The present invention relates to a semiconductor factory automation (hereinafter, referred to as FA) system; and, more particularly, to a semiconductor FA system and method for monitoring at least one server in a real time.
Generally, a conventional semiconductor FA system automatically processes semiconductor wafers in order to produce semiconductor device, e.g., memory devices. The conventional semiconductor FA system includes process equipments (hereinafter, referred to as EQs), stockers and an automatic guide vehicle (hereinafter, referred to as AGV). An EQ applies a semiconductor process to the semiconductor wafers.
A stocker stocks a semiconductor wafer cassette containing the semiconductor wafers to be processed in the EQ. Further, the stocker also stocks the semiconductor wafer cassette, which has been already processed in the EQ.
The AGV transports the semiconductor wafer cassette to be processed from the EQ to another EQ or the stocker. Furthermore, the AGV transports the processed semiconductor wafer cassette from the EQ to the stocker.
In order to automatically control the above elements, e.g., the EQs, the stocker, the AGV and the like, the conventional semiconductor FA system also includes a number of control servers, e.g., an operator interface server (hereinafter, referred to as OIS), an EQ server (hereinafter, referred to as EQS) and the like.
The control servers employed in the conventional semiconductor FA system have been implemented by using, e.g., software programs contained in a large scale computer or distributed in a number of personal computers constituting of a client-server system.
In the client-sever system, a number of personal computers are coupled to a common communication line, e.g., Ethernetâ„¢ supplied by Xerox Corporation. Each personal computer includes one or more software programs, each for a control server. In this case, if a personal computer is in an error state, the control servers contained in the personal computer may not perform its appropriate operation. Further, the productivity of semiconductor device may be seriously affected. Therefore, the semiconductor FA system having a client-server system strongly needs a scheme capable of monitoring operational state of the servers in a real time.
It is, therefore, an object of the present invention to provide a semiconductor FA system and method for monitoring at least one server in a real time so that an operator can easily locate a failure of at least one server.
In accordance with an aspect of the present invention, there is provided a semiconductor factory automation (FA) system, comprising: at least one processor for driving a program process and providing processor state information, wherein the processor state information includes an availability of a central processing unit, an availability of a disk and a state of the program process related to said processor; a storing means for storing the processor state information in a real time; a monitoring means for retrieving the processor state information in said storing means to monitor said processor; and a displaying means for displaying the processor state information retrieved.
In accordance with another aspect of the present invention, there is provided a method for monitoring at least one server in a semiconductor factory automation (FA) system, comprising the steps of: a) providing server state information from at least one server to a real-time database, wherein the server state information includes an availability of a central processing unit, an availability of a disk and a state of a program process related to the server; b) storing the processor state information in the real-time database; c) retrieving the server state information to monitor the server; and d) displaying the server state information retrieved.
The above and other objects and features of the instant invention will become apparent from the following description of preferred embodiments taken in conjunction with the accompanying drawings, in which:
Referring to
A process equipment server (hereinafter, referred to as EQS) 202 is coupled to a common communication line 500, e.g., Ethernetâ„¢ supplied by Xerox Corporation. An AGV controller (hereinafter, referred to as AGVC) 212 controls the AGV 214.
The semiconductor FA system also includes a cell management portion 100, a real-time database 300 connected to the cell management portion 100, a temporary storage unit 310, a history management portion 312 connected to the temporary storage unit 310 and a history database 314 connected to the history management portion 312. The cell management portion 100, the history management portion 312 and the history database 314 are respectively connected to the common communication line 500 for communication therebetween.
The cell management portion 100 includes a cell management server (CMS) 206, an operator interface server (hereinafter, referred to as OIS) 201 and a data gathering server (DGS) 207. The DGS 207 stores process data associated with the lot in the real-time database 300.
The real-time database 300 stores information related to states of servers such as the CMS 206, the DGS 207, the OIS 201 and the EQS 202. A monitoring server 902 retrieves the information related to the states of servers in a real time. A screen 901 coupled to the monitoring server 902 displays the retrieved information related to the states of server in the real time. The state information related to the servers includes an availability of a central processing unit (CPU), an availability of a disk, a state of a program process and a state of a connection port of transfer control protocol/internet protocol (hereinafter, referred to as TCP/IP). The state information further has a server identifier.
Referring to
Referring to
When a program process related to the corresponding server is in a down state, a light emitting device 803 emits the light of the red color. Further, when the program process, related to the corresponding server, is not in the down state, the light emitting device 803 emits the light of the green color.
When a communication between the monitoring server 902 and the corresponding server is disconnected, a light emitting device 804 does not emit the light. Further, when the communication between the monitoring server 902 and the corresponding server is connected, a light emitting device 804 emits the light. A display space 808 displays a name of the program process of the down state.
Referring to
The state information monitor 1001 monitors an availability of the CPU 1002, an availability of the disk 1003, a program process and a connection port of the TCP/IP 1000. The state information monitor 1001 sends the availability of the CPU 1002, the availability of the disk 1003, a state of the program process and a state of the connection port of the TCP/IP 1000 to the monitoring server 902.
Referring to
As shown, at step S402, the servers such as the CMS 206, the DGS 207, the OIS 201 and the EQS 202 send information related to states of the servers to the real-time database 300.
At step S404, the real-time database 300 stores the information related to the states of the servers.
At step S406, the monitoring server 902 retrieves the information related to the states of servers in a real time.
At step S408, the screen 901 displays the retrieved information related to the states of the servers in the real time. The state information related to the servers includes an availability of a CPU, an availability of a disk, a state of a connection port of TCP/IP and a state of a program process. The state information further-a server identifier.
Although the preferred embodiments of the invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
1999-23538 | Jun 1999 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
4571685 | Kamoshida | Feb 1986 | A |
4901242 | Kotan | Feb 1990 | A |
5111404 | Kotani | May 1992 | A |
5231585 | Kobayashi et al. | Jul 1993 | A |
5375062 | Aoki | Dec 1994 | A |
5402349 | Fujita et al. | Mar 1995 | A |
5432715 | Shigematsu et al. | Jul 1995 | A |
5440493 | Doida | Aug 1995 | A |
5495417 | Fuduka et al. | Feb 1996 | A |
5555179 | Koyama et al. | Sep 1996 | A |
5568408 | Maeda | Oct 1996 | A |
5579231 | Sudou et al. | Nov 1996 | A |
5596712 | Tsuyama et al. | Jan 1997 | A |
6054987 | Richardson | Apr 2000 | A |
6473664 | Lee et al. | Oct 2002 | B1 |
6505248 | Casper et al. | Jan 2003 | B1 |
Number | Date | Country |
---|---|---|
344477 | Nov 1998 | CN |
0 292 236 | May 1988 | EP |
0623878 | Mar 1994 | EP |
0913774 | May 1999 | EP |
2236202 | Mar 1991 | GB |
344477 | Nov 1986 | TW |
WO 0062138 | Oct 2000 | WO |
WO 0068795 | Nov 2000 | WO |
WO 0077648 | Dec 2000 | WO |