The present invention relates to a semiconductor device having columnar electrodes on re-wiring.
There is known a semiconductor device called CSP (Chip Size Package). When the semiconductor device is to be mounted on a circuit board, a mounting technique called “face down bonding” is employed. In the case of this type of semiconductor device, columnar electrodes for connection with the circuit board, etc. are provided on a semiconductor substrate or via an intermediate substrate (interposer).
The semiconductor substrate 1 has a rectangular shape, as shown in
An insulating film 4 formed of, e.g. a semiconductor oxide, and protection film 5 formed of, e.g. polyimide are successively provided on the upper surface of semiconductor substrate 1 excluding the central portion of each connection pad. Thus, the central portion of the connection pad 3 is exposed via an opening portion 6 defined by the protection film 5. A re-wiring segment 7 is provided so as to extend from the exposed upper surface of the connection pad 3 to an upper surface of the protection film 5 on the circuit element formation region 2. A distal end portion of the re-wiring segment 7 functions as an external connection pad portion 7a. A columnar electrode 8 is provided on an upper surface of the external connection pad portion 7a. A sealing film 9 made of, e.g. an epoxy resin is provided over the entire upper surface of the assembly excluding the columnar electrodes 8. Although not shown, solder bumps are provided on the columnar electrodes 8, and this semiconductor device is connected to a circuit board, etc. via the solder bumps.
In the above semiconductor device, the re-wiring segments 7 are provided on the protection film 5 in the circuit element formation region 2, as mentioned above. Various signals flow through the re-wiring segments 7 since the re-wiring segments 7 function as interconnection wiring between the external circuit board, etc., on the one hand, and the circuits provided within the circuit element formation region 2, on the other. It is thus necessary to prevent crosstalk between the re-wiring segments 7 and the oscillation circuit, etc. provided in the circuit element formation region 2. For this purpose, it is necessary in the prior art to dispose the re-wiring segments 7 so as not to overlap in plan the oscillation circuit, etc. Because of this, the re-wiring segments 7 cannot freely be arranged, and there are very serious limitations to the design thereof.
The object of the present invention is to provide a semiconductor device, such as a CSP, having a re-wiring provided over a circuit element formation region of a semiconductor substrate, and having columnar electrodes for connection with a circuit board provided on the re-wiring, wherein the re-wiring can be freely positioned without restrictions.
In order to achieve the above object, the present invention provides a first semiconductor device including a semiconductor substrate which has a circuit element formation region at a central portion thereof and a plurality of connection pads at a peripheral portion of the circuit element formation region. A first insulating film is provided over an upper surface of the semiconductor substrate excluding the connection pads. A ground potential layer connected to the connection pads with ground potential is provided on an upper surface of the first insulating film over the circuit element formation region, and a re-wiring is provided over the ground potential layer with a second insulating film interposed. Since the ground potential layer serving as a barrier layer for preventing crosstalk is provided between the re-wiring and circuit element formation region, even if the re-wiring overlaps in plan an oscillation circuit, etc. provided within the circuit element formation region, they are electrically insulated by the ground potential layer and no crosstalk occurs therebetween. Therefore, the re-wiring can be freely arranged with no restrictions.
Alternately, in order to achieve the above object, the invention provides a second semiconductor device which, like the above-described device, the ground potential layer is provided over the circuit element formation region with the insulating film interposed, and, in addition, a thin-film circuit element such as a thin-film inductor and/or a thin-film transformer is provided over the ground potential layer with an insulating film interposed. Since the ground potential layer serving as a barrier layer for preventing crosstalk is provided between the thin-film circuit element and circuit element formation region, even if the thin-film circuit element overlaps in plan an oscillation circuit, etc. provided within the circuit element formation region, they are electrically insulated by the ground potential layer and no crosstalk occurs therebetween. Therefore, the thin-film circuit element can be freely arranged with no restrictions.
In order to achieve the above object, in the third semiconductor device, as described above, a first ground potential layer is provided over the circuit element formation region with an insulating film interposed, and a thin-film circuit element is provided over the first ground potential layer with an insulating film interposed. In addition, a second ground potential layer is provided over the thin-film circuit element with an insulating film interposed, and a re-wiring connected to the connection pads is provided over the second ground potential layer with an insulating film interposed. Since the first ground potential layer serving as a barrier layer prevents crosstalk between the thin-film circuit element and the oscillation circuit, etc. on the circuit element formation region, the thin-film circuit element can be freely arranged with no restrictions. Moreover, the second ground potential layer serving as a barrier layer prevents crosstalk between the re-wiring and the thin-film circuit element, and the re-wiring can be freely arranged with no restrictions.
Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate presently preferred embodiments of the invention, and together with the general description given above and the detailed description of the preferred embodiments given below, serve to explain the principles of the invention.
A semiconductor device according to the present invention and a method of manufacturing the same will now be described in detail on the basis of embodiments shown in the accompanying drawings.
The semiconductor substrate 11 has a rectangular shape, as shown in
A first insulating film 14 of silicon oxide, etc. is provided on an upper surface of each connection pad 13 excluding a central portion thereof and an upper surface of the semiconductor substrate 11. The central portion of the connection pad 13 is exposed via an opening portion 15 defined by the first insulating film 14. There are a plurality of such exposed portions of connection pads 13, as shown in
The second insulating film 18, which is formed of polyimide, etc., is provided on the connection pad portions 16a, 17 excluding the central portion thereof, and on the first insulating film 14 and ground potential layer 16. The central portions of the connection pad portions 16a, 17 are respectively exposed via opening portions formed in the second insulating film 18. A re-wiring segment 20 is provided to extend from the exposed central upper surface of each of the connection pad portions 16a, 17 over the second insulating film 18 lying on the ground potential layer 16 in the circuit element formation region 12. A distal end portion of the re-wiring segment 20 constitutes an external connection pad portion 20a. A columnar electrode 21 is provided on the upper surface of the external connection pad portion 20a. That one of the columnar electrodes 21, which is connected to the re-wiring segment 20 electrically connected to the connection pad portion 16a, serves as a ground electrode and is electrically connected to the ground potential layer 16. A sealing film 22 of an epoxy resin, etc. is provided on the entire upper surface of the assembly excluding the columnar electrodes 21.
As has been described above, in this semiconductor device, the re-wiring segments 20 are provided above the ground potential layer 16, which is formed on the first insulating layer 14 in the circuit element formation region 12. The second insulating film 18 is positioned between the ground potential layer 16 and the re-wiring segments 20. Accordingly, even if the re-wiring segments 20 overlap the oscillation circuit, etc. provided within the circuit element formation region 12, they are electrically insulated by the ground potential layer 16 serving as a barrier layer and no crosstalk occurs therebetween. Therefore, the re-wiring segments 20 can be freely arranged with no restrictions.
A semiconductor device according to a second embodiment of the present invention will now be described with reference to FIG. 2A. In this semiconductor device, the second insulating film 18 with opening portions 19 and the portions thereunder have the same construction as the first embodiment shown in FIG. 1A. These elements are denoted by like reference numerals, and a description thereof is omitted. In the second embodiment, as is shown in
As has been described above, in this semiconductor device, too, the thin-film inductor 31 is provided on the ground potential layer 16 through the second insulating film 18 therebetween, which is formed over the circuit element formation region 12 with the first insulating film 14 interposed. Accordingly, even if the thin-film inductor 31 overlaps the oscillation circuit, etc. provided within the circuit element formation region 12, they are electrically insulated by the ground potential layer 16 serving as a barrier layer and no crosstalk occurs therebetween. Therefore, the thin-film inductor 31 can be freely arranged with no restrictions.
A third embodiment of the invention will now be described with reference to FIG. 2C.
Specifically, in the semiconductor devices according to the second and third embodiments, a thin-film circuit element formed of single-layer wiring is provided in a circuit element formation region with an insulating film interposed, and a ground potential layer serving as a barrier layer for preventing crosstalk is provided between the insulating layer and the circuit element formation region. Therefore, the thin-film circuit element can be freely arranged.
A semiconductor device according to a fourth embodiment of the invention will now be described with reference to FIG. 3A. In this semiconductor device, the second insulating film 18 with opening portions 19 and the portions thereunder have the same construction as the first embodiment shown in FIG. 1A. These elements are denoted by like reference numerals, and a description thereof is omitted. In the fourth embodiment, as is shown in
As has been described above, in this semiconductor device, the thin-film transformer 50 constituted by both conductor layers 51, 55 and the intervening third insulating film 53 is provided over the ground potential layer 16, which is formed over the circuit element formation region 12 with the first insulating layer 14 interposed, with the second insulating film 18 lying between the ground potential layer 16 and the thin-film transformer 50. Since the ground potential layer serving as a barrier layer is provided, even if the thin-film transformer 50 overlaps the oscillation circuit, etc. provided within the circuit element formation region 12, no crosstalk occurs therebetween. Therefore, the thin-film transformer 50 can be freely arranged with no restrictions.
A semiconductor device according to a fifth embodiment of the invention will now be described with reference to FIG. 4A. In this semiconductor device, too, the second insulating film 18 with opening portions 19 and the portions thereunder have the same construction as the first embodiment shown in FIG. 1A. These elements are denoted by like reference numerals, and a description thereof is omitted. In the fifth embodiment, as is shown in
That portion of the lower conductor layer 61, which is electrically connected to the connection pad 17 is formed as a connection pad portion 61a. Connection pad portions 64 are provided on the other connection pads 17. Columnar electrodes 21 are provided on central portions of upper surfaces of the connection pad portions 61a, 64 and upper conductor layer 63. In this case, two columnar electrodes 21 provided on the connection pad portion 61a and upper conductor layer 63 constitute terminals of the thin-film capacitor 60. A sealing film 22 of an epoxy resin, etc. is provided on the entire upper surface of the assembly excluding the columnar electrodes 21.
As has been described above, in this semiconductor device, too, the thin-film capacitor 60 constituted by both conductor layers 61, 63 and the intervening third insulating layer 62 is provided on the ground potential layer 16, which is formed in the circuit element formation region 12, through the first insulating layer 14 interposed, with the second insulating film 18 lying between the ground potential layer 16 and the thin-film capacitor 60. Since the ground potential layer 16 serving as a barrier layer is provided, even if the thin-film capacitor 60 overlaps the oscillation circuit, etc. provided within the circuit element formation region 12, no crosstalk occurs therebetween. Therefore, the thin-film capacitor 60 can be freely arranged with no restrictions.
Specifically, in the semiconductor devices according to the fourth and fifth embodiments, a thin-film circuit element formed of plural wiring layers and plural insulating layers is provided on a circuit element formation region with an insulating film interposed, and a ground potential layer serving as a barrier layer for preventing crosstalk is provided between the insulating layer and the circuit element formation region. Therefore, the thin-film circuit element can be freely arranged.
In this structure, since the first ground potential layer 16 serving as a first barrier layer is provided, crosstalk between the thin-film circuit element such as the thin-film SAW filter 41 and the oscillation circuit, etc. provided within the circuit element formation region 12 is prevented, and the thin-film circuit element can be positioned without restrictions. In addition, since the second ground potential layer 72 serving as a second barrier layer is provided, crosstalk between the re-wiring segment 20 and the thin-film circuit element such as the thin-film SAW filter 41 is prevented, and the re-wiring segment 20 can be positioned without restrictions.
In the above-described embodiments, the thin-film inductor, thin-film SAW filter, thin-film transformer or thin-film capacitor is provided on the semiconductor substrate with the ground potential layer interposed. However, another thin-film circuit element such as a microstrip line or an MMIC (Microwave Monolithic Integrated Circuit). In the above embodiments, the ground potential layer is provided as a barrier layer for preventing crosstalk. The ground potential layer, however, may be replaced with a power supply potential layer or an electromagnetic wave absorption layer of a multi-thin-film structure.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
11-035759 | Feb 1999 | JP | national |
This is a continuation of application Ser. No. 09/499,599 filed on Feb. 7, 2000, now U.S. Pat. No. 6,545,354, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4322778 | Barbour et al. | Mar 1982 | A |
4617193 | Wu | Oct 1986 | A |
4811082 | Jacobs et al. | Mar 1989 | A |
4903116 | Kohsiek | Feb 1990 | A |
5258886 | Murayama et al. | Nov 1993 | A |
5317433 | Miyawaki et al. | May 1994 | A |
5510758 | Fujita et al. | Apr 1996 | A |
5530288 | Stone | Jun 1996 | A |
5539241 | Abidi et al. | Jul 1996 | A |
5770476 | Stone | Jun 1998 | A |
5818079 | Noma et al. | Oct 1998 | A |
5928968 | Bothra et al. | Jul 1999 | A |
5982018 | Wark et al. | Nov 1999 | A |
5990507 | Mochizuki et al. | Nov 1999 | A |
6002161 | Yamazaki | Dec 1999 | A |
6025218 | Brotherton | Feb 2000 | A |
6031293 | Hsuan et al. | Feb 2000 | A |
6108212 | Lach et al. | Aug 2000 | A |
6124606 | den Boer et al. | Sep 2000 | A |
6140155 | Mihara et al. | Oct 2000 | A |
6163456 | Suzuki et al. | Dec 2000 | A |
6180976 | Roy | Jan 2001 | B1 |
6274937 | Ahn et al. | Aug 2001 | B1 |
6331722 | Yamazaki et al. | Dec 2001 | B1 |
6337517 | Ohta et al. | Jan 2002 | B1 |
6362523 | Fukuda | Mar 2002 | B1 |
6545354 | Aoki et al. | Apr 2003 | B1 |
20020017730 | Tahara et al. | Feb 2002 | A1 |
Number | Date | Country |
---|---|---|
05218042 | Aug 1993 | JP |
5-218042 | Aug 1993 | JP |
Number | Date | Country | |
---|---|---|---|
Parent | 09499599 | Feb 2000 | US |
Child | 10254222 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10254222 | Sep 2002 | US |
Child | 11726763 | US |