L.V. Asryan and S. Luryi, “Tunneling-Injection Quantum-Dot Laser: Ultrahigh Temperature Stability”, IEEE Journal of Quantum Electronics, vol. 37, pp. 905-910 (Jul. 2001). |
A.F. Tsatsul′nikov, A.Yu. Egorov, A.E. Zhukov, A.R. Kovsh, V.M. Ustinov, N.N. Ledentsov, M.V. Maksimov, A.V. Sakharow, A.A. Suvorova, P.S. Kop′ev, and Zh.I. Alferov “Modulation Of A Quantum Well Potential By A Quantum Dot Array”, Semiconductors 31, 88-91 (1997). |
M.V. Maximov, L.V. Asryan, Yu.M. Shernyakov, A.F. Tsatsul′nikov, I.N. Kaiander, V.V. Nikolaev, A.R. Kovsh, S.S. Mikhrin, V.M. Ustinov, A.E. Zhukov, Zh.I. Alferov, N.N. Ledenstov, and D.Bimberg, “Gain and Threshold Characteristics Of Long Wavelength Lasers Based On InAs/GaAs Quantum dots Formed By Activated Alloy Phase Separation”, IEEE Journal Of Quantum Electronics, vol. 37, No. 5, May 2001. |
E.A. Rezek, N. Holonyak, Jr., B.A. Vojak, G.E. Stillman, J.A. Rossi, D.L. Keune, and J.D. Fairing, “LPE In1-xGaxP1-zAsz (x˜0.12,z˜0.26) DH Laser With Multiple Thin-Layer (<500 Å) Active Region”, Appl. Phys. Lett., vol. 31, pp 288-290, Aug. 15, 1977. |
G.T. Liu. A. Stintz, H.Li, K.J. Malloy and L.F. Lester, “Extremely Low Room Temperature Threshold Current Density Diode Lasers Using InAs Dots in In0.15Ga85As Quantum Well”, Electronics Letters, vol. 35 No. 14 Jul. 8, 1999. |
S. Weber, W. Limmer, K. Thonke, R. Sauer, K. Panzlaff, G. Bacher, H. P. Meier, and P. Roentgen, Phys. Rev. B 52, 14739 (1995). |
M. Gurioli, J. Martinez-Pastor, M. Colocci, C. Deparis, B. Chastaingt, and J. Massies, Phys. Rev. B 46, 6922 (1992). |
W. J. Turner, W. E. Reese, and G. D. Pettit, Phys. Rev. 136, A1467 (1964). |
X. B. Zhang, K. L. Ha, and S. K. Hark, J. Electron. Mater. 30, 1332 (2001). |
L. Brusaferri, S. Sanguinetti, E. Grilli, M. Guzzi, A. Bignazzi, F. Bogani, L. Carrarresi, M. Colocci, A. Bosacchi, P. Frigeri, and S. Franchi, Appl. Phys. Lett. 69, 3354, (1996). |
E. F. Schubert “Delta-Doping Of Semiconductors” (book), Cambridge University Press. |
G.T. Liu, A. Stintz, H. Li, T.C. Newell, A.L. Gray, P.M. Varangis, K.J. Malloy, and L.F. Lester, “The Influence Of Quantum-Well Composition On The Performance Of Quantum Dot Lasers Using InAs/InGaAs Dots-In-A-Well (DWELL) Structures”, IEEE Journal Of Quantum Electronics, vol. 36, No. 11, Nov., 2000. |
A. Stintz, G.T. Liu, Student member, IEEE, H.Li, L.F. Lester, Member, IEEE, and K.J. Malloy, Member IEEE, “Low-Threshold Current Density 1.3μm InAs Quantum-Dot Lasers With The Dots-In-A-Well (DWELL) Structure”, IEEE Photonics Technology Letters, vol. 12, No. 6, Jun. 2000. |
J.H. Ryou, R.D. Dupuis, G. Walter, N. Holonyak, Jr., D.T. Mathes, R. Hull, C.V. Reddy and V. Narayanamurti, “Properties Of InP Self-Assembled Quantum Dots embedded In In0.49(AlxGa1-x)0.51P For Visible Light Emitting Laser Applications Grown By Metalorganic Chemical Vapor Deposition”, Journal Of Applied Physics, vol. 91, No. 8, Apr. 15, 2002. |
P.G. Eliseev, H. Li, A. Stintz, G.T. Liu, T.C. Newell, K.J. Malloy, and L.F. Lester, “Transition Dipole Moment Of InAs/InGaAs Quantum Dots From Experiments On Ultralow-Threshold Laser Diodes”, Applied Physics Letters, vol. 77, No. 2, Jul. 10, 2000. |
G. Walter, N. Holonyak, Jr., R. Heller and R.D. Dupuis, “Visible Spectrum (654 mn) Room Temperature Continuous Wave (cw) InP Quantum Dot Coupled To InGaP Quantum Well InP-InGaP-In(AlGA)P-InAI1P Heterostructure Laser”,Appl. Phys. Lett., vol. 81, No. 24, Dec. 9, 2002. |
E.A. Rezek, H. Shichijo, B.A. Vojak, and N. Holonyak, Jr., “Confined-Carrier Luminescence of a Thin In1-xGaxP1-zAsz Well (x˜ 0.13, z˜ 0.29; ˜ 400 Å) in an InP p-n Junction,” Appl. Phys. Lett., vol. 31, pp. 534-536, Oct. 15, 1977). |
J.H. Ryou, R. Dupuis, N. Holonyak, et al. “Photopumped Red-Emitting InP/In0.5Al0.3Ga0.2P Self-Assembled Quantum Dot Heterstructure Lasers Grown By Metalorganic Chemical Vapor Deposition”, Appl. Phys. Lett. 78, 4091-4093, Jun. 25, 2001. |
T. Richard, E. Chen, A. Sugg, G. Hofler, and N. Holonyak, “High Current Density Carbon-Doped Strained-Layer GaAs (p+)-InGaAs(n+)-GaAs(n+)p-n Tunnel Diodes”, Appl. Phys. Lett. 63, 3616 (Dec. 27, 1993). |
H. Saito et al., “Room Temperature Lasing Operation Of A Quantum Dot Vertical Cavity Surface Emitting Laser”, Appl. Phys. Lett. 69 (21), Nov. 18, 1996. |
M. Maximov et al., “High Power Continuous Wave Operation InGaAs/AlGaAs Quantum Dot Laser”, J. Appl. Phys., 83, 10, May, 1998. |
G. Walter, N. Holonyak, J. Ryou and R. Dupuis, “Room-Temperature Continuous Photopumped Laser Operation Of Coupled InP Quantum Dot And InGaP Quantum Well InP-In(AlGa)P-InAlP Heterostructures”, Appl. Phys. Lett. 79, 1956 (Sep. 24, 2001). |
G. Walter, N. Holonyak, J. Ryou and R. Dupuis, “Coupled InP Quantum Dot InGaP Quantum Well InP-In(AlGa)P-InAlP Heterostructure Diode Laser Operation”, Appl. Phys. Lett. 79, 3215 (Nov. 2001). |
G. Walter, T. Chung, and N. Holonyak, Jr., “High Gain Coupled InGaAs Quantum Well InAs Quantum Dot AlGaAs-GaAs-InAs Heterostructure Diode Laser Operation”, Appl. Phys. Lett. 80, 1126 (Feb. 2002). |
T. Chung, G. Walter, and N. Holonyak, Jr., “Coupled Strained-Layer InGaAs Quantum-Well Improvement Of An InAs Quantum Dot AlGaAs-GaAs-InAs Heterostructure Laser”, Appl. Phys. Lett., 79, 4500 (Dec. 2001). |
S. Chuang and N. Holonyak, “Efficient Quantum Well To Quantum Dot Tunneling: Analytical Solutions”, Appl. Phys. Lett. 80, 1270 (Feb. 2002). |
J.M. Dallesasse, N. Holonyak, Jr., A.R. Sugg, T.A. Richard, and N. El-Zein, Appl. Phys. Lett. 57, 2844 (1990). |