drawings.


Note that in this specification and the like, the ordinal numbers such as “first” and “second” are used for convenience and do not denote the order of steps or the stacking order of layers. In addition, the ordinal numbers in this specification and the like do not denote particular names which specify the present invention.


In this specification, a term “parallel” indicates that the angle formed between two straight lines is greater than or equal to −10° and less than or equal to 10°, and accordingly also includes the case where the angle is greater than or equal to −5° and less than or equal to 5°.


In this specification, the trigonal and rhombohedral crystal systems are included in the hexagonal crystal system.


Embodiment 1

In this embodiment, one embodiment of a semiconductor device and one embodiment of a method for manufacturing the semiconductor device are described with reference to FIGS. 1A and 1B and FIGS. 2A to 2F. In this embodiment, a transistor including an oxide semiconductor stacked layers is described as an example of the semiconductor device.



FIGS. 1A and 1B illustrate an example of a structure of a transistor 120. FIG. 1A is a plan view of the transistor 120, and FIG. 1B is a cross-sectional view taken along a chain line X1-Y1 in FIG. 1A.


As illustrated in the cross-sectional view in the channel length direction in FIG. 1B, the transistor 120 includes, over a substrate 100 having an insulating surface, a gate electrode layer 102, an insulating layer 104, an oxide semiconductor stacked layers 106 including an oxide semiconductor layer 106a and an oxide semiconductor layer 106b, a source electrode layer 108a, a drain electrode layer 108b, an insulating layer 110, and a gate electrode layer 112.


In the transistor 120, the gate electrode layer 102 overlaps with the oxide semiconductor stacked layers 106 with the insulating layer 104 sandwiched therebetween, and the gate electrode layer 112 overlaps with the oxide semiconductor stacked layers 106 with the insulating layer 110 sandwiched therebetween. Further, the oxide semiconductor layer 106b is provided over and in contact with the oxide semiconductor layer 106a. The source electrode layer 108a and the drain electrode layer 108b are in contact with the oxide semiconductor layer 106b of the oxide semiconductor stacked layers 106. In addition, the insulating layer 110 is provided over and in contact with the source electrode layer 108a, the drain electrode layer 108b, and part of the oxide semiconductor stacked layers 106. Further, in the oxide semiconductor stacked layers 106, a region in contact with the insulating layer 110 has a smaller thickness than regions in contact with the source electrode layer 108a or the drain electrode layer 108b.


In the oxide semiconductor stacked layers 106, the region with a small thickness is formed by etching a part of the oxide semiconductor stacked layers 106 in processing a conductive film for forming the source electrode layer 108a and the drain electrode layer 108b or by performing etching treatment on an exposed region of the oxide semiconductor stacked layers 106 after forming the source electrode layer 108a and the drain electrode layer 108b. The region with a small thickness serves as a channel formation region of the transistor 120. In the oxide semiconductor stacked layers 106, since the channel formation region has a small thickness, the number of oxygen vacancies included in the region can be smaller than that in the other regions; thus, such a small thickness of the channel formation region can result in a reduction in the density of donors in the channel formation region.


Further, by reducing the thickness of the channel formation region in the oxide semiconductor stacked layers 106, the resistance of the regions in contact with the source electrode layer 108a or the drain electrode layer 108b can be lower than that of the channel formation region. Thus, contact resistance with the source electrode layer 108a and the drain electrode layer 108b can be reduced.


As described above, in a transistor using an oxide semiconductor layer, the decrease in the thickness of the oxide semiconductor layer, which is the active layer, and the decrease in the density of donors included in the oxide semiconductor layer are the keys to achieving a normally-off transistor. Since the transistor 120 described in this embodiment includes the oxide semiconductor stacked layers 106 with the thin channel formation region, the movement of the threshold voltage of the transistor in the negative direction can be suppressed.


In this embodiment, an example in which part of the oxide semiconductor layer 106b in the oxide semiconductor stacked layers 106 is etched to form the region with small thickness in the oxide semiconductor stacked layers 106 is described. However, without limitation to this method, the region with a small thickness may be formed by etching part of the oxide semiconductor layer 106a or by etching part of the oxide semiconductor layer 106a and part of the oxide semiconductor layer 106b, in embodiments of the present invention.


It is preferable that the oxide semiconductor layer 106b in the oxide semiconductor stacked layers 106 include an oxide semiconductor which includes at least indium (In) and gallium (Ga) and has the following relation between the indium content and the gallium content: In≤Ga. The formation energy of oxygen vacancies is larger and thus oxygen vacancies are less likely to generate in Ga than in In; therefore, the oxide having a composition relation of In≤Ga has more stable characteristics than the oxide having a composition relation of In>Ga. With such an oxide semiconductor material, the reliability of the transistor can be improved.


Further, it is preferable that the oxide semiconductor layer 106a in the oxide semiconductor layers 106 include an oxide semiconductor which includes at least In and Ga and has the following relation between the indium content and the gallium content: In>Ga. In an oxide semiconductor, the s orbital of heavy metal mainly contributes to carrier transfer, and when the In content in the oxide semiconductor is increased, overlap of the s orbitals is likely to be increased. Therefore, the oxide having a composition relation of In>Ga has higher mobility than the oxide having a composition relation of In≤Ga. Accordingly, when a channel is formed in the oxide semiconductor layer 106a, mobility of the transistor can be increased.


The thickness of the oxide semiconductor layer 106a is preferably more than or equal to 3 nm and less than or equal to 15 nm, and further preferably more than or equal to 7 nm and less than or equal to 12 nm. In addition, the thickness of the oxide semiconductor layer 106b in the regions in contact with the source electrode layer 108a or the drain electrode layer 108b is preferably more than or equal to 3 nm and less than or equal to 15 nm, and further preferably more than or equal to 5 nm and less than or equal to 12 nm. Further, the thickness of the region functioning as the channel formation region (the region between the source electrode layer 108a and the drain electrode layer 108b) in the oxide semiconductor stacked layers 106 is preferably more than or equal to 3 nm and less than 20 nm, and further preferably more than or equal to 5 nm and less than 15 nm.


The insulating layer 104 in contact with the oxide semiconductor layer 106a preferably includes a region including oxygen in excess of the stoichiometric composition (hereinafter also referred to as an oxygen-excess region). By making the insulating layer 104 in contact with the oxide semiconductor layer 106a include an oxygen-excess region, supply of oxygen to the oxide semiconductor layer 106a is possible. Accordingly, release of oxygen from the oxide semiconductor layer 106a can be prevented and oxygen vacancies can be compensated. Similarly, the insulating layer 110 in contact with the oxide semiconductor layer 106b preferably includes an oxygen-excess region.


The gate electrode layer 102 at least on the side of the surface in contact with the insulating layer 104 is preferably formed using a material having a larger work function than the oxide semiconductor layer 106a, and further preferably formed using a material having a work function that is 1 electron volt or more larger than the oxide semiconductor layer 106a. Similarly, the gate electrode layer 112 at least on the side of the surface in contact with the insulating layer 110 is preferably formed using a material having a larger work function than the oxide semiconductor layer 106b, and further preferably formed using a material having a work function that is 1 electron volt or more larger than the oxide semiconductor layer 106b. As such a material, an In—Ga—Zn—O film including nitrogen, an In—Sn—O film including nitrogen, an In—Ga—O film including nitrogen, an In—Zn—O film including nitrogen, a Sn—O film including nitrogen, an In—O film including nitrogen, or a metal nitride film (such as an indium nitride film, a zinc nitride film, a tantalum nitride film, or a tungsten nitride film) can be used, for example. These films each have a work function of 5 electron volts or more and thus can make the threshold voltage of the transistor positive. Accordingly, a normally-off switching transistor can be achieved. For example, in the case of using an In—Ga—Zn—O film including nitrogen, an In—Ga—Zn—O film including nitrogen at least at higher concentration than those of the oxide semiconductor layer 106a and the oxide semiconductor layer 106b is used.


In this embodiment, the gate electrode layer 102 is an electrode layer functioning as a back gate and the potential of the gate electrode layer 102 can be set as appropriate to a fixed potential, GND, or the like. By controlling the gate voltage applied to the back gate, the threshold voltage of the transistor 120 can be controlled. Thus, the transistor 120 can be normally-off.


Further, in the case of applying a negative bias voltage to the gate electrode layer 102, positive ions (e.g., Na+) contained as impurities in the insulating layer 104 can be moved to the gate electrode layer 102 side.


An example of a method for manufacturing the transistor 120 will be described below with reference to FIGS. 2A to 2F.


First, the gate electrode layer 102 is formed over the substrate 100 having an insulating surface.


There is no particular limitation on the substrate that can be used as the substrate 100 having an insulating surface as long as it has heat resistance enough to withstand heat treatment performed later. For example, a glass substrate of barium borosilicate glass, aluminoborosilicate glass, or the like, a ceramic substrate, a quartz substrate, or a sapphire substrate can be used. Alternatively, a single crystal semiconductor substrate or a polycrystalline semiconductor substrate made of silicon, silicon carbide, or the like, a compound semiconductor substrate made of silicon germanium or the like, an SOI substrate, or the like can be used. Furthermore, any of these substrates provided with a semiconductor element may be used as the substrate 100.


The gate electrode layer 102 can be formed using a metal material such as molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, scandium, or the like, or an alloy material containing any of these metal materials as its main component. Alternatively, a semiconductor film typified by a polycrystalline silicon film doped with an impurity element such as phosphorus, or a silicide film such as a nickel silicide film may be used as the gate electrode layer 102. The gate electrode layer 102 may have a single-layer structure or a stacked-layer structure. The gate electrode layer 102 may have a tapered shape with a taper angle of more than or equal to 30° and less than or equal to 70° for example. Here, the taper angle refers to an angle formed between a side surface of a layer having a tapered shape and a bottom surface of the layer.


The material of the gate electrode layer 102 may be a conductive material such as indium oxide-tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium oxide-zinc oxide, or indium tin oxide to which silicon oxide is added.


Note that the gate electrode layer 102 at least on the side of the surface that is to be in contact with the insulating layer 104 is preferably formed using a material having a larger work function than the oxide semiconductor layer provided in contact with the insulating layer 104, and further preferably formed using a material having a work function that is 1 electron volt or more larger than the oxide semiconductor layer. As the conductive material having a large work function, a metal oxide including nitrogen can be used for example.


Next, an insulating layer 103 is formed over the gate electrode layer 102 so as to cover the gate electrode layer 102. The insulating layer 103 can be provided to have a single-layer structure or a stacked-layer structure including a film including silicon oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, hafnium oxide, gallium oxide, zinc gallium oxide, or a mixed material of these materials by a plasma CVD method, a sputtering method, or the like.


The insulating layer 103 is a layer to be processed into the insulating layer 104 that is in contact with the oxide semiconductor stacked layers 106. Accordingly, the insulating layer 103 preferably includes an oxygen-excess region. In order to provide the oxygen-excess region in the insulating layer 103, the insulating layer 103 may be formed in an oxygen atmosphere, for example. Alternatively, oxygen may be introduced into the formed insulating layer 103 to provide the oxygen-excess region in the insulating layer 103.


In this embodiment, oxygen 400 (at least including any of oxygen radicals, oxygen atoms, or oxygen ions) is introduced into the insulating layer 103 to form an oxygen-excess region 402 (see FIG. 2A). As a method for introducing oxygen, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, plasma treatment, or the like may be used.


In FIG. 2A, the concentration peak position of oxygen introduced into the insulating layer 103 is indicated by dotted lines, and the region with the oxygen peak is illustrated as the oxygen-excess region 402. Note that the depth to which oxygen is introduced and the distribution of the introduced oxygen are not limited to those in the structure illustrated in FIG. 2A.


Next, planarization treatment is performed on a surface of the insulating layer 103; thus, the insulating layer 104 is formed (see FIG. 2B). The planarization treatment may be, but is not particularly limited to, polishing treatment (e.g., chemical mechanical polishing), dry etching treatment, plasma treatment, a combination of these treatments, or the like.


Note that in order not to remove the oxygen-excess region 402 in the planarization treatment for the insulating layer 103, the depth to which the oxygen 400 is introduced, the removed thickness of the insulating layer 103, and the like are adjusted as appropriate.


Further in order to reduce impurities such as hydrogen (including water, a hydroxyl group, and the like) and make an oxygen-excess state in the insulating layer, the insulating layer 104 (or the insulating layer 103 before the planarization treatment) may be subjected to heat treatment for removing hydrogen or a hydrogen compound (for dehydration or dehydrogenation).


Next, an oxide semiconductor film to be the oxide semiconductor layer 106a and an oxide semiconductor film to be the oxide semiconductor layer 106b are stacked over the insulating layer 104 and then processed into an island shape, so that the oxide semiconductor stacked layers 106 including the oxide semiconductor layer 106a and the oxide semiconductor layer 106b is formed (see FIG. 2C).


The oxide semiconductor layer 106a and the oxide semiconductor layer 106b may each have an amorphous structure or a crystal structure. In the case where the oxide semiconductor layer 106a or 106b has an amorphous structure, heat treatment may be performed on the oxide semiconductor stacked layers 106 in a later manufacturing step so that the oxide semiconductor layer has crystallinity. The heat treatment for crystallizing the amorphous oxide semiconductor layer is performed at a temperature higher than or equal to 250° C. and lower than or equal to 700° C., preferably higher than or equal to 400° C., further preferably higher than or equal to 500° C., still further preferably higher than or equal to 550° C. Note that the heat treatment can also serve as another heat treatment in the manufacturing process.


The oxide semiconductor films to be the oxide semiconductor layer 106a and the oxide semiconductor layer 106b can be formed by a sputtering method, a molecular beam epitaxy (MBE) method, a CVD method, a pulse laser deposition method, an atomic layer deposition (ALD) method, or the like as appropriate.


In the formation of the oxide semiconductor films, the hydrogen concentration in the oxide semiconductor films is preferably reduced as much as possible. In order to reduce the hydrogen concentration, for example, in the case where the oxide semiconductor films are formed by a sputtering method, a high-purity rare gas (typically argon), high-purity oxygen, or a high-purity mixed gas of a rare gas and oxygen, from which impurities such as hydrogen, water, a hydroxyl group, and hydride have been removed, is used as appropriate as an atmosphere gas supplied to a deposition chamber of a sputtering apparatus.


The oxide semiconductor films are formed in such a manner that a sputtering gas from which hydrogen and moisture have been removed is introduced into the deposition chamber while moisture remaining therein is removed, whereby the hydrogen concentration in the formed oxide semiconductor films can be reduced. In order to remove moisture remaining in the deposition chamber, an entrapment vacuum pump such as a cryopump, an ion pump, or a titanium sublimation pump is preferably used. The evacuation unit may be a turbo molecular pump provided with a cold trap. A cryopump has a high capability in removing a hydrogen molecule, a compound containing a hydrogen atom such as water (H2O) (preferably, also a compound containing a carbon atom), and the like; therefore, the impurity concentration in the oxide semiconductor films formed in the deposition chamber which is evacuated using a cryopump can be reduced.


Further, in the case where the oxide semiconductor films are formed by a sputtering method, the relative density (the fill rate) of a metal oxide target which is used for deposition is greater than or equal to 90% and less than or equal to 100%, preferably greater than or equal to 95% and less than or equal to 99.9%. With the use of a metal oxide target with a high relative density, dense oxide semiconductor films can be deposited.


To reduce the impurity concentration in the oxide semiconductor films, it is also effective to form the oxide semiconductor films while the substrate 100 is kept at high temperature. The temperature at which the substrate 100 is heated may be higher than or equal to 150° C. and lower than or equal to 450° C.; the substrate temperature is preferably higher than or equal to 200° C. and lower than or equal to 350° C. The crystalline oxide semiconductor films can be formed by heating the substrate at a high temperature in the deposition.


A structure of an oxide semiconductor film is described below.


An oxide semiconductor film is classified roughly into a single-crystal oxide semiconductor film and a non-single-crystal oxide semiconductor film. The non-single-crystal oxide semiconductor film includes any of an amorphous oxide semiconductor film, a microcrystalline oxide semiconductor film, a polycrystalline oxide semiconductor film, a c-axis aligned crystalline oxide semiconductor (CAAC-OS) film, and the like.


The amorphous oxide semiconductor film has disordered atomic arrangement and no crystalline component. A typical example thereof is an oxide semiconductor film in which no crystal part exists even in a microscopic region, and the whole of the film is amorphous.


The microcrystalline oxide semiconductor film includes a microcrystal (also referred to as nanocrystal) with a size greater than or equal to 1 nm and less than 10 nm, for example. Thus, the microcrystalline oxide semiconductor film has a higher degree of atomic order than the amorphous oxide semiconductor film. Hence, the density of defect states of the microcrystalline oxide semiconductor film is lower than that of the amorphous oxide semiconductor film.


The CAAC-OS film is one of oxide semiconductor films including a plurality of crystal parts, and most of each crystal part fits inside a cube whose one side is less than 100 nm. Thus, there is a case where a crystal part included in the CAAC-OS film fits a cube whose one side is less than 10 nm, less than 5 nm, or less than 3 nm. The density of defect states of the CAAC-OS film is lower than that of the microcrystalline oxide semiconductor film. The CAAC-OS film is described in detail below.


In a transmission electron microscope (TEM) image of the CAAC-OS film, a boundary between crystal parts, that is, a grain boundary is not clearly observed. Thus, in the CAAC-OS film, a reduction in electron mobility due to the grain boundary is less likely to occur.


According to the TEM image of the CAAC-OS film observed in a direction substantially parallel to a sample surface (cross-sectional TEM image), metal atoms are arranged in a layered manner in the crystal parts. Each metal atom layer has a morphology reflected by a surface over which the CAAC-OS film is formed (hereinafter, a surface over which the CAAC-OS film is formed is referred to as a formation surface) or a top surface of the CAAC-OS film, and is arranged in parallel to the formation surface or the top surface of the CAAC-OS film.


On the other hand, according to the TEM image of the CAAC-film observed in a direction substantially perpendicular to the sample surface (plan TEM image), metal atoms are arranged in a triangular or hexagonal configuration in the crystal parts. However, there is no regularity of arrangement of metal atoms between different crystal parts.


From the results of the cross-sectional TEM image and the plan TEM image, alignment is found in the crystal parts in the CAAC-OS film.


A CAAC-OS film is subjected to structural analysis with an X-ray diffraction (XRD) apparatus. For example, when the CAAC-OS film including an InGaZnO4 crystal is analyzed by an out-of-plane method, a peak appears frequently when the diffraction angle (2θ) is around 31°. This peak is derived from the (009) plane of the InGaZnO4 crystal, which indicates that crystals in the CAAC-OS film have c-axis alignment, and that the c-axes are aligned in a direction substantially perpendicular to the formation surface or the top surface of the CAAC-OS film.


On the other hand, when the CAAC-OS film is analyzed by an in-plane method in which an X-ray enters a sample in a direction perpendicular to the c-axis, a peak appears frequently when 2θ is around 56°. This peak is derived from the (110) plane of the InGaZnO4 crystal. Here, analysis (ϕ scan) is performed under conditions where the sample is rotated around a normal vector of a sample surface as an axis (ϕ axis) with 2θ fixed at around 56°. In the case where the sample is a single-crystal oxide semiconductor film of InGaZnO4, six peaks appear. The six peaks are derived from crystal planes equivalent to the (110) plane. On the other hand, in the case of a CAAC-OS film, a peak is not clearly observed even when ϕ scan is performed with 2θ fixed at around 56°.


According to the above results, in the CAAC-OS film having c-axis alignment, while the directions of a-axes and b-axes are different between crystal parts, the c-axes are aligned in a direction parallel to a normal vector of a formation surface or a normal vector of a top surface. Thus, each metal atom layer arranged in a layered manner observed in the cross-sectional TEM image corresponds to a plane parallel to the a-b plane of the crystal.


Note that the crystal part is formed concurrently with deposition of the CAAC-OS film or is formed through crystallization treatment such as heat treatment. As described above, the c-axis of the crystal is aligned in a direction parallel to a normal vector of a formation surface or a normal vector of a top surface. Thus, for example, in the case where a shape of the CAAC-OS film is changed by etching or the like, the c-axis might not be necessarily parallel to a normal vector of a formation surface or a normal vector of a top surface of the CAAC-OS film.


Further, the degree of crystallinity in the CAAC-OS film is not necessarily uniform. For example, in the case where crystal growth leading to the CAAC-OS film occurs from the vicinity of the top surface of the film, the degree of the crystallinity in the vicinity of the top surface is higher than that in the vicinity of the formation surface in some cases. Further, when an impurity is added to the CAAC-OS film, the crystallinity in a region to which the impurity is added is changed, and the degree of crystallinity in the CAAC-OS film varies depends on regions.


Note that when the CAAC-OS film with an InGaZnO4 crystal is analyzed by an out-of-plane method, a peak of 2θ may also be observed at around 36°, in addition to the peak of 2θ at around 31°. The peak of 2θ at around 36° indicates that a crystal having no c-axis alignment is included in part of the CAAC-OS film. It is preferable that in the CAAC-OS film, a peak of 2θ appear at around 31° and a peak of 2θ do not appear at around 36°.


In a transistor using the CAAC-OS film, change in electric characteristics due to irradiation with visible light or ultraviolet light is small. Thus, the transistor has high reliability.


The oxide semiconductor layer 106a and the oxide semiconductor layer 106b each may be any one of an amorphous oxide semiconductor film, a microcrystalline oxide semiconductor film, and a CAAC-OS film or a mixed film including two or more films of these. Note that the oxide semiconductor layer 106a and the oxide semiconductor layer 106b may be a stacked film including two or more films of an amorphous oxide semiconductor film, a microcrystalline oxide semiconductor film, and a CAAC-OS film, for example.


In the case where a CAAC-OS film is employed as the oxide semiconductor layer 106a and/or the oxide semiconductor layer 106b, the following methods can be used for forming the CAAC-OS film as examples. One of the methods is to form an oxide semiconductor film at a film formation temperature higher than or equal to 200° C. and lower than or equal to 450° C., thereby obtaining c-axis alignment substantially perpendicular to a surface. Another method is to form a thin oxide semiconductor film and then subject the film to heat treatment at a temperature higher than or equal to 200° C. and lower than or equal to 700° C., thereby obtaining c-axis alignment substantially perpendicular to a surface. The other method is to form a first thin oxide semiconductor film, subject the film to heat treatment at a temperature higher than or equal to 200° C. and lower than or equal to 700° C., and then form a second oxide semiconductor film, thereby obtaining c-axis alignment substantially perpendicular to a surface.


An oxide semiconductor including at least indium (In) is used for the oxide semiconductor layer 106a and the oxide semiconductor layer 106b. In particular, an oxide semiconductor including indium and zinc (Zn) is preferable. As a stabilizer for reducing variation in electric characteristics of a transistor using the oxide semiconductor, gallium (Ga) is preferably additionally contained. It is preferable that one or more elements selected from tin (Sn), hafnium (Hf), aluminum (Al), and zirconium (Zr) be contained as a stabilizer.


As another stabilizer, one or a plurality of kinds of lanthanoid such as lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), or lutetium (Lu) may be contained.


As the oxide semiconductor, for example, any of the following can be used: indium oxide; tin oxide; zinc oxide; a two-component metal oxide such as an In—Zn-based oxide, an In—Mg-based oxide, or an In—Ga-based oxide; a three-component metal oxide such as an In—Ga—Zn-based oxide (also referred to as IGZO), an In—Al—Zn-based oxide, an In—Sn—Zn-based oxide, an In—Hf—Zn-based oxide, an In—La—Zn-based oxide, an In—Ce—Zn-based oxide, an In—Pr—Zn-based oxide, an In—Nd—Zn-based oxide, an In—Sm—Zn-based oxide, an In—Eu—Zn-based oxide, an In—Gd—Zn-based oxide, an In—Tb—Zn-based oxide, an In—Dy—Zn-based oxide, an In—Ho—Zn-based oxide, an In—Er—Zn-based oxide, an In—Tm—Zn-based oxide, an In—Yb—Zn-based oxide, or an In—Lu—Zn-based oxide; and a four-component metal oxide such as an In—Sn—Ga—Zn-based oxide, an In—Hf—Ga—Zn-based oxide, an In—Al—Ga—Zn-based oxide, an In—Sn—Al—Zn-based oxide, an In—Sn—Hf—Zn-based oxide, or an In—Hf—Al—Zn-based oxide.


Note that here, for example, an In—Ga—Zn-based oxide means an oxide including In, Ga, and Zn as its main components, and there is no particular limitation on the ratio of In, Ga, and Zn. The In—Ga—Zn-based oxide may include a metal element other than the In, Ga, and Zn.


Alternatively, a material represented by InMO3(ZnO)m (m>0, m is not an integer) may be used as an oxide semiconductor. Note that M represents one or more metal elements selected from Ga, Fe, Mn, and Co. Alternatively, as the oxide semiconductor, a material represented by a chemical formula, In2SnO5(ZnO)n (n>0, n is an integer) may be used.


For example, an In—Ga—Zn-based oxide with an atomic ratio where In:Ga:Zn=1:1:1 (=□1/3:1/3:1/3), In:Ga:Zn=2:2:1 (=2/5:2/5:1/5), In:Ga:Zn=3:1:2 (=1/2:1/6:1/3), or any of oxides whose composition is in the neighborhood of the above compositions can be used. Alternatively, an In—Sn—Zn-based oxide with an atomic ratio of In:Sn:Zn=1:1:1 (=1/3:1/3:1/3), In:Sn:Zn=2:1:3 (=1/3:1/6:1/2), or In:Sn:Zn=2:1:5 (=1/4:1/8:5/8), or any of oxides whose composition is in the neighborhood of the above compositions may be used.


However, an oxide semiconductor including indium that is included in a transistor is not limited to the materials given above; a material with an appropriate composition may be used for a transistor including an oxide semiconductor including indium depending on needed electrical characteristics (e.g., field-effect mobility, threshold voltage, and variation). In order to obtain the needed electrical characteristics, the carrier concentration, the impurity concentration, the defect density, the atomic ratio between a metal element and oxygen, the interatomic distance, the density, and the like are preferably set to appropriate values.


For example, high field-effect mobility can be obtained relatively easily in a transistor including an In—Sn—Zn-based oxide. Also in the case of a transistor including an In—Ga—Zn-based oxide, the field-effect mobility can be increased by reducing the defect density in a bulk.


Note that for example, the expression “the composition of an oxide including In, Ga, and Zn at the atomic ratio, In:Ga:Zn=a:b:c (a+b+c=1), is in the neighborhood of the composition of an oxide including In, Ga, and Zn at the atomic ratio, In:Ga:Zn=A:B:C (A+B+C=1)” means that a, b, and c satisfy the following relation: (a−A)2+(b−B)2+(c−C)2≤:r2, and r may be 0.05, for example. For example, r may be 0.05. The same applies to other oxides.


Further, oxide semiconductors whose crystallinities are different from each other may be employed for the oxide semiconductor layer 106a and the oxide semiconductor layer 106b. That is, an appropriate combination of any of a single crystal oxide semiconductor, a polycrystalline oxide semiconductor, a microcrystalline oxide semiconductor, an amorphous oxide semiconductor, and a CAAC-OS may be employed.


Further, the oxide semiconductor stacked layers 106 is preferably subjected to heat treatment for removing excess hydrogen (including water and a hydroxyl group) contained in the oxide semiconductor stacked layers 106 (for dehydration or dehydrogenation). The temperature of the heat treatment is higher than or equal to 300° C. and lower than or equal to 700° C., or lower than the strain point of the substrate. The heat treatment can be performed under reduced pressure, a nitrogen atmosphere, or the like. Hydrogen, which is an impurity imparting n-type conductivity, can be removed from the oxide semiconductor by this heat treatment.


Note that the heat treatment for the dehydration or dehydrogenation may be performed at any timing in the manufacturing process of the transistor 120 as long as the heat treatment is performed after the formation of the oxide semiconductor layer. The heat treatment for dehydration or dehydrogenation may be performed a plurality of times, or may also serve as another heat treatment.


Note that the heat treatment for dehydration or dehydrogenation is preferably performed before the oxide semiconductor films are processed into an island shape because oxygen contained in the insulating layer 104 can be prevented from being released by the heat treatment.


In the heat treatment, it is preferable that water, hydrogen, or the like be not contained in nitrogen or a rare gas such as helium, neon, or argon. The purity of nitrogen or the rare gas such as helium, neon, or argon which is introduced into the heat treatment apparatus is set to preferably 6N (99.9999%) or higher, further preferably 7N (99.99999%) or higher (that is, the impurity concentration is preferably 1 ppm or lower, further preferably 0.1 ppm or lower).


In addition, after the oxide semiconductor stacked layers 106 (or the oxide semiconductor films before the processing into the island shape) is heated by the heat treatment, a high-purity oxygen gas, a high-purity dinitrogen gas, or ultra dry air (the moisture amount is less than or equal to 20 ppm (−55° C. by conversion into a dew point), preferably less than or equal to 1 ppm, further preferably less than or equal to 10 ppb, in the measurement with use of a dew point meter of a cavity ring down laser spectroscopy (CRDS) system) may be introduced into the same furnace while the heating temperature is being maintained or being gradually decreased. It is preferable that water, hydrogen, or the like be not contained in the oxygen gas or the dinitrogen monoxide gas. The purity of the oxygen gas or the dinitrogen monoxide gas which is introduced into the heat treatment apparatus is preferably 6N or more, further preferably 7N or more (i.e., the impurity concentration in the oxygen gas or the dinitrogen monoxide gas is preferably 1 ppm or lower, further preferably 0.1 ppm or lower). The oxygen gas or the dinitrogen monoxide gas acts to supply oxygen that is a main component of the oxide semiconductor to compensate for a reduction of oxygen in the step for removing an impurity for the dehydration or dehydrogenation, so that the oxide semiconductor layers can be highly-purified and i-type (intrinsic) oxide semiconductor layers.


Since there is a possibility that oxygen, which is a main component of an oxide semiconductor, is also released and reduced by dehydration or dehydrogenation treatment, oxygen (including at least one of an oxygen radical, an oxygen atom, and an oxygen ion) may be introduced into the oxide semiconductor layer which has been subjected to the dehydration or dehydrogenation treatment to supply oxygen to the layer.


Oxygen is added and supplied to the dehydrated or dehydrogenated oxide semiconductor layer, so that the oxide semiconductor layer can be highly purified and be i-type (intrinsic). Variation in electric characteristics of a transistor having the highly-purified and i-type (intrinsic) oxide semiconductor is suppressed, and the transistor is electrically stable.


In the step of addition of oxygen to the oxide semiconductor layer, oxygen may be directly added to the oxide semiconductor layer or may be added to the oxide semiconductor layer through another film such as the insulating layer 110 to be formed later. When oxygen is introduced through another film, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, or the like may be used. In the case where oxygen is directly introduced into the exposed oxide semiconductor layer, plasma treatment or the like can be used in addition to the above-described methods.


As a gas for supplying oxygen, a gas containing O may be used; for example, an O2 gas, an N2O gas, a CO2 gas, a CO gas, or an NO2 gas may be used. Note that a rare gas (e.g., an Ar gas) may be contained in the supply gas of the oxygen.


For example, in the case where an oxygen ion is introduced into the oxide semiconductor layer by an ion implantation method, the dose can be greater than or equal to 1×1013 ions/cm2 and less than or equal to 5×1016 ions/cm2.


Alternatively, oxygen may be supplied to the oxide semiconductor layer in the following manner: an insulating layer in contact with the oxide semiconductor layer (the insulating layer 104 or the insulating layer 110) is formed to have an oxygen-excess region; and heat treatment is performed in a state where the insulating layer and the oxide semiconductor layer are in contact with each other, so that excess oxygen contained in the insulating layer is diffused to the oxide semiconductor layer. This heat treatment can serve as another heat treatment in the process for manufacturing the transistor 120.


The timing of supply of oxygen to the oxide semiconductor layer is not particularly limited to the above as long as it is after the formation of the oxide semiconductor layer. The step of introducing oxygen into the oxide semiconductor layer may be performed a plurality of times. Further, heat treatment for dehydration or dehydrogenation and/or supply of oxygen may be performed separately on each of the oxide semiconductor layers or may be performed once on the oxide semiconductor stacked layers after the oxide semiconductor stacked layers 106 having a stacked-layer structure is formed.


The insulating layer 104 and the oxide semiconductor film to be processed into the oxide semiconductor layer 106a are preferably formed in succession without being exposed to air. By the successive formation of the insulating layer 104 and the oxide semiconductor film, impurities such as hydrogen and moisture can be prevented from being adsorbed onto a surface of the insulating layer 104.


Next, a conductive film 108 to be processed into the source electrode layer 108a and the drain electrode layer 108b is formed over the oxide semiconductor stacked layers 106 (see FIG. 2D). As the conductive film 108, for example, a metal film containing an element selected from Al, Cr, Cu, Ta, Ti, Mo, or W, or a metal nitride film containing any of the above elements as a component (e.g., a titanium nitride film, a molybdenum nitride film, or a tungsten nitride film) can be used. Alternatively, a film of a high-melting-point metal such as Ti, Mo, or W or a metal nitride film of any of these elements (a titanium nitride film, a molybdenum nitride film, or a tungsten nitride film) may be stacked on one of or both a bottom side and a top side of a metal film of Al, Cu, or the like. Further alternatively, the conductive film used for the source electrode layer 108a and the drain electrode layer 108b may be formed using a conductive metal oxide. As the conductive metal oxide, indium oxide (In2O3), tin oxide (SnO2), zinc oxide (ZnO), indium oxide-tin oxide alloy (In2O3—SnO2), an indium oxide-zinc oxide alloy (In2O3—ZnO), or any of these metal oxide materials in which silicon oxide is contained can be used.


As the conductive film 108, a metal nitride film such as an In—Ga—Zn—O film including nitrogen, an In—Sn—O film including nitrogen, an In—Ga—O film including nitrogen, an In—Zn—O film including nitrogen, a Sn—O film including nitrogen, or an In—O film including nitrogen can be used. These films include the same constituent elements as the oxide semiconductor layer 106b and can therefore stabilize the interface with the oxide semiconductor layer 106b. For example, the conductive film 108 can have a stacked-layer structure in which an In—Ga—Zn—O film including nitrogen and a tungsten film are stacked from the side in contact with the oxide semiconductor layer 106b.


Next, the conductive film 108 is selectively etched to form the source electrode layer 108a and the drain electrode layer 108b (see FIG. 2E). The source electrode layer 108a and the drain electrode layer 108b may have a tapered shape. It is preferable that the source electrode layer 108a and the drain electrode layer 108b have a tapered shape to relieve concentration of electric field between the source and the drain.


By this etching treatment, part of the oxide semiconductor layer 106b is also etched, so that the region with a small thickness is formed between the source electrode layer 108a and the drain electrode layer 108b. Alternatively, after the source electrode layer 108a and the drain electrode layer 108b are formed, the exposed part of the oxide semiconductor layer 106b may be subjected to etching treatment (e.g., wet etching treatment) to form the region with a small thickness. The thickness of the oxide semiconductor layer 106b in the region with a small thickness, which is formed by processing treatment on the source electrode layer 108a and the drain electrode layer 108b and/or later etching treatment, is preferably more than or equal to 1 nm and less than or equal to 2 nm.


Then, the insulating layer 110 is formed to cover the exposed oxide semiconductor layer 106b, the source electrode layer 108a, and the drain electrode layer 108b. The insulating layer 110 functions as a gate insulating layer. A conductive film to be the gate electrode layer 112 (including a wiring formed of the same film) is formed over the insulating layer 110, and is selectively etched, so that the gate electrode layer 112 is formed (see FIG. 2F).


The insulating layer 110 can be formed using a similar material and formation method to those of the insulating layer 104. Note that the thickness of the insulating layer 110 is preferably more than or equal to 5 nm and less than or equal to 30 nm, further preferably more than or equal to 9 nm and less than or equal to 22 nm.


The gate electrode layer 112 can be formed using similar material and formation method to those of the gate electrode layer 102. Note that the gate electrode layer 112 at least on the side of the surface that is in contact with the insulating layer 110 is preferably formed using a material having a larger work function than the oxide semiconductor layer 106b, and further preferably formed using a material having a work function that is 1 electron volt or more larger than the oxide semiconductor layer 106b.


In the above-described manner, the transistor 120 in this embodiment can be manufactured.


The transistor 120 described in this embodiment includes an oxide semiconductor stacked layers 106 in which a channel formation region is thinner than the other region (e.g., a region in contact with the source electrode layer 108a or the drain electrode layer 108b and excluding a tapered portion at the edge of the oxide semiconductor layer). This can suppress the shift of the threshold voltage of the transistor 120 in the negative direction.


Further, the transistor 120 described in this embodiment includes the gate electrode layer 102 and the gate electrode layer 112 between which the semiconductor stacked layers 106 including a channel formation region is sandwiched. By application of a negative bias voltage to the gate electrode layer 102, generation of the second current on the back channel side can be suppressed. In this way, the threshold voltage of the transistor 120 can be moved in the positive direction.


The structures, methods, and the like which are described in this embodiment can be combined as appropriate with any of the structures, methods, and the like which are described in the other embodiments.


Embodiment 2

In this embodiment, as an example of a semiconductor device which includes the transistor described in Embodiment 1, a semiconductor device which can hold stored data even when not powered and which has an unlimited number of write cycles will be described with reference to drawings.



FIGS. 3A and 3B illustrate one example of a structure of the semiconductor device. FIG. 3A is a cross-sectional view of the semiconductor device, and FIG. 3B is a circuit diagram of the semiconductor device.


The semiconductor device illustrated in FIG. 3A includes a transistor 160 including a first semiconductor material in a lower portion, and a transistor 162 including a second semiconductor material in an upper portion. As the transistor 162, the transistor of one embodiment of the present invention described in Embodiment 1 can be employed.


Here, the first semiconductor material and the second semiconductor material are preferably materials having different band gaps. For example, the first semiconductor material may be a semiconductor material (e.g., silicon) other than an oxide semiconductor, and the second semiconductor material may be an oxide semiconductor. A transistor including a material other than an oxide semiconductor can operate at high speed easily. On the other hand, a transistor including an oxide semiconductor has characteristics of enabling holding of charge for a long time.


Although the above-described transistors are both n-channel transistors here, it is needless to say that p-channel transistors can be used. The specific structure of the semiconductor device, such as the material used for the semiconductor device and the structure of the semiconductor device, is not necessarily limited to those described here except for the use of the transistor described in Embodiment 1, which is formed using an oxide semiconductor to hold data, as the transistor 162.


The transistor 160 in FIG. 3A includes a channel formation region 216 provided in a substrate 200 including a semiconductor material (e.g., silicon), impurity regions 214 and high-concentration impurity regions 220 (these are simply collectively referred to as impurity regions) which are provided so that the channel formation region 216 is sandwiched therebetween, intermetallic compound regions 224 in contact with the high-concentration impurity regions 220, a gate insulating layer 208 provided over the channel formation region 216, a gate electrode layer 210 provided over the gate insulating layer 208, sidewall insulating layers 218 provided on side surfaces of the gate electrode layer 210, an electrode layer 212a, and an electrode layer 212b.


The electrode layer 212a and the electrode layer 212b are electrode layers functioning as a source electrode layer and a drain electrode layer and are electrically connected to the intermetallic compound regions 224 through contact holes provided in the insulating layer 228 that is formed over the gate electrode layer 210. The insulating layer 228 may have a single-layer structure or a stacked-layer structure including an inorganic insulating film such as a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, an aluminum oxynitride film, a silicon nitride film, an aluminum nitride film, a silicon nitride oxide film, or an aluminum nitride oxide film.


An element isolation insulating layer 206 is provided over the substrate 200 to surround the transistor 160.


The transistor 160 formed using a single crystal semiconductor substrate can operate at high speed. Thus, when the transistor is used as a reading transistor, data can be read at a high speed.


The transistor 162 illustrated in FIG. 3A is a transistor in which an oxide semiconductor is used for a channel formation region. A transistor in which in which an oxide semiconductor is used for a channel formation region can achieve extremely small off-state current characteristics. Note that an oxide semiconductor layer included in the transistor 162 is preferably highly purified. By using a highly purified oxide semiconductor, the transistor 162 can have more favorable off-state current characteristics.


Since the off-state current of the transistor 162 is small, stored data can be held for a long time owing to such a transistor. In other words, the semiconductor memory device in which refresh operation is unnecessary or the frequency of refresh operation is extremely low can be provided, which leads to a sufficient reduction of power consumption.


The transistor 162 includes an oxide semiconductor stacked layers 244 which includes an oxide semiconductor layer 244a and an oxide semiconductor layer 244b and in which a channel formation region is thinner than the other region (e.g., a region in contact with an electrode layer 268a or an electrode layer 268b). In the oxide semiconductor stacked layers 244 included in the transistor 162, the channel formation region is thinned, which can suppress the shift of the threshold voltage in the negative direction. Further, the transistor 162 includes a gate electrode layer 202b which overlaps with the oxide semiconductor stacked layers 244 with an insulating layer 203 and an insulating layer 204 sandwiched therebetween, in addition to a gate electrode layer 262 which overlaps with the oxide semiconductor stacked layers 244 with a gate insulating layer 260 sandwiched therebetween. The gate electrode layer 202b can be used as a back gate electrode. By application of a negative bias voltage to the gate electrode layer 202b, flow of the second current on the back channel side can be suppressed, which can move the threshold voltage of the transistor 162 in the positive direction. Consequently, the transistor 162 can be a normally-off transistor.


The insulating layer 203 and the insulating layer 204 can each be a film including silicon oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, hafnium oxide, gallium oxide, zinc gallium oxide, or a mixed material of these materials. Note that the insulating layer 204 in contact with the oxide semiconductor stacked layers 244 (specifically the oxide semiconductor layer 244a) preferably includes an oxygen-excess region.


Note that it is preferable that the insulating layer 203 be a film having a barrier property against oxygen, in order to prevent release of oxygen from the insulating layer 204. As the film having a barrier property against oxygen, a film having a lower oxygen-transmitting property than the insulating layer 204 can be used, and specifically a single-layer structure or a stacked-layer structure including an oxide film or a nitride film of, for example, aluminum, aluminum to which magnesium is added, aluminum to which titanium is added, magnesium, titanium, or the like can be employed. Furthermore, as the insulating layer 203, a film having a low impurity (e.g., hydrogen, moisture)-transmitting property in addition to having a barrier property against oxygen is preferably used. As such a film, an aluminum oxide film can preferably be used. With the use of an aluminum oxide film as the insulating layer 203, release of oxygen is prevented, and in addition, entry of impurities such as hydrogen and moisture, which might cause variation in electric characteristics of the transistor 162, can be suppressed.


Note that for favorable coverage by the insulating layer 203, it is preferable that the gate electrode layer 202b and an electrode layer 202a have a tapered shape. The taper angle is preferably more than or equal to 300 and less than or equal to 70°.


An insulating layer 232 and an insulating layer 236 with a single-layer structure or a stacked-layer structure are provided over the transistor 162. As the insulating layer 232 or the insulating layer 236, a film including a material similar to that of the insulating layer 203 and the insulating layer 204 can be used. If necessary, planarization treatment such as CMP treatment may be performed after the insulating layer 236 is formed to planarize a surface of the insulating layer 236. Alternatively, as the insulating layer 236, a planarization insulating film may be formed in order to reduce surface roughness due to the transistor or an inorganic insulating film and a planarization insulating film may be stacked. For the planarization insulating film, an organic material such as a polyimide-based resin, an acrylic-based resin, or a benzocyclobutene-based resin can be used. Besides the above organic materials, a low-dielectric constant material (a low-k material) or the like can be used.


A wiring layer 256 is provided over the insulating layer 236. The wiring layer 256 is a wiring which connects the transistor 162 to another transistor. The wiring layer 256 is electrically connected to the electrode layer 268b through a contact hole formed in the insulating layer 236, the insulating layer 232, and the gate insulating layer 260. Note that an electrode layer may be additionally formed in the contact hole to electrically connect the wiring layer 256 to the electrode layer 268b.


In addition, a conductive layer 253 is provided in a region overlapping with the electrode layer 268a of the transistor 162 with the gate insulating layer 260 sandwiched therebetween. The electrode layer 268a, the gate insulating layer 260, and the conductive layer 253 form a capacitor 164. That is, the electrode layer 268a of the transistor 162 functions as one electrode of the capacitor 164, and the conductive layer 253 functions as the other electrode of the capacitor 164. Note that the capacitor 164 may be omitted if a capacitor is not needed. Alternatively, the capacitor 164 may be independently provided above the transistor 162.


In this embodiment, the conductive layer 253 can be formed in the same manufacturing step as the gate electrode layer 262 of the transistor 162.


The electrode layer 268a is electrically connected to the electrode layer 202a that is formed in the same layer as the gate electrode layer 202b. Further, the electrode layer 202a is electrically connected to an electrode layer 222a through a contact hole provided in an insulating layer 234. Although not shown in FIG. 3A, the electrode layer 222a is electrically connected to the gate electrode layer 210 of the transistor 160. Accordingly, the electrode layer 268a of the transistor 162 is electrically connected to the gate electrode layer 210 of the transistor 160.


An insulating layer 230 and the insulating layer 234 can each have a structure similar to that of the insulating layer 228. Note that if necessary, the insulating layer 228, the insulating layer 230, and the insulating layer 234 may be subjected to planarization treatment. Moreover, the structure enabling electrical connection between the electrode layer 268a of the transistor 162 and the gate electrode layer 210 of the transistor 160 is not limited to the structure illustrated in FIG. 3A, and the structure regarding intervening electrode layers (or wiring layers) or insulating layers can be determined as appropriate. For example, an electrode layer may be additionally provided between the electrode layer 202a and the electrode layer 222a, or the electrode layer 268a may be directly connected to the gate electrode layer 210.


Note that in the case where the insulating layer 204 includes an oxygen-excess region, there is a possibility that excess oxygen included in the insulating layer 204 may be released at the time of forming the contact hole; for this reason, the contact hole is preferably provided in a region not overlapping with the oxide semiconductor stacked layers 244. In FIG. 3A, the electrode layer 202a is electrically connected to the electrode layer 268a through the contact hole provided in the insulating layer 204 in the region not overlapping with the oxide semiconductor stacked layers 244. Note that a contact hole provided below the insulating layer 204 (on the transistor 160 side) may overlap with the oxide semiconductor stacked layers 244. In the example illustrated in FIG. 3A, the gate electrode layer 202b of the transistor 162 is electrically connected to the wiring layer 222b provided in the same layer as the electrode layer 222a.


In FIG. 3A, the transistor 160 and the transistor 162 are provided so as to at least partly overlap with each other. Further, the transistor 162 and the capacitor 164 are preferably provided so as to overlap with at least part of the transistor 160. For example, the conductive layer 253 included in the capacitor 164 is provided so as to at least partly overlap with the gate electrode layer 210 of the transistor 160. With such a planar layout, the area occupied by the semiconductor device can be reduced; thus, higher integration can be achieved.


Next, an example of a circuit configuration corresponding to FIG. 3A is illustrated in FIG. 3B.


In FIG. 3B, a first wiring (1st Line) is electrically connected to the source electrode layer of the transistor 160. A second wiring (2nd Line) is electrically connected to the drain electrode layer of the transistor 160. A third wiring (3rd Line) is electrically connected to one of a source electrode layer and a drain electrode layer of the transistor 162, and a fourth wiring (4th Line) is electrically connected to a gate electrode layer of the transistor 162. The gate electrode layer of the transistor 160 and the other of the source electrode layer and the drain electrode layer of the transistor 162 are electrically connected to one electrode of the capacitor 164. A fifth wiring (5th line) and the other electrode of the capacitor 164 are electrically connected to each other.


The semiconductor device illustrated in FIG. 3B utilizes a characteristic of capable of holding the potential of the gate electrode layer of the transistor 160, and thus enables data writing, holding, and reading as follows.


Writing and holding of data will be described. First, the potential of the fourth line is set to a potential at which the transistor 162 is turned on, so that the transistor 162 is turned on. Accordingly, the potential of the third wiring is supplied to the gate electrode layer of the transistor 160 and to the capacitor 164. That is, predetermined charge is supplied to the gate electrode layer of the transistor 160 (writing). Here, one of two kinds of charges providing different potential levels (hereinafter referred to as low-level charge and high-level charge) is given. After that, the potential of the fourth wiring is set to a potential at which the transistor 162 is turned off, so that the transistor 162 is turned off. Thus, the charge given to the gate electrode layer of the transistor 160 is held (holding).


Since the amount of off-state current of the transistor 162 is extremely small, the charge of the gate electrode layer of the transistor 160 is held for a long time.


Next, reading of data will be described. By supplying an appropriate potential (a reading potential) to the fifth wiring while supplying a predetermined potential (a constant potential) to the first wiring, the potential of the second wiring varies depending on the amount of charge held at the gate electrode layer of the transistor 160. This is because in general, when the transistor 160 is an n-channel transistor, an apparent threshold voltage Vth_H in the case where the high-level charge is given to the gate electrode layer of the transistor 160 is lower than an apparent threshold voltage Vth_L in the case where the low-level charge is given to the gate electrode layer of the transistor 160. Here, an apparent threshold voltage refers to the potential of the fifth line, which is needed to turn on the transistor 160. Thus, the potential of the fifth wiring is set to a potential V0 that is between Vth_H and Vth_L, whereby charge supplied to the gate electrode layer of the transistor 160 can be determined. For example, in the case where a high-level charge is given in writing, when the potential of the fifth wiring is set to V0 (>Vth_H), the transistor 160 is turned on. In the case where a low-level charge is given in writing, even when the potential of the fifth wiring is set to V0 (<Vth_L), the transistor 160 remains in an off state. Therefore, the stored data can be read by the potential of the second line.


Note that in the case where memory cells are arrayed to be used, only data of desired memory cells needs to be read. In the case where data is not read out, a potential at which the transistor 160 is off regardless of the state of the gate electrode layer of the transistor 160, that is, a potential smaller than Vth_H may be given to the fifth wiring. Alternatively, a potential which allows the transistor 160 to be on regardless of a state of the gate electrode layer, that is, a potential higher than Vth_L may be given to the fifth wiring.


When a transistor having a channel formation region formed using an oxide semiconductor and having extremely small off-state current is applied to the semiconductor device in this embodiment, the semiconductor device can store data for an extremely long period. In other words, power consumption can be adequately reduced because refresh operation becomes unnecessary or the frequency of refresh operation can be extremely low. Moreover, stored data can be held for a long period even when power is not supplied (note that a potential is preferably fixed). Here, by achieving normally-off characteristics of the transistor 162, a configuration in which a ground potential can be input to the gate (gate electrode layer 262) of the transistor 162 when power is off can be made. With this configuration, the transistor 162 can remain off and stored data can be kept held even when power is off.


Further, in the semiconductor device described in this embodiment, high voltage is not needed for writing data and there is no problem of deterioration of elements. For example, unlike a conventional nonvolatile memory, it is not necessary to inject and extract electrons into and from a floating gate, and thus a problem such as deterioration of a gate insulating layer does not occur at all. In other words, the semiconductor device according to one embodiment of the present invention does not have a limit on the number of write cycles which is a problem in a conventional nonvolatile memory, and reliability thereof is drastically improved. Furthermore, data is written depending on the on state and the off state of the transistor, whereby high-speed operation can be easily achieved.


In the above-described manner, a miniaturized and highly-integrated semiconductor device having high electrical characteristics and a method for manufacturing the semiconductor device can be provided.


The structures, methods, and the like which are described in this embodiment can be combined as appropriate with any of the structures, methods, and the like which are described in the other embodiments.


Embodiment 3

In this embodiment, a semiconductor device including the transistor described in Embodiment 1, which can hold stored data even when not powered, which does not have a limitation on the number of write cycles, and which has a structure different from the structure described in Embodiment 2 will be described with reference to FIGS. 4A and 4B.



FIG. 4A illustrates an example of a circuit configuration of the semiconductor device, and FIG. 4B is a conceptual diagram illustrating an example of the semiconductor device. First, the semiconductor device illustrated in FIG. 4A will be described, and then, the semiconductor device illustrated in FIG. 4B will be described.


In the semiconductor device illustrated in FIG. 4A, a bit line BL is electrically connected to the source electrode layer or the drain electrode layer of the transistor 162, a word line WL is electrically connected to the gate electrode layer of the transistor 162, and the source electrode layer or the drain electrode layer of the transistor 162 is electrically connected to a first terminal of a capacitor 254.


Next, writing and holding of data in the semiconductor device (a memory cell 250) illustrated in FIG. 4A will be described.


First, the potential of the word line WL is set to a potential at which the transistor 162 is turned on, so that the transistor 162 is turned on. Accordingly, the potential of the bit line BL is supplied to the first terminal of the capacitor 254 (writing). After that, the potential of the word line WL is set to a potential at which the transistor 162 is turned off, so that the transistor 162 is turned off. Thus, the potential of the first terminal of the capacitor 254 is held (holding).


The transistor 162 including an oxide semiconductor has extremely low off-state current. For that reason, the potential of the first terminal of the capacitor 254 (or a charge accumulated in the capacitor 254) can be held for an extremely long period by turning off the transistor 162. Here, by achieving normally-off characteristics of the transistor 162, a configuration in which a ground potential can be input to the gate of the transistor 162 when power is off can be made. With this configuration, the transistor 162 can remain off and stored data can be kept held even when power is off.


Next, reading of data will be described. When the transistor 162 is turned on, the bit line BL which is in a floating state and the capacitor 254 are electrically connected to each other, and the charge is redistributed between the bit line BL and the capacitor 254. As a result, the potential of the bit line BL is changed. The amount of change in potential of the bit line BL varies depending on the potential of the first terminal of the capacitor 254 (or the charge accumulated in the capacitor 254).


For example, the potential of the bit line BL after charge redistribution is (CB×VB0+C×V)/(CB+C), where V is the potential of the first terminal of the capacitor 254, C is the capacitance of the capacitor 254, CB is the capacitance of the bit line BL (hereinafter also referred to as bit line capacitance), and VB0 is the potential of the bit line BL before the charge redistribution. Therefore, it can be found that assuming that the memory cell 250 is in either of two states which are the state in which the potential of the first terminal of the capacitor 254 is V1 and the state in which the potential of the first terminal of the capacitor 254 is V0(V1>V0), the potential of the bit line BL in the case of holding the potential V1 (=(CB×VB0+C×V1)/(CB+C)) is higher than the potential of the bit line BL in the case of holding the potential V0 (=(CB×VB0+C×V0)/(CB+C)).


Then, by comparing the potential of the bit line BL with a predetermined potential, data can be read.


As described above, the semiconductor device illustrated in FIG. 4A can hold charge that is accumulated in the capacitor 254 for a long time because the off-state current of the transistor 162 is extremely low. In other words, power consumption can be sufficiently reduced because refresh operation becomes unnecessary or the frequency of refresh operation can be extremely low. Moreover, stored data can be held for a long period even when power is not supplied.


Next, the semiconductor device illustrated in FIG. 4B will be described.


The semiconductor device illustrated in FIG. 4B includes a memory cell array 251a and a memory cell array 251b including a plurality of memory cells 250 illustrated in FIG. 4A as memory circuits in the upper portion, and a peripheral circuit 258 in the lower portion, which is necessary for operating the memory cell array 251 (the memory cell arrays 251a and 251b). Note that the peripheral circuit 258 is electrically connected to the memory cell array 251.


In the structure illustrated in FIG. 4B, the peripheral circuit 258 can be provided under the memory cell array 251 (the memory cell arrays 251a and 251b). Thus, the size of the semiconductor device can be decreased.


It is preferable that a semiconductor material of the transistor provided in the peripheral circuit 253 be different from that of the transistor 162. For example, silicon, germanium, silicon germanium, silicon carbide, or gallium arsenide can be used, and a single crystal semiconductor is preferably used. Alternatively, an organic semiconductor material or the like may be used. A transistor including such a semiconductor material can operate at sufficiently high speed. Further, with the transistor, a variety of circuits (such as a logic circuit or a driver circuit) which are required to operate at high speed can be achieved favorably.


Note that FIG. 4B illustrates, as an example, the semiconductor device in which two memory cell arrays 251 (the memory cell arrays 251a and 251b) are stacked; however, the number of memory cell arrays to be stacked is not limited thereto. Three or more memory cell arrays may be stacked.


In the above-described manner, a miniaturized and highly-integrated semiconductor device having high electrical characteristics and a method for manufacturing the semiconductor device can be provided.


This embodiment can be implemented in appropriate combination with any of the structures described in the other embodiments.


Embodiment 4

In this embodiment, as other examples of the semiconductor device that uses the transistor described in this specification, a NOR circuit and a NAND circuit, which are logic circuits, are illustrated in FIGS. 13A to 13C. FIG. 13B illustrates the NOR circuit, and FIG. 13C illustrates the NAND circuit. FIG. 13A is a cross-sectional view illustrating the structure of a transistor 802 and a transistor 803 in the NOR circuit in FIG. 13B.


In the NOR circuit and the NAND circuit illustrated in FIGS. 13B and 13C, p-channel transistors 801, 802, 811, and 814 can have the same structure as the transistor 160 described in Embodiment 2. In this embodiment, boron (B), aluminum (Al), gallium (Ga), or the like which is an impurity element imparting p-type conductivity is introduced into a substrate 800 that uses an n-type semiconductor material (e.g., n-type single crystal silicon substrate), to form the p-channel transistors including p-type impurity regions.


In addition, transistors each having the same structure as the transistor 120 in Embodiment 1 and including an oxide semiconductor film in which a channel formation region is formed are applied to n-channel transistors 803, 804, 812, and 813.


In the NOR circuit and the NAND circuit illustrated in FIGS. 13A to 13C, the transistors 803, 804, 812, and 813 each include a thinned channel formation region in the oxide semiconductor stacked layers; accordingly, the shift of the threshold voltages of the transistors in the negative direction can be suppressed. Further, a first gate electrode layer and a second gate electrode layer are provided so that an oxide semiconductor stacked layers is sandwiched therebetween with an insulating layer sandwiched between the oxide semiconductor stacked layers and each of the first gate electrode layer and the second gate electrode. One of the gate electrode layers is used as a back gate. By controlling the potential of the back gate as appropriate, for example, to be GND, the threshold voltages of the transistors 803, 804, 812, and 813 can be moved in the positive direction; consequently, the transistors can be normally-off.


In the example described in this embodiment, the gate electrode layers which are provided in the transistors 803 and the transistor 804 and each function as a back gate are electrically connected to each other in the NOR circuit, and the gate electrode layers which are provided in the transistor 812 and the transistor 813 and each function as a back gate are electrically connected to each other in the NAND circuit. However, without limitation to the above structure, a structure in which each of the gate electrode layers functioning as back gates is independently electrically controlled may be employed.


The semiconductor device illustrated in FIG. 13A is an example in which a single crystal silicon substrate is used as the substrate 800, the transistor 802 is formed using the single crystal silicon substrate, and the transistor 803 including a channel formation region formed using the oxide semiconductor stacked layers is stacked over the transistor 802. Over the substrate 800, an element isolation insulating layer 806 is provided to surround the transistor 802.


An electrode layer 841b electrically connected to a gate electrode layer 841a of the transistor 803 is electrically connected to an electrode layer 835 that is an electrode layer provided in the same layer as a gate electrode layer 840 through a contact hole provided in a gate insulating layer 843 and an insulating layer 839. The electrode layer 835 is electrically connected to a wiring layer 832 through a contact hole provided in an insulating layer 836 and an insulating layer 833. Although not clearly illustrated in FIG. 13A, the wiring layer 832 is electrically connected to a gate electrode layer 821 of the transistor 802 through a contact hole provided in an insulating layer 830 and an insulating layer 826. Accordingly, the gate electrode layer 841a of the transistor 803 is electrically connected to the gate electrode layer 821 of the transistor 802.


Furthermore, although not clearly illustrated in FIG. 13A, an electrode layer 825 of the transistor 802 is electrically connected to a wiring layer 834, and the wiring layer 834 is electrically connected to an electrode layer 845 of the transistor 803 with an electrode layer 831. Accordingly, the electrode layer 825 of the transistor 802 is electrically connected to the electrode layer 845 of the transistor 803.


Note that the structure enabling electrical connection between the electrode layer (or the gate electrode layer) of the transistor 802 and the electrode layer (or the gate electrode layer) of the transistor 803 is not limited to the structure illustrated in FIG. 13A, and the structure regarding intervening electrode layers (or wiring layers) or insulating layers can be determined as appropriate.


The overlapping structure of the transistor 802 and the transistor 803 illustrated in FIG. 13A can reduce the area of the semiconductor device, leading to higher integration. Further, since the transistor 802 is a transistor that can be normally-off, the logic circuit can be controlled precisely.


In the above-described manner, a miniaturized and highly-integrated semiconductor device having high electrical characteristics and a method for manufacturing the semiconductor device can be provided.


The structures, methods, and the like which are described in this embodiment can be combined as appropriate with any of the structures, methods, and the like which are described in the other embodiments.


Embodiment 5

In this embodiment, a central processing unit (CPU) at least part of which includes the transistor disclosed above in Embodiment 1 will be described as an example of a semiconductor device.



FIG. 5A is a block diagram illustrating a specific configuration of a CPU. The CPU illustrated in FIG. 5A includes an arithmetic logic unit (ALU) 1191, an ALU controller 1192, an instruction decoder 1193, an interrupt controller 1194, a timing controller 1195, a register 1196, a register controller 1197, a bus interface (Bus I/F) 1198, a rewritable ROM 1199, and a ROM interface (ROM I/F) 1189 over a substrate 1190. A semiconductor substrate, an SOI substrate, a glass substrate, or the like is used as the substrate 1190. The ROM 1199 and the ROM interface 1189 may be provided on a separate chip. Obviously, the CPU illustrated in FIG. 5A is just an example in which the configuration is simplified, and actual CPUs may have various configurations depending on the application.


An instruction input to the CPU through the bus interface 1198 is input to the instruction decoder 1193, decoded therein, and then input to the ALU controller 1192, the interrupt controller 1194, the register controller 1197, and the timing controller 1195.


The ALU controller 1192, the interrupt controller 1194, the register controller 1197, and the timing controller 1195 conduct various controls based on the decoded instruction. Specifically, the ALU controller 1192 generates signals for controlling the operation of the ALU 1191. While the CPU is executing a program, the interrupt controller 1194 processes an interrupt request from an external input/output device or a peripheral circuit on the basis of its priority or a mask state. The register controller 1197 generates an address of the register 1196, and reads and writes data from and to the register 1196 depending on the state of the CPU.


The timing controller 1195 generates signals for controlling timing of operation of the ALU 1191, the ALU controller 1192, the instruction decoder 1193, the interrupt controller 1194, and the register controller 1197. For example, the timing controller 1195 is provided with an internal clock generator for generating an internal clock signal CLK2 based on a reference clock signal CLK1, and supplies the internal clock signal CLK2 to the above-mentioned various circuits.


In the CPU illustrated in FIG. 5A, a memory cell is provided in the register 1196. The memory cell described above in Embodiment 2 or 3 can be used in the register 1196.


In the CPU illustrated in FIG. 5A, the register controller 1197 selects operation of holding data in the register 1196 in accordance with an instruction from the ALU 1191. That is, the register controller 1197 selects whether data is held by a logic element which inverts a logic (logic level) or by a capacitor in the memory cell included in the register 1196. When data holding by the logic element which inverts a logic (logic level) is selected, a power supply voltage is supplied to the memory cell in the register 1196. When data holding by the capacitor is selected, the data in the capacitor is rewritten, and supply of the power supply voltage to the memory cell in the register 1196 can be stopped.


The power supply can be stopped by a switching element provided between a memory cell group and a node to which a power supply potential VDD or a power supply potential VSS is supplied, as illustrated in FIG. 5B or FIG. 5C. Circuits illustrated in FIGS. 5B and 5C are described below.



FIGS. 5B and 5C each illustrate an example of a configuration of the storage circuit including the transistor disclosed above in Embodiment 1 as a switching element for controlling supply of a power supply potential to a memory cell.


The storage device illustrated in FIG. 5B includes a switching element 1141 and a memory cell group 1143 including a plurality of memory cells 1142. Specifically, as each of the memory cells 1142, the memory cell described in Embodiment 2 or 3 can be used. Each of the memory cells 1142 included in the memory cell group 1143 is supplied with a high-level power supply potential VDD through the switching element 1141. Further, each of the memory cells 1142 included in the memory cell group 1143 is supplied with a potential of a signal IN and a low-level power supply potential VSS.


As the switching element 1141 in FIG. 5B, the transistor described above in Embodiment 1 is used. The switching of the transistor is controlled by a signal SigA supplied to the gate electrode layer thereof.


Note that FIG. 5B illustrates a configuration in which the switching element 1141 includes only one transistor; however, one embodiment of the present invention is not limited thereto. The switching element 1141 may include a plurality of transistors. In the case where the switching element 1141 includes a plurality of transistors functioning as switching elements, the plurality of transistors may be connected to each other in parallel, in series, or in combination of parallel connection and series connection.


Although the switching element 1141 controls the supply of the high-level power supply potential VDD to each of the memory cells 1142 included in the memory cell group 1143 in FIG. 5B, the switching element 1141 may control the supply of the low-level power supply potential VSS.



FIG. 5C illustrates an example of a storage device in which each of the memory cells 1142 included in the memory cell group 1143 is supplied with the low-level power supply potential VSS through the switching element 1141. The supply of the low-level power supply potential VSS to each of the memory cells 1142 included in the memory cell group 1143 can be controlled by the switching element 1141.


When a switching element is provided between a memory cell group and a node to which the power supply potential VDD or the power supply potential VSS is supplied, data can be held even in the case where operation of a CPU is temporarily stopped and the supply of the power supply voltage is stopped; accordingly, power consumption can be reduced. Specifically, for example, while a user of a personal computer does not input data to an input device such as a keyboard, the operation of the CPU can be stopped, so that power consumption can be reduced.


Although the CPU is given as an example here, the transistor can also be applied to an LSI such as a digital signal processor (DSP), a custom LSI, or a field programmable gate array (FPGA).


The structures, methods, and the like which are described in this embodiment can be combined as appropriate with any of the structures, methods, and the like which are described in the other embodiments.


Further, Table 2 shows a comparison between a spin-MRAM (spin torque transfer MRAM) which is known as a spintronics device and a memory including an oxide semiconductor.











TABLE 2






Spintronics (MTJ element)
OS/Si







1) Heat resistance
Unstable
Extremely stable




(up to 150° C.)


2) Driving method
Current drive
Voltage drive


3) Principle of
Change Spin Direction of
On/off of FET


writing operation
Magnetic Substance



4) Si LSI
Suitable for bipolar LSI
Suitable for MOS LSI



(MOS transistor is preferred




in high integration circuit




(Bipolar transistor is




unsuitable for




High Integration);




W is large)



5) Overhead
Large
Smaller by 2 or 3 or



(Due to large Joule heat)
more orders of magnitude




(Charge and discharge of




parasitic capacitance)


6) Non-volatility
Spin is utilized
Small off-state




current is utilized


7) Number of times of
Unlimited
Unlimited


reading operation




8) 3D conversion
Difficult (2
Easy (No limitation on the



layers at most)
number of layers)


9) Degree of
4F2 to 15F2
Depending on the number of


integration (F2)

layers in 3D conversion


10) Material
Rare-earth element with
Oxide semiconductor



magnetic property
material


11) Resistance to
Low
High


magnetic field









As shown in Table 2, the memory in which a transistor including an oxide semiconductor and a transistor including silicon are combined is significantly different from the spintronics device in the driving method, the principle of writing operation, the material, and the like.


Further, as shown in Table 2, the memory in which the transistor including an oxide semiconductor and the transistor including silicon are combined has advantages over the spintronics device in many aspects such as the heat resistance, the 3D conversion (stacked-layer structure with three or more layers), and the resistance to a magnetic field. Note that the “overhead” in Table 2 means what is called a power consumed by overhead, which is, for example, power for writing data into a memory portion or the like in a processor.


As described above, the use of the memory including an oxide semiconductor, which has more advantages than the spintronics device, makes it possible to reduce power consumption of a CPU.


The structures, methods, and the like which are described in this embodiment can be combined as appropriate with any of the structures, methods, and the like which are described in the other embodiments.


Embodiment 6

A semiconductor device disclosed in this specification can be applied to a variety of electronic devices (including an amusement machine). Examples of electronic devices include the following: display devices such as televisions and monitors, lighting devices, desktop or laptop personal computers, word processors, image reproduction devices which reproduce still images or moving images stored in recording media such as digital versatile discs (DVDs), portable CD players, radio receivers, tape recorders, headphone stereos, stereos, cordless phone handsets, transceivers, portable wireless devices, cellular phones, car phones, portable game machines, calculators, portable information terminals, electronic notebooks, e-book readers, electronic translators, audio input devices, video cameras, digital still cameras, electric shavers, high-frequency heating appliances such as microwave ovens, electric rice cookers, electric washing machines, electric vacuum cleaners, air-conditioning systems such as air conditioners, dish washing machines, dish drying machines, clothes dryers, futon dryers, electric refrigerators, electric freezers, electric refrigerator-freezers, freezers for preserving DNA, smoke detectors, radiation counters, medical equipment such as dialyzers. Further examples include industrial equipment such as guide lights, traffic lights, belt conveyors, elevators, escalators, industrial robots, and power storage systems. In addition, oil engines, moving objects driven by electric motors using power from non-aqueous secondary batteries, and the like are also included in the range of electronic devices. Examples of the moving objects include electric vehicles (EV), hybrid electric vehicles (HEV) which include both an internal-combustion engine and a motor, plug-in hybrid electric vehicles (PHEV), tracked vehicles in which caterpillar tracks are substituted for wheels of these vehicles, motorized bicycles including motor-assisted bicycles, motorcycles, electric wheelchairs, golf carts, boats or ships, submarines, helicopters, aircrafts, rockets, artificial satellites, space probes, planetary probes, spacecrafts, and the like. Specific examples of these electronic devices are illustrated in FIGS. 6A to 6C.



FIG. 6A illustrates a table 9000 having a display portion. In the table 9000, a display portion 9003 is incorporated in a housing 9001 and an image can be displayed on the display portion 9003. Note that the housing 9001 is supported by four leg portions 9002. Further, the housing 9001 is provided with a power cord 9005 for supplying power.


The transistor described in Embodiment 1 can be used in the display portion 9003 so that the electronic device can have high reliability.


The display portion 9003 has a touch-input function. When a user touches displayed buttons 9004 which are displayed on the display portion 9003 of the table 9000 with his/her finger or the like, the user can carry out operation of the screen and input of information. Further, when the table is capable of communicating with other home appliances or control the home appliances, the table 9000 may function as a control device which controls the home appliances by operation on the screen. For example, with the use of a semiconductor device having an image sensing function, the display portion 9003 can have a touch-input function.


Further, the screen of the display portion 9003 can be placed perpendicular to a floor with a hinge provided for the housing 9001; thus, the table 9000 can also be used as a television device. When a television device having a large screen is set in a small room, an open space is reduced; however, when a display portion is incorporated in a table, a space in the room can be efficiently used.



FIG. 6B illustrates a portable music player, which includes, in a main body 3021, a display portion 3023, a fixing portion 3022 with which the main body is worn on the ear, an operation button 3024, an external connection port 3025, and the like. The portable music player may include a speaker. When the transistor described in Embodiment 1 or any of the memories or logic circuits described in Embodiments 2 to 4 is applied to a memory, a CPU, or the like included in the main body 3021, a portable music player (PDA) whose power consumption is reduced can be provided.


Furthermore, when the portable music player illustrated in FIG. 6B has an antenna, a microphone function, or a wireless communication function and is used with a mobile phone, a user can talk on the phone wirelessly in a hands-free way while driving a car or the like.



FIG. 6C illustrates a computer, which includes a main body 9201 including a CPU, a housing 9202, a display portion 9203, a keyboard 9204, an external connection port 9205, a pointing device 9206, and the like. The computer is manufactured using a semiconductor device manufactured according to one embodiment of the present invention for the display portion 9203. When the CPU described in Embodiment 5 is used, power consumption of the computer can be reduced.



FIGS. 7A and 7B illustrate a foldable tablet terminal. The tablet terminal is opened in FIG. 7A. The tablet terminal includes a housing 9630, a display portion 9631a, a display portion 9631b, a display mode switch 9034, a power switch 9035, a power saver switch 9036, a clasp 9033, and an operation switch 9038.


In the portable device illustrated in FIGS. 7A and 7B, a memory such as an SRAM or a DRAM is used for temporarily storing image data or the like. For example, the semiconductor device described in Embodiment 2 or 3 can be used as a memory. By employing the semiconductor device described in the above embodiment for the memory, data can be written and read at high speed and held for a long time, and power consumption can be sufficiently reduced.


Part of the display portion 9631a can be a touch panel region 9632a and data can be input when a displayed operation key 9638 is touched. Although a structure in which a half region in the display portion 9631a has only a display function and the other half region has a touch panel function is shown as an example, the display portion 9631a is not limited to this structure. The whole region in the display portion 9631a may have a touch panel function. For example, the display portion 9631a can display keyboard buttons in its whole region to serve as a touch panel, and the display portion 9631b can be used as a display screen.


As in the display portion 9631a, part of the display portion 9631b can be a touch panel region 9632b. When a keyboard display switching button 9639 displayed on the touch panel is touched with a finger, a stylus, or the like, a keyboard can be displayed on the display portion 9631b.


Touch input can be performed in the touch panel region 9632a and the touch panel region 9632b at the same time.


The display mode switch 9034 can switch the display between portrait mode, landscape mode, and the like, and between monochrome display and color display, for example. The power saver switch 9036 can control display luminance in accordance with the amount of external light in use of the tablet terminal detected by an optical sensor incorporated in the tablet terminal. In addition to the optical sensor, another detection device including a sensor for detecting inclination, such as a gyroscope or an acceleration sensor, may be incorporated in the tablet terminal.


Note that FIG. 7A shows an example in which the display portion 9631a and the display portion 9631b have the same display area; however, without limitation, one of the display portions may be different from the other display portion in size and display quality. For example, one display panel may be capable of higher-definition display than the other display panel.


The tablet terminal is closed in FIG. 7B. The tablet terminal includes the housing 9630, a solar cell 9633, a charge and discharge control circuit 9634, a battery 9635, and a DCDC converter 9636. In FIG. 7B, a structure including the battery 9635 and the DCDC converter 9636 is illustrated as an example of the charge and discharge control circuit 9634.


Since the tablet terminal is foldable, the housing 9630 can be closed when the tablet terminal is not used. As a result, the display portion 9631a and the display portion 9631b can be protected; thus, a tablet terminal which has excellent durability and excellent reliability in terms of long-term use can be provided.


In addition, the tablet terminal illustrated in FIGS. 7A and 7B can have a function of displaying a variety of kinds of data (e.g., a still image, a moving image, and a text image), a function of displaying a calendar, a date, the time, or the like on the display portion, a touch-input function of operating or editing the data displayed on the display portion by touch input, a function of controlling processing by a variety of kinds of software (programs), and the like.


The solar cell 9633 provided on a surface of the tablet terminal can supply power to the touch panel, the display portion, a video signal processing portion, or the like. Note that the solar cell 9633 can be provided on one or both surfaces of the housing 9630, and the battery 9635 can be charged efficiently. The use of a lithium ion battery as the battery 9635 is advantageous in downsizing or the like.


The structure and the operation of the charge and discharge control circuit 9634 illustrated in FIG. 7B will be described with reference to a block diagram in FIG. 7C. The solar cell 9633, the battery 9635, the DCDC converter 9636, a converter 9637, switches SW1 to SW3, and a display portion 9631 are illustrated in FIG. 7C, and the battery 9635, the DCDC converter 9636, the converter 9637, and the switches SW1 to SW3 correspond to the charge and discharge control circuit 9634 illustrated in FIG. 7B.


First, an example of the operation in the case where power is generated by the solar cell 9633 using external light is described. The voltage of power generated by the solar cell is stepped up or down by the DCDC converter 9636 so that the power has a voltage for charging the battery 9635. Then, when the power from the solar cell 9633 is used for the operation of the display portion 9631, the switch SW1 is turned on and the voltage of the power is stepped up or down by the converter 9637 so as to be a voltage needed for the display portion 9631. In addition, when display on the display portion 9631 is not performed, the switch SW1 is turned off and the switch SW2 is turned on so that the battery 9635 may be charged.


Note that the solar cell 9633 is described as an example of a power generation means; however, without limitation, the battery 9635 may be charged using another power generation means such as a piezoelectric element or a thermoelectric conversion element (Peltier element). For example, a non-contact electric power transmission module which transmits and receives power wirelessly (without contact) to charge the battery 9635, or a combination of the solar cell 9633 and another means for charge may be used.


In a television device 8000 in FIG. 8A, a display portion 8002 is incorporated in a housing 8001. The display portion 8002 displays an image and a speaker portion 8003 can output sound. The transistor described in Embodiment 1 can be used in the display portion 8002.


A semiconductor display device such as a liquid crystal display device, a light-emitting device in which a light-emitting element such as an organic EL element is provided in each pixel, an electrophoresis display device, a digital micromirror device (DMD), a plasma display panel (PDP), or the like can be used in the display portion 8002.


The television device 8000 may be provided with a receiver, a modem, and the like. With the receiver, the television device 8000 can receive general television broadcasting. Furthermore, when the television device 8000 is connected to a communication network by wired or wireless connection via the modem, one-way (from a transmitter to a receiver) or two-way (between a transmitter and a receiver, between receivers, or the like) data communication can be performed.


In addition, the television device 8000 may include a CPU for performing information communication or a memory. Any of the memories, logic circuits, or CPU described in Embodiments 2 to 5 can be used in the television device 8000.


In FIG. 8A, an air conditioner including an indoor unit 8200 and an outdoor unit 8204 is an example of an electronic device including the CPU of Embodiment 5. Specifically, the indoor unit 8200 includes a housing 8201, a ventilation duct 8202, a CPU 8203, and the like. FIG. 8A shows the case where the CPU 8203 is provided in the indoor unit 8200; the CPU 8203 may be provided in the outdoor unit 8204. Alternatively, the CPU 8203 may be provided in both the indoor unit 8200 and the outdoor unit 8204. Since the CPU described in Embodiment 5 is formed using an oxide semiconductor, an air conditioner which has excellent heat resistance and high reliability can be provided with the use of the CPU.


In FIG. 8A, an electric refrigerator-freezer 8300 is an example of an electronic device which is provided with the CPU formed using an oxide semiconductor. Specifically, the electric refrigerator-freezer 8300 includes a housing 8301, a refrigerator door 8302, a freezer door 8303, a CPU 8304, and the like. The CPU 8304 is provided in the housing 8301 in FIG. 8A. When the CPU described in Embodiment 5 is used as the CPU 8304 of the electric refrigerator-freezer 8300, power saving can be achieved.



FIGS. 8B and 8C illustrates an example of an electric vehicle which is an example of an electronic device. An electric vehicle 9700 is equipped with a secondary battery 9701. The output of power of the secondary battery 9701 is controlled by a control circuit 9702 and the power is supplied to a driving device 9703. The control circuit 9702 is controlled by a processing unit 9704 including a ROM, a RAM, a CPU, or the like which is not illustrated. When the CPU described in Embodiment 5 is used as the CPU in the electric vehicle 9700, power saving can be achieved.


The driving device 9703 includes a DC motor or an AC motor either alone or in combination with an internal-combustion engine. The processing unit 9704 outputs a control signal to the control circuit 9702 based on input data such as data of operation (e.g., acceleration, deceleration, or stop) by a driver or data during driving (e.g., data on an upgrade or a downgrade, or data on a load on a driving wheel) of the electric vehicle 9700. The control circuit 9702 adjusts the electric energy supplied from the secondary battery 9701 in accordance with the control signal of the processing unit 9704 to control the output of the driving device 9703. In the case where the AC motor is mounted, although not illustrated, an inverter which converts direct current into alternate current is also incorporated.


The structures, methods, and the like which are described in this embodiment can be combined as appropriate with any of the structures, methods, and the like which are described in the other embodiments.


EXPLANATION OF REFERENCE


100: substrate, 102: gate electrode layer, 103: insulating layer, 104: insulating layer, 106: oxide semiconductor stacked layers, 106a: oxide semiconductor layer, 106b: oxide semiconductor layer, 108: conductive film, 108a: source electrode layer, 108b: drain electrode layer, 110: insulating layer, 112: gate electrode layer, 120: transistor, 160: transistor, 162: transistor, 164: capacitor, 200: substrate, 202a: electrode layer, 202b: gate electrode layer, 203: insulating layer, 204: insulating layer, 206: element isolation insulating layer, 208: gate insulating layer, 210: gate electrode layer, 212a: electrode layer, 212b: electrode layer, 214: impurity region, 216: channel formation region, 218: sidewall insulating layer, 220: high-concentration impurity region, 222a: electrode layer, 222b: wiring layer, 224: intermetallic compound region, 228: insulating layer, 230: insulating layer, 232: insulating layer, 234: insulating layer, 236: insulating layer, 244: oxide semiconductor stacked layers, 244a: oxide semiconductor layer, 244b: oxide semiconductor layer, 250: memory cell, 251: memory cell array, 251a: memory cell array, 251b: memory cell array, 253: conductive layer, 254: capacitor, 256: wiring layer, 258: peripheral circuit, 260: gate insulating layer, 262: gate electrode layer, 268a: electrode layer, 268b: electrode layer, 302: insulating layer, 306: oxide semiconductor layer, 308a: source electrode layer, 308b: drain electrode layer, 310: gate insulating layer, 320: transistor, 402: oxygen-excess region, 405a: source electrode layer, 405b: drain electrode layer, 400: oxygen, 800: substrate, 801: transistor, 802: transistor, 803: transistor, 804: transistor, 806: element isolation insulating layer, 811: transistor, 812: transistor, 813: transistor, 814: transistor, 821: gate electrode layer, 825: electrode layer, 826: insulating layer, 830: insulating layer, 831: electrode layer, 832: wiring layer, 833: insulating layer, 834: wiring layer, 835: electrode layer, 836: insulating layer, 839: insulating layer, 840: gate electrode layer, 841a: gate electrode layer, 841b: electrode layer, 843: gate insulating layer, 845: electrode layer, 1141: switching element, 1142: memory cell, 1143: memory cell group, 1189: ROM interface, 1190: substrate, 1191: ALU, 1192: ALU controller, 1193: instruction decoder, 1194: interrupt controller, 1195: timing controller, 1196: register, 1197: register controller, 1198: bus interface, 1199: ROM, 3021: main body, 3022: fixing portion, 3023: display portion, 3024: operation button, 3025: external connection port, 8000: television device, 8001: housing, 8002: display portion, 8003: speaker portion, 8200: indoor unit, 8201: housing, 8202: ventilation duct, 8203: CPU, 8204: outdoor unit, 8300: electric refrigerator-freezer, 8301: housing, 8302: refrigerator door, 8303: freezer door, 8304: CPU, 9000: table, 9001: housing, 9002: leg portions, 9003: display portion, 9004: displayed buttons, 9005: power cord, 9033: clasp, 9034: switch, 9035: power switch, 9036: switch, 9038: operation switch, 9201: main body, 9202: housing, 9203: display portion, 9204: keyboard, 9205: external connection port, 9206: pointing device, 9630: housing, 9631: display portion, 9631a: display portion, 9631b: display portion, 9632a: region, 9632b: region, 9633: solar cell, 9634: charge and discharge control circuit, 9635: battery, 9636: DCDC converter, 9637: converter, 9638: operation key, 9639: button, 9700: electric vehicle, 9701: secondary battery, 9702: control circuit, 9703: driving device, 9704: processing unit.


This application is based on Japanese Patent Application serial no. 2012-091539 filed with Japan Patent Office on Apr. 13, 2012, the entire contents of which are hereby incorporated by reference.

Claims
  • 1. A semiconductor device comprising: a first transistor;a second transistor;a third transistor;a fourth transistor;a first layer comprising silicon over a substrate;a first insulating layer over the first layer;a first gate electrode of the third transistor over the first insulating layer;a first conductive layer over the first gate electrode of the third transistor, the first conductive layer functioning as a first gate electrode of the second transistor;a second insulating layer over the first conductive layer;a second layer comprising an oxide semiconductor over the second insulating layer;a third insulating layer over the second layer;a second conductive layer over the third insulating layer, the second conductive layer functioning as a second gate electrode of the second transistor; anda third conductive layer in contact with a top surface of the second layer,wherein the second transistor comprises the oxide semiconductor in a channel formation region,wherein a first wiring is electrically connected to one of a source electrode and a drain electrode of the first transistor,wherein the other of the source electrode and the drain electrode of the first transistor is electrically connected to one of a source electrode and a drain electrode of the second transistor,wherein a second wiring is electrically connected to a first gate electrode of the first transistor,wherein a third wiring is electrically connected to the first gate electrode of the second transistor,wherein the other of the source electrode and the drain electrode of the second transistor is electrically connected to one of a source electrode and a drain electrode of the third transistor and one of a source electrode and a drain electrode of the fourth transistor,wherein the first transistor comprises a second gate electrode overlapping with the first gate electrode of the first transistor, andwherein the third conductive layer comprises a region extending below the second layer.
  • 2. The semiconductor device according to claim 1, wherein the first insulating layer, the second insulating layer, and the third insulating layer comprise silicon.
  • 3. A semiconductor device comprising: a first transistor, the first transistor comprising an oxide semiconductor in a channel formation region;a second transistor;a third transistor, the third transistor comprising silicon in a channel formation region;a fourth transistor;a first layer over a substrate, the first layer comprising the channel formation region of the third transistor;a first insulating layer over the first layer;a first gate electrode of the third transistor over the first insulating layer;a first conductive layer over the first gate electrode of the third transistor, the first conductive layer functioning as a first gate electrode of the second transistor;a second insulating layer over the first conductive layer;a second layer comprising the oxide semiconductor over the second insulating layer;a third insulating layer over the second layer;a second conductive layer over the third insulating layer, the second conductive layer functioning as a second gate electrode of the second transistor; anda third conductive layer in contact with a top surface of the second layer,wherein a first wiring is electrically connected to one of a source electrode and a drain electrode of the first transistor,wherein the other of the source electrode and the drain electrode of the first transistor is electrically connected to one of a source electrode and a drain electrode of the second transistor,wherein a second wiring is electrically connected to a first gate electrode of the first transistor,wherein a third wiring is electrically connected to the first gate electrode of the second transistor,wherein the other of the source electrode and the drain electrode of the second transistor is electrically connected to one of a source electrode and a drain electrode of the third transistor and one of a source electrode and a drain electrode of the fourth transistor,wherein the first transistor comprises a second gate electrode overlapping with the first gate electrode of the first transistor, andwherein the third conductive layer comprises a region extending below the second layer.
  • 4. The semiconductor device according to claim 3, wherein the first insulating layer, the second insulating layer, and the third insulating layer comprise silicon.
  • 5. A semiconductor device comprising: a first transistor, the first transistor comprising an oxide semiconductor in a channel formation region;a second transistor, the second transistor comprising an oxide semiconductor in a channel formation region;a third transistor, the third transistor comprising silicon in a channel formation region;a fourth transistor, the fourth transistor comprising silicon in a channel formation region;a first layer over a substrate, the first layer comprising the channel formation region of the third transistor;a first insulating layer over the first layer;a first gate electrode of the third transistor over the first insulating layer;a first conductive layer over the first gate electrode of the third transistor, the first conductive layer functioning as a first gate electrode of the second transistor;a second insulating layer over the first conductive layer;a second layer comprising the oxide semiconductor of the second transistor over the second insulating layer;a third insulating layer over the second layer;a second conductive layer over the third insulating layer, the second conductive layer functioning as a second gate electrode of the second transistor; anda third conductive layer in contact with a top surface of the second layer,wherein a first wiring is electrically connected to one of a source electrode and a drain electrode of the first transistor,wherein the other of the source electrode and the drain electrode of the first transistor is electrically connected to one of a source electrode and a drain electrode of the second transistor,wherein a second wiring is electrically connected to a first gate electrode of the first transistor,wherein a third wiring is electrically connected to the first gate electrode of the second transistor,wherein the other of the source electrode and the drain electrode of the second transistor is electrically connected to one of a source electrode and a drain electrode of the third transistor and one of a source electrode and a drain electrode of the fourth transistor,wherein the oxide semiconductor of the second transistor comprises a crystal with a size greater than or equal to 1 nm and less than 10 nm, andwherein the third conductive layer comprises a region extending below the second layer.
  • 6. The semiconductor device according to claim 5, wherein the first insulating layer, the second insulating layer, and the third insulating layer comprise silicon.
Priority Claims (1)
Number Date Country Kind
2012-091539 Apr 2012 JP national
US Referenced Citations (303)
Number Name Date Kind
5731856 Kim et al. Mar 1998 A
5744864 Cillessen et al. Apr 1998 A
6207969 Yamazaki Mar 2001 B1
6294274 Kawazoe et al. Sep 2001 B1
6563174 Kawasaki et al. May 2003 B2
6727522 Kawasaki et al. Apr 2004 B1
6838308 Haga Jan 2005 B2
7049190 Takeda et al. May 2006 B2
7061014 Hosono. et al. Jun 2006 B2
7064346 Kawasaki et al. Jun 2006 B2
7105868 Nause et al. Sep 2006 B2
7211825 Shih et al. May 2007 B2
7282782 Hoffman et al. Oct 2007 B2
7297977 Hoffman et al. Nov 2007 B2
7323356 Hosono et al. Jan 2008 B2
7382421 Hoffman et al. Jun 2008 B2
7385224 Ishii et al. Jun 2008 B2
7402506 Levy et al. Jul 2008 B2
7411209 Endo et al. Aug 2008 B2
7453065 Saito et al. Nov 2008 B2
7453087 Iwasaki Nov 2008 B2
7462862 Hoffman et al. Dec 2008 B2
7468304 Kaji et al. Dec 2008 B2
7501293 Ito et al. Mar 2009 B2
7576394 Furuta et al. Aug 2009 B2
7601984 Sano et al. Oct 2009 B2
7642038 Fujii Jan 2010 B2
7674650 Akimoto et al. Mar 2010 B2
7732819 Akimoto et al. Jun 2010 B2
7791072 Kumomi et al. Sep 2010 B2
7855379 Hayashi et al. Dec 2010 B2
7935964 Kim et al. May 2011 B2
7994500 Kim et al. Aug 2011 B2
8058645 Jeong et al. Nov 2011 B2
8067775 Miyairi et al. Nov 2011 B2
8088652 Hayashi et al. Jan 2012 B2
8106400 Miyairi et al. Jan 2012 B2
8148779 Jeong et al. Apr 2012 B2
8178884 Ha et al. May 2012 B2
8188480 Itai May 2012 B2
8202365 Umeda et al. Jun 2012 B2
8203143 Imai Jun 2012 B2
8222092 Yamazaki et al. Jul 2012 B2
8232551 Kim et al. Jul 2012 B2
8232552 Yano et al. Jul 2012 B2
8274078 Itagaki et al. Sep 2012 B2
8309961 Yamazaki et al. Nov 2012 B2
8344387 Akimoto et al. Jan 2013 B2
8350261 Sakata et al. Jan 2013 B2
8354674 Kimura Jan 2013 B2
8362478 Yamazaki et al. Jan 2013 B2
8377744 Yamazaki et al. Feb 2013 B2
8384076 Park et al. Feb 2013 B2
8422298 Saito et al. Apr 2013 B2
8426868 Akimoto et al. Apr 2013 B2
8450732 Kim et al. May 2013 B2
8497502 Yaegashi Jul 2013 B2
8507907 Takahashi et al. Aug 2013 B2
8546811 Godo et al. Oct 2013 B2
8563976 Yamazaki et al. Oct 2013 B2
8582349 Yamazaki et al. Nov 2013 B2
8610187 Yamazaki et al. Dec 2013 B2
8618537 Kaneko et al. Dec 2013 B2
8633492 Akimoto et al. Jan 2014 B2
8659013 Yamazaki Feb 2014 B2
8664036 Yamazaki et al. Mar 2014 B2
8674979 Hayakawa Mar 2014 B2
8692252 Takata et al. Apr 2014 B2
8704216 Godo et al. Apr 2014 B2
8711623 Saito et al. Apr 2014 B2
8737109 Yamazaki et al. May 2014 B2
8748881 Yamazaki Jun 2014 B2
8748886 Yamazaki et al. Jun 2014 B2
8759167 Akimoto et al. Jun 2014 B2
8779420 Yamazaki Jul 2014 B2
8841163 Yamazaki et al. Sep 2014 B2
8853690 Yamazaki et al. Oct 2014 B2
8860108 Yamazaki et al. Oct 2014 B2
8883555 Yamazaki Nov 2014 B2
8889499 Yamazaki et al. Nov 2014 B2
8946702 Yamazaki et al. Feb 2015 B2
8952377 Yamazaki et al. Feb 2015 B2
8957414 Yamazaki et al. Feb 2015 B2
9059047 Yamazaki Jun 2015 B2
9064899 Godo et al. Jun 2015 B2
9130049 Sano et al. Sep 2015 B2
9142683 Yamazaki et al. Sep 2015 B2
9190528 Yamazaki et al. Nov 2015 B2
9214520 Yamazaki Dec 2015 B2
9224609 Yamazaki et al. Dec 2015 B2
9240467 Yamazaki et al. Jan 2016 B2
9257082 Kimura et al. Feb 2016 B2
9391095 Yamazaki et al. Jul 2016 B2
9391209 Godo et al. Jul 2016 B2
9406808 Yamazaki et al. Aug 2016 B2
9431429 Yamazaki Aug 2016 B2
9449706 Yamazaki et al. Sep 2016 B2
9472679 Yamazaki et al. Oct 2016 B2
9583637 Sano et al. Feb 2017 B2
9640668 Yamazaki May 2017 B2
9660102 Godo et al. May 2017 B2
9721811 Yamazaki et al. Aug 2017 B2
10002968 Yoneda Jun 2018 B2
10109500 Yamazaki et al. Oct 2018 B2
10134912 Kimura et al. Nov 2018 B2
10297322 Yamazaki et al. May 2019 B2
10490553 Yamazaki Nov 2019 B2
10559699 Yamazaki et al. Feb 2020 B2
10700215 Kimura et al. Jun 2020 B2
11069817 Kimura et al. Jul 2021 B2
20010046027 Tai et al. Nov 2001 A1
20020056838 Ogawa May 2002 A1
20020075423 Fujino Jun 2002 A1
20020132454 Ohtsu et al. Sep 2002 A1
20030189401 Kido et al. Oct 2003 A1
20030218222 Wager, III et al. Nov 2003 A1
20040038446 Takeda et al. Feb 2004 A1
20040127038 Carcia et al. Jul 2004 A1
20050017302 Hoffman Jan 2005 A1
20050199959 Chiang et al. Sep 2005 A1
20050221203 Fujii Oct 2005 A1
20050275038 Shih et al. Dec 2005 A1
20060035452 Carcia et al. Feb 2006 A1
20060043377 Hoffman et al. Mar 2006 A1
20060043447 Ishii et al. Mar 2006 A1
20060091793 Baude et al. May 2006 A1
20060108529 Saito et al. May 2006 A1
20060108636 Sano et al. May 2006 A1
20060110867 Yabuta et al. May 2006 A1
20060113536 Kumomi et al. Jun 2006 A1
20060113539 Sano et al. Jun 2006 A1
20060113549 Den et al. Jun 2006 A1
20060113565 Abe et al. Jun 2006 A1
20060169973 Isa et al. Aug 2006 A1
20060170111 Isa et al. Aug 2006 A1
20060197092 Hoffman et al. Sep 2006 A1
20060208977 Kimura Sep 2006 A1
20060228974 Thelss et al. Oct 2006 A1
20060231882 Kim et al. Oct 2006 A1
20060238135 Kimura Oct 2006 A1
20060244107 Sugihara. et al. Nov 2006 A1
20060284171 Levy et al. Dec 2006 A1
20060284172 Ishii Dec 2006 A1
20060292777 Dunbar Dec 2006 A1
20070024187 Shin et al. Feb 2007 A1
20070046191 Saito Mar 2007 A1
20070052025 Yabuta Mar 2007 A1
20070054507 Kaji et al. Mar 2007 A1
20070072439 Akimoto et al. Mar 2007 A1
20070090365 Hayashi et al. Apr 2007 A1
20070108446 Akimoto May 2007 A1
20070152217 Lai et al. Jul 2007 A1
20070172591 Seo et al. Jul 2007 A1
20070187678 Hirao et al. Aug 2007 A1
20070187760 Furuta et al. Aug 2007 A1
20070194379 Hosono et al. Aug 2007 A1
20070252928 Ito et al. Nov 2007 A1
20070272922 Kim et al. Nov 2007 A1
20070287296 Chang Dec 2007 A1
20080006877 Mardilovich et al. Jan 2008 A1
20080038882 Takechi et al. Feb 2008 A1
20080038929 Chang Feb 2008 A1
20080050595 Nakagawara et al. Feb 2008 A1
20080073653 Iwasaki Mar 2008 A1
20080083950 Pan et al. Apr 2008 A1
20080106191 Kawase May 2008 A1
20080128689 Lee et al. Jun 2008 A1
20080129195 Ishizaki. et al. Jun 2008 A1
20080166834 Kim et al. Jul 2008 A1
20080182358 Cowdery-Corvan et al. Jul 2008 A1
20080191204 Kim et al. Aug 2008 A1
20080224133 Park et al. Sep 2008 A1
20080237598 Nakayama Oct 2008 A1
20080254569 Hoffman et al. Oct 2008 A1
20080258139 Ito et al. Oct 2008 A1
20080258140 Lee et al. Oct 2008 A1
20080258141 Park et al. Oct 2008 A1
20080258143 Kim et al. Oct 2008 A1
20080291350 Hayashi et al. Nov 2008 A1
20080296568 Ryu et al. Dec 2008 A1
20080308796 Akimoto et al. Dec 2008 A1
20080308797 Akimoto et al. Dec 2008 A1
20080308804 Akimoto et al. Dec 2008 A1
20080308805 Akimoto et al. Dec 2008 A1
20080308806 Akimoto et al. Dec 2008 A1
20090008639 Akimoto et al. Jan 2009 A1
20090068773 Lai et al. Mar 2009 A1
20090073325 Kuwabara et al. Mar 2009 A1
20090114910 Chang May 2009 A1
20090127551 Imai May 2009 A1
20090134399 Sakakura et al. May 2009 A1
20090152506 Umeda et al. Jun 2009 A1
20090152541 Maekawa et al. Jun 2009 A1
20090179199 Sano et al. Jul 2009 A1
20090189153 Iwasaki et al. Jul 2009 A1
20090218572 Dairiki et al. Sep 2009 A1
20090236596 Itai Sep 2009 A1
20090239335 Akimoto et al. Sep 2009 A1
20090250693 Jeong et al. Oct 2009 A1
20090261325 Kawamura et al. Oct 2009 A1
20090269881 Furuta et al. Oct 2009 A1
20090278122 Hosono et al. Nov 2009 A1
20090280600 Hosono et al. Nov 2009 A1
20090305461 Akimoto et al. Dec 2009 A1
20090321731 Jeong et al. Dec 2009 A1
20090321732 Kim et al. Dec 2009 A1
20090321743 Isa et al. Dec 2009 A1
20100006833 Ha et al. Jan 2010 A1
20100025678 Yamazaki et al. Feb 2010 A1
20100032665 Yamazaki et al. Feb 2010 A1
20100038641 Imai Feb 2010 A1
20100044701 Sano et al. Feb 2010 A1
20100051938 Hayashi et al. Mar 2010 A1
20100051943 Fujii Mar 2010 A1
20100051949 Yamazaki et al. Mar 2010 A1
20100065844 Tokunaga Mar 2010 A1
20100078633 Watanabe Apr 2010 A1
20100084648 Watanabe Apr 2010 A1
20100084651 Yamazaki Apr 2010 A1
20100092800 Itagaki et al. Apr 2010 A1
20100102313 Miyairi et al. Apr 2010 A1
20100109002 Itagaki et al. May 2010 A1
20100117999 Matsunaga et al. May 2010 A1
20100136743 Akimoto et al. Jun 2010 A1
20100140612 Omura et al. Jun 2010 A1
20100148170 Ueda et al. Jun 2010 A1
20100155717 Yano et al. Jun 2010 A1
20100163866 Akimoto et al. Jul 2010 A1
20100163868 Yamazaki. et al. Jul 2010 A1
20100181565 Sakata et al. Jul 2010 A1
20100219410 Godo Sep 2010 A1
20100244029 Yamazaki et al. Sep 2010 A1
20100283049 Sato et al. Nov 2010 A1
20100320458 Umeda et al. Dec 2010 A1
20100320459 Umeda et al. Dec 2010 A1
20110006301 Yamazaki et al. Jan 2011 A1
20110024740 Yamazaki et al. Feb 2011 A1
20110024750 Yamazaki et al. Feb 2011 A1
20110024751 Yamazaki et al. Feb 2011 A1
20110031491 Yamazaki et al. Feb 2011 A1
20110037068 Yamazaki et al. Feb 2011 A1
20110062436 Yamazaki et al. Mar 2011 A1
20110068335 Yamazaki et al. Mar 2011 A1
20110089414 Yamazaki et al. Apr 2011 A1
20110089417 Yamazaki et al. Apr 2011 A1
20110101331 Yamazaki et al. May 2011 A1
20110108837 Yamazaki et al. May 2011 A1
20110109351 Yamazaki et al. May 2011 A1
20110127521 Yamazaki Jun 2011 A1
20110127522 Yamazaki Jun 2011 A1
20110127523 Yamazaki Jun 2011 A1
20110133191 Yamazaki Jun 2011 A1
20110136301 Yamazaki et al. Jun 2011 A1
20110136302 Yamazaki et al. Jun 2011 A1
20110140100 Takata et al. Jun 2011 A1
20110151618 Yamazaki et al. Jun 2011 A1
20110156026 Yamazaki et al. Jun 2011 A1
20110175082 Kim et al. Jul 2011 A1
20110175101 Hatano et al. Jul 2011 A1
20110193083 Kim et al. Aug 2011 A1
20110207269 Sasagawa et al. Aug 2011 A1
20110210328 Yamazaki et al. Sep 2011 A1
20110212571 Yamazaki et al. Sep 2011 A1
20110215318 Yamazaki et al. Sep 2011 A1
20110215319 Yamazaki et al. Sep 2011 A1
20110215328 Morosawa et al. Sep 2011 A1
20110240462 Yamazaki Oct 2011 A1
20110240992 Yamazaki Oct 2011 A1
20120033152 Ha et al. Feb 2012 A1
20120049183 Yamazaki Mar 2012 A1
20120051119 Yamazaki et al. Mar 2012 A1
20120061668 Miyairi et al. Mar 2012 A1
20120119205 Taniguchi et al. May 2012 A1
20120132903 Yamazaki et al. May 2012 A1
20120153278 Jeong et al. Jun 2012 A1
20120155150 Nagatsuka Jun 2012 A1
20120161139 Endo et al. Jun 2012 A1
20120175608 Yamazaki Jul 2012 A1
20120187395 Koezuka Jul 2012 A1
20120220077 Ha et al. Aug 2012 A1
20120256179 Yamazaki et al. Oct 2012 A1
20120261664 Saito Oct 2012 A1
20120280227 Wakana et al. Nov 2012 A1
20120305912 Koyama et al. Dec 2012 A1
20120314470 Matsubayashi Dec 2012 A1
20120319102 Yamazaki et al. Dec 2012 A1
20120319114 Yamazaki et al. Dec 2012 A1
20120319183 Yamazaki et al. Dec 2012 A1
20130009209 Yamazaki Jan 2013 A1
20130009220 Yamazaki et al. Jan 2013 A1
20130020571 Yamazaki et al. Jan 2013 A1
20130082262 Honda et al. Apr 2013 A1
20130161608 Yamazaki Jun 2013 A1
20130240873 Yamazaki et al. Sep 2013 A1
20130264563 Okazaki et al. Oct 2013 A1
20130270549 Okazaki et al. Oct 2013 A1
20130270563 Yamazaki Oct 2013 A1
20140070211 Iwasaki et al. Mar 2014 A1
20140246673 Akimoto et al. Sep 2014 A1
20160336456 Yamazaki et al. Nov 2016 A1
20160351597 Yamazaki Dec 2016 A1
20170069765 Yamazaki et al. Mar 2017 A1
20210343877 Kimura et al. Nov 2021 A1
Foreign Referenced Citations (143)
Number Date Country
101617408 Dec 2009 CN
101630692 Jan 2010 CN
101752428 Jun 2010 CN
101853884 Oct 2010 CN
102197490 Sep 2011 CN
102386236 Mar 2012 CN
102403361 Apr 2012 CN
102509736 Jun 2012 CN
102640272 Aug 2012 CN
102648526 Aug 2012 CN
1737044 Dec 2006 EP
2105967 Sep 2009 EP
2120267 Nov 2009 EP
2141743 Jan 2010 EP
2144294 Jan 2010 EP
2146379 Jan 2010 EP
2149910 Feb 2010 EP
2149911 Feb 2010 EP
2197034 Jun 2010 EP
2226847 Sep 2010 EP
2408011 Jan 2012 EP
2423966 Feb 2012 EP
2544237 Jan 2013 EP
2927965 Oct 2015 EP
2153589 Aug 1985 GB
60-198861 Oct 1985 JP
63-210022 Aug 1988 JP
63-210023 Aug 1988 JP
63-210024 Aug 1988 JP
63-215519 Sep 1988 JP
63-239117 Oct 1988 JP
63-265818 Nov 1988 JP
05-251705 Sep 1993 JP
08-264794 Oct 1996 JP
11-505377 May 1999 JP
2000-044236 Feb 2000 JP
2000-150900 May 2000 JP
2002-076356 Mar 2002 JP
2002-289859 Oct 2002 JP
2003-086000 Mar 2003 JP
2003-086808 Mar 2003 JP
2004-103957 Apr 2004 JP
2004-273614 Sep 2004 JP
2004-273732 Sep 2004 JP
2006-165528 Jun 2006 JP
2006-165529 Jun 2006 JP
2007-096055 Apr 2007 JP
2007-123861 May 2007 JP
2007-150158 Jun 2007 JP
2007-281409 Oct 2007 JP
2008-243928 Oct 2008 JP
2008-276212 Nov 2008 JP
2008-294136 Dec 2008 JP
2009-231613 Oct 2009 JP
2009-278115 Nov 2009 JP
2010-016347 Jan 2010 JP
2010-016348 Jan 2010 JP
2010-021520 Jan 2010 JP
2010-034534 Feb 2010 JP
2010-040552 Feb 2010 JP
4415062 Feb 2010 JP
2010-067954 Mar 2010 JP
2010-073881 Apr 2010 JP
2010-087223 Apr 2010 JP
2010-123938 Jun 2010 JP
2010-135766 Jun 2010 JP
2010-177431 Aug 2010 JP
2010-186860 Aug 2010 JP
2010-186994 Aug 2010 JP
2010-531059 Sep 2010 JP
2010-226101 Oct 2010 JP
4571221 Oct 2010 JP
2010-251735 Nov 2010 JP
2010-267955 Nov 2010 JP
2011-035387 Feb 2011 JP
2011-076079 Apr 2011 JP
2011-086923 Apr 2011 JP
2011-100997 May 2011 JP
2011-120221 Jun 2011 JP
2011-124360 Jun 2011 JP
2011-135063 Jul 2011 JP
2011-135066 Jul 2011 JP
2011-138934 Jul 2011 JP
2011-139050 Jul 2011 JP
2011-139051 Jul 2011 JP
2011-139054 Jul 2011 JP
2011-142316 Jul 2011 JP
2011-146697 Jul 2011 JP
2011-176294 Sep 2011 JP
2011-181917 Sep 2011 JP
2011-192973 Sep 2011 JP
2011-216177 Oct 2011 JP
2011-228688 Nov 2011 JP
2011-233876 Nov 2011 JP
2011-243745 Dec 2011 JP
2012-028731 Feb 2012 JP
2012-059860 Mar 2012 JP
2012-060160 Mar 2012 JP
2012-067387 Apr 2012 JP
2012-069231 Apr 2012 JP
2012-069932 Apr 2012 JP
2012-160679 Aug 2012 JP
2012-160717 Aug 2012 JP
2008-0058406 Jun 2008 KR
2010-0092882 Aug 2010 KR
2010-0108291 Oct 2010 KR
2011-0073616 Jun 2011 KR
2011-0095830 Aug 2011 KR
2011-0107934 Oct 2011 KR
2011-0111542 Oct 2011 KR
2012-0005055 Jan 2012 KR
2012-0026005 Mar 2012 KR
2012-0099475 Sep 2012 KR
2012-0103616 Sep 2012 KR
2012-0104572 Sep 2012 KR
200901481 Jan 2009 TW
201131664 Sep 2011 TW
201138111 Nov 2011 TW
201222823 Jun 2012 TW
WO-2004114391 Dec 2004 WO
WO-2007032294 Mar 2007 WO
WO-2008105347 Sep 2008 WO
WO-2008126884 Oct 2008 WO
WO-2008133345 Nov 2008 WO
WO-2008156311 Dec 2008 WO
WO-2008156312 Dec 2008 WO
WO-2009034953 Mar 2009 WO
WO-2009072532 Jun 2009 WO
WO-2010093051 Aug 2010 WO
WO-2011033936 Mar 2011 WO
WO-2011043203 Apr 2011 WO
WO-2011052368 May 2011 WO
WO-2011065243 Jun 2011 WO
WO-2011065329 Jun 2011 WO
WO-2011068033 Jun 2011 WO
WO-2011068037 Jun 2011 WO
WO-2011070901 Jun 2011 WO
WO-2011074409 Jun 2011 WO
WO-2011093003 Aug 2011 WO
WO-2011096275 Aug 2011 WO
WO-2011114866 Sep 2011 WO
WO-2011125454 Oct 2011 WO
WO-2012026503 Mar 2012 WO
Non-Patent Literature Citations (75)
Entry
Fortunato.E et al., “Wide-Bandgap High-Mobility ZnO Thin-Film Transistors Produced at Room Temperature”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 27, 2004, vol. 85, No. 13, pp. 2541-2543.
Dembo.H et al., “RFCPUS on Glass and Plastic Substrates Fabricated by TFT Transfer Technology”, IEDM 05: Technical Digest of International Electron Devices Meeting, Dec. 5, 2005, pp. 1067-1069.
Ikeda.T et al., “Full-Functional System Liquid Crystal Display Using CG-Silicon Technology”, SID Digest '04 : SID International Symposium Digest of Technical Papers, 2004, vol. 35, pp. 860-863.
Nomura.K et al., “Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors”, Nature, Nov. 25, 2004, vol. 432, pp. 488-492.
Park.J et al., “Improvements in the Device Characteristics of Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors by Ar Plasma Treatment”, Appl. Phys. Lett. (Applied Physics Letters) , Jun. 26, 2007, vol. 90, No. 26, pp. 262106-1-262106-3.
Takahashi.M et al., “Theoretical Analysis of IGZO Transparent Amorphous Oxide Semiconductor”, IDW '08 : Proceedings of the 15th International Display Workshops, Dec. 3, 2008, pp. 1637-1640.
Hayashi.R et al., “42.1: Invited Paper: Improved Amorphous In—Ga—Zn—O TFTS”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 621-624.
Prins.M et al., “A Ferroelectric Transparent Thin-Film Transistor”, Appl. Phys. Lett. (Applied Physics Letters) , Jun. 17, 1996, vol. 68, No. 25, pp. 3650-3652.
Nakamura.M et al., “The phase relations in the In2O3—Ga2ZnO4—ZnO system at 1350° C.”, Journal of Solid State Chemistry, Aug. 1, 1991, vol. 93, No. 2, pp. 298-315.
Kimizuka.N et al., “Syntheses and Single-Crystal Data of Homologous Compounds, In2O3(ZnO)m (m=3, 4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (m=7, 8, 9, and 16) in the In2O3—ZnGa2O4—ZnO System”, Journal of Solid State Chemistry, Apr. 1, 1995, vol. 116, No. 1, pp. 170-178.
Nomura.K et al., “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor”, Science, May 23, 2003, vol. 300, No. 5623, pp. 1269-1272.
Masuda.S et al., “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties”, J. Appl. Phys. (Journal of Applied Physics) , Feb. 1, 2003, vol. 93, No. 3, pp. 1624-1630.
Asakuma.N et al., “Crystallization and Reduction of Sol-Gel-Derived Zinc Oxide Films by Irradiation With Ultraviolet Lamp”, Journal of Sol-Gel Science and Technology, 2003, vol. 26, pp. 181-184.
Osada.T et al., “15.2: Development of Driver-Integrated Panel using Amorphous In—Ga—Zn-Oxide TFT”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, vol. 40, pp. 184-187.
Nomura.K et al., “Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 13, 2004, vol. 85, No. 11, pp. 1993-1995.
Li.C et al., “Modulated Structures of Homologous Compounds InMO3(ZnO)m (M=In,Ga; m=Integer) Described by Four-Dimensional Superspace Group”, Journal of Solid State Chemistry, 1998, vol. 139, pp. 347-355.
Son.K et al., “42.4L: Late-News Paper: 4 Inch QVGA AMOLED Driven by the Threshold Voltage Controlled Amorphous GIZO (Ga2O3—In2O3—ZnO) TFT”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 633-636.
Lee.J et al., “World's Largest (15-Inch) XGA AMLCD Panel Using IGZO Oxide TFT”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 625-628.
Nowatari.H et al., “60.2: Intermediate Connector With Suppressed Voltage Loss for White Tandem OLEDs”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, vol. 40, pp. 899-902.
Kanno.H et al., “White Stacked Electrophosphorecent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer”, Adv. Mater. (Advanced Materials), 2006, vol. 18, No. 3, pp. 339-342.
Tsuda.K et al., “Ultra Low Power Consumption Technologies for Mobile TFT-LCDs”, IDW '02 : Proceedings of the 9th International Display Workshops, Dec. 4, 2002, pp. 295-298.
Van de Walle.C, “Hydrogen as a Cause of Doping in Zinc Oxide”, Phys. Rev. Lett. (Physical Review Letters), Jul. 31, 2000, vol. 85, No. 5, pp. 1012-1015.
Fung.T et al., “2-D Numerical Simulation of High Performance Amorphous In—Ga—Zn—O TFTs for Flat Panel Displays”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 251-252, The Japan Society of Applied Physics.
Jeong.J et al., “3.1: Distinguished Paper: 12.1-Inch WXGA AMOLED Display Driven by Indium-Gallium-Zinc Oxide TFTs Array”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, No. 1, pp. 1-4.
Park.J et al., “High performance amorphous oxide thin film transistors with self-aligned top-gate structure”, IEDM 09: Technical Digest of International Electron Devices Meeting, Dec. 7, 2009, pp. 191-194.
Kurokawa. Y et al., “UHF RFCPUS on Flexible and Glass Substrates for Secure RFID Systems”, Journal of Solid-State Circuits , 2008, vol. 43, No. 1, pp. 292-299.
Ohara.H et al., “Amorphous In—Ga—Zn-Oxide TFTs with Suppressed Variation for 4.0 inch QVGA AMOLED Display”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 227-230, The Japan Society of Applied Physics.
Coates.D et al., “Optical Studies of the Amorphous Liquid-Cholesteric Liquid Crystal Transition:The “Blue Phase””, Physics Letters, Sep. 10, 1973, vol. 45A, No. 2, pp. 115-116.
Cho.D et al., “21.2:Al and Sn-Doped Zinc Indium Oxide Thin Film Transistors for AMOLED Back-Plane”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 280-283.
Lee.M et al., “15.4:Excellent Performance of Indium-Oxide-Based Thin-Film Transistors by DC Sputtering”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 191-193.
Jin.D et al., “65.2:Distinguished Paper:World-Largest (6.5″) Flexible Full Color Top Emission AMOLED Display on Plastic Film and Its Bending Properties”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 983-985.
Sakata.J et al., “Development of 4.0-In. AMOLED Display With Driver Circuit Using Amorphous In—Ga—Zn-Oxide TFTs”, IDW '09 : Proceedings of the 16th International Display Workshops, 2009, pp. 689-692.
Park.J et al., “Amorphous Indium-Gallium-Zinc Oxide TFTs and Their Application for Large Size AMOLED”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 275-278.
Park.S et al., “Challenge to Future Displays: Transparent AM-OLED Driven by PEALD Grown ZnO TFT”, IMID '07 Digest, 2007, pp. 1249-1252.
Godo.H et al., “Temperature Dependence of Characteristics and Electronic Structure for Amorphous In—Ga—Zn-Oxide TFT”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 41-44.
Osada.T et al., “Development of Driver-Integrated Panel Using Amorphous In—Ga—Zn-Oxide TFT”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 33-36.
Hirao.T et al., “Novel Top-Gate Zinc Oxide Thin-Film Transistors (ZnO TFTs) for AMLCDs”, J. Soc. Inf. Display (Journal of the Society for Information Display), 2007, vol. 15, No. 1, pp. 17-22.
Hosono.H, “68.3:Invited Paper:Transparent Amorphous Oxide Semiconductors for High Performance TFT”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1830-1833.
Godo.H et al., “P-9:Numerical Analysis on Temperature Dependence of Characteristics of Amorphous In—Ga—Zn-Oxide TFT”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 1110-1112.
Ohara.H et al., “21.3:4.0 In. QVGA AMOLED Display Using In—Ga—Zn-Oxide TFTs With a Novel Passivation Layer”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 284-287.
Miyasaka.M, “SUFTLA Flexible Microelectronics on Their Way to Business”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1673-1676.
Chern.H et al., “An Analytical Model for the Above-Threshold Characteristics of Polysilicon Thin-Film Transistors”, IEEE Transactions on Electron Devices, Jul. 1, 1995, vol. 42, No. 7, pp. 1240-1246.
Kikuchi.H et al., “39.1:Invited Paper:Optically Isotropic Nano-Structured Liquid Crystal Composites for Display Applications”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 578-581.
Asaoka. Y et al., “29.1:Polarizer-Free Reflective LCD Combined With Ultra Low-Power Driving Technology”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 395-398.
Lee.H et al., “Current Status of, Challenges to, and Perspective View of AM-OLED”, IDW '06 : Proceedings of the 13th International Display Workshops, Dec. 7, 2006, pp. 663-666.
Kikuchi.H et al., “62.2:Invited Paper:Fast Electro-Optical Switching in Polymer-Stabilized Liquid Crystalline Blue Phases for Display Application”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1737-1740.
Nakamura.M, “Synthesis of Homologous Compound with New Long-Period Structure”, Nirim Newsletter, Mar. 1, 1995, vol. 150, pp. 1-4.
Kikuchi.H et al., “Polymer-Stabilized Liquid Crystal Blue Phases”, Nature Materials, Sep. 2, 2002, vol. 1, pp. 64-68.
Kimizuka.N et al., “SPINEL, YbFe2O4, and Yb2Fe3O7 Types of Structures for Compounds in the In2O3 and Sc2O3—A2O3-BO Systems [A; Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu,or Zn] at Temperatures Over 1000° C.”, Journal of Solid State Chemistry, 1985, vol. 60, pp. 382-384.
Kitzerow.H et al., “Observation of Blue Phases in Chiral Networks”, Liquid Crystals, 1993, vol. 14, No. 3, pp. 911-916.
Costello.M et al., “Electron Microscopy of a Cholesteric Liquid Crystal and Its Blue Phase”, Phys. Rev. A (Physical Review. A), May 1, 1984, vol. 29, No. 5, pp. 2957-2959.
Meiboom.S et al., “Theory of the Blue Phase of Cholesteric Liquid Crystals”, Phys. Rev. Lett. (Physical Review Letters), May 4, 1981, vol. 46, No. 18, pp. 1216-1219.
Park.S et al., “42.3: Transparent ZnO Thin Film Transistor for the Application of High Aperture Ratio Bottom Emission AM-OLED Display”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 629-632.
Orita.M et al., “Mechanism of Electrical Conductivity of Transparent InGaZnO4”, Phys. Rev. B (Physical Review. B), Jan. 15, 2000, vol. 61, No. 3, pp. 1811-1816.
Nomura.K et al., “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors”, Jpn. J. Appl. Phys. (Japanese Journal of Applied Physics) , 2006, vol. 45, No. 5B, pp. 4303-4308.
Janotti.A et al., “Native Point Defects in ZnO”, Phys. Rev. B (Physical Review. B), Oct. 4, 2007, vol. 76, No. 16, pp. 165202-1-165202-22.
Park.J et al., “Electronic Transport Properties of Amorphous Indium-Gallium-Zinc Oxide Semiconductor Upon Exposure to Water”, Appl. Phys. Lett. (Applied Physics Letters) , 2008, vol. 92, pp. 072104-1-072104-3.
Hsieh.H et al., “P-29:Modeling of Amorphous Oxide Semiconductor Thin Film Transistors and Subgap Density of States”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 1277-1280.
Janotti.A et al., “Oxygen Vacancies in ZnO”, Appl. Phys. Lett. (Applied Physics Letters) , 2005, vol. 87, pp. 122102-1-122102-3.
Oba.F et al., “Defect energetics in ZnO: A hybrid Hartree-Fock density functional study”, Phys. Rev. B (Physical Review. B), 2008, vol. 77, pp. 245202-1-245202-6.
Orita.M et al., “Amorphous transparent conductive oxide InGaO3(ZnO)m (m<4):a Zn4s conductor”, Philosophical Magazine, 2001, vol. 81, No. 5, pp. 501-515.
Hosono.H et al., “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples”, J. Non-Cryst. Solids (Journal of Non-Crystalline Solids), 1996, vol. 198-200, pp. 165-169.
Mo.Y et al., “Amorphous Oxide TFT Backplanes for Large Size AMOLED Displays”, IDW '08 : Proceedings of the 6th International Display Workshops, Dec. 3, 2008, pp. 581-584.
Kim.S et al., “High-Performance oxide thin film transistors passivated by various gas plasmas”, 214th ECS Meeting, 2008, No. 2317, ECS.
Clark.S et al., “First Principles Methods Using CASTEP”, Zeitschrift fur Kristallographie, 2005, vol. 220, pp. 567-570.
Lany.S et al., “Dopability, Intrinsic Conductivity, and Nonstoichiometry of Transparent Conducting Oxides”, Phys. Rev. Lett. (Physical Review Letters), Jan. 26, 2007, vol. 98, pp. 045501-1-045501-4.
Park.J et al., “Dry etching of ZnO films and plasma-induced damage to optical properties”, J. Vac. Sci. Technol. B (Journal of Vacuum Science & Technology B), Mar. 1, 2003, vol. 21, No. 2, pp. 800-803.
Oh.M et al., “Improving the Gate Stability of ZnO Thin-Film Transistors With Aluminum Oxide Dielectric Layers”, J. Electrochem. Soc. (Journal of the Electrochemical Society), 2008, vol. 155, No. 12, pp. H1009-H1014.
Ueno.K et al., “Field-Effect Transistor on SrTiO3 With Sputtered Al2O3 Gate Insulator”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 1, 2003, vol. 83, No. 9, pp. 1755-1757.
Nakayama.M et al., “17a-TL-8 Effect of GaO Layer on IGZO-TFT Channel”, Extended Abstracts (The 57th Spring Meeting 2010), The Japan Society of Applied Physics and Related Societies, Mar. 17, 2010, pp. 21-008.
Morosawa.N et al., “35.3: Distinguished Paper: A Novel Self-Aligned Top-Gate Oxide TFT for AM-OLED Displays”, SID Digest '11 : SID International Symposium Digest of Technical Papers, May 17, 2011, pp. 479-482.
Nathan.A et al., “Amorphous Oxide TFTs: Progress and Issues”, SID Digest '12 : SID International Symposium Digest of Technical Papers, Jun. 5, 2012, vol. 43, No. 1, pp. 1-4.
Jeon.S et al., “Low-Frequency Noise Performance of a Bilayer InZnO_InGaZnO Thin-Film Transistor for Analog Device Applications”, IEEE Electron Device Letters, Oct. 1, 2010, vol. 31, No. 10, pp. 1128-1130.
Ono.M et al., “Novel High Performance IGZO-TFT with High Mobility over 40 cm2/Vs and High Photostability Incorporated Oxygen Diffusion”, IDW '11 : Proceedings of the 18th International Display Workshops, Dec. 7, 2011, pp. 1689-1690.
Ghaffarzadeh.K et al., “Light-Bias Induced Instability and Persistent Photoconductivity in In—Zn—O/Ga—In—Zn—O Thin Film Transistors”, SID Digest '11 : SID International Symposium Digest of Technical Papers, Jun. 1, 2011, vol. 42, No. 1, pp. 1154-1157.
Related Publications (1)
Number Date Country
20220037373 A1 Feb 2022 US
Continuations (6)
Number Date Country
Parent 17065635 Oct 2020 US
Child 17500020 US
Parent 16707432 Dec 2019 US
Child 17065635 US
Parent 16180210 Nov 2018 US
Child 16707432 US
Parent 15262547 Sep 2016 US
Child 16180210 US
Parent 14594991 Jan 2015 US
Child 15262547 US
Parent 13860792 Apr 2013 US
Child 14594991 US