The present disclosure relates to a laser apparatus, and more particularly to a semiconductor laser apparatus.
Conventional semiconductor lasers are mainly used in optical communication technology, cancer treating technology, optical pumps of solid laser technology, and material processing technology. For these applications, the semiconductor lasers are particularly suitable for mass manufacturing due to their small size, large power, being driven by electricity, and inexpensive nature.
However, the conventional semiconductor lasers still have room for improvement. Therefore, it is necessary to provide a semiconductor laser apparatus.
An objective of the present disclosure is to provide a semiconductor laser apparatus, where an emitted laser beam of the semiconductor laser apparatus, in comparison of an emitted laser beam of a conventional semiconductor laser apparatus, has a relatively small far-field vertical beam divergence angle and a relatively small far-field lateral beam divergence angle by an active layer with a special refractive index distribution, such that the semiconductor laser apparatus of one embodiment of the present disclosure may have a relatively good coupling efficiency when coupled with an optical fiber.
Another objective of the present disclosure is to provide a semiconductor laser apparatus, the semiconductor laser apparatus of one embodiment of the present disclosure does not substantially affect light output efficiency, while improving the far-field vertical beam divergence angle and the far-field lateral beam divergence angle.
To achieve the above objective, the present disclosure provides a semiconductor laser apparatus including: a substrate, a first type cladding layer, a first type waveguide layer, an active layer, a second type waveguide layer, a second type cladding layer, and a capping layer. The first type cladding layer is disposed on the substrate. The first type waveguide layer is disposed on the first type cladding layer. The active layer is disposed on the first type waveguide layer and includes a light producing portion and a light emitting portion, where a laser produced by the light producing portion, emits along a direction from the light producing portion toward the light emitting portion. The light emitting portion includes a first inactive region, a light emitting region, and a second inactive region, where a refractive index of the light emitting region is lower than a refractive index of the first inactive region, the refractive index of the light emitting region is lower than a refractive index of the second inactive region, and width of a first part of the light emitting region continuously increases along the direction from the light producing portion toward the light emitting portion. The second type waveguide layer is disposed on the active layer. The second type cladding layer is disposed on the second type waveguide layer. The capping layer is disposed on the second type cladding layer.
In one embodiment of the present disclosure, the first type cladding layer is an n-type cladding layer; the first type waveguide layer is an n-type waveguide layer; the second type waveguide layer is a p-type waveguide layer; and the second type cladding layer is a p-type cladding layer.
In one embodiment of the present disclosure, the first type cladding layer is a p-type cladding layer; the first type waveguide layer is a p-type waveguide layer; the second type waveguide layer is an n-type waveguide layer; and the second type cladding layer is an n-type cladding layer.
In one embodiment of the present disclosure, a second part of the light emitting region has a constant widthalong the direction from the light producing portion toward the light emitting portion.
In one embodiment of the present disclosure, the semiconductor laser apparatus further includes a first boundary located between the first inactive region and the light emitting region; and a second boundary located between the light emitting region and the second inactive region, wherein the width of the first part of the light emitting region is defined by a distance between the first boundary and the second boundary.
In one embodiment of the present disclosure, the first boundary is linear or parabolic in shape.
In one embodiment of the present disclosure, the second boundary is linear or parabolic in shape.
In one embodiment of the present disclosure, the light producing portion comprises: a first inactive light producing region; a second inactive light producing region; and a light producing region disposed between the first inactive light producing region and the second inactive light producing region, wherein a refractive index of the light producing region is greater than a refractive index of the first inactive light producing region, and the refractive index of the light producing region is greater than a refractive index of the second inactive light producing region.
In one embodiment of the present disclosure, the semiconductor laser apparatus further includes a first border located between the first inactive light producing region and the first inactive region; and a first boundary located between the first inactive region and the light emitting region, wherein a first angle, ranging from 0.1 degrees to 89.9 degrees, is located between the first boundary and the first border.
In one embodiment of the present disclosure, the semiconductor laser apparatus further includes a second border located between the second inactive light producing region and the second inactive region; and a second boundary located between the second inactive region and the light emitting region, wherein a second angle ranging, from 0.1 degrees to 89.9 degrees, is located between the second boundary and the second border.
The structure and the technical means adopted by the present disclosure to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings. Furthermore, directional terms described by the present disclosure, such as upper, lower, front, back, left, right, inner, outer, side, periphery, center, horizontal, transverse, vertical, longitudinal, axial, radial, top layer or bottom layer, etc., are only directions by referring to the accompanying drawings, and thus the used directional terms are used to describe and understand the present disclosure, but the present disclosure is not limited thereto.
Please refer to
In one embodiment, the first type cladding layer 12 can be an n-type cladding layer; the first type waveguide layer 13 can be an n-type waveguide layer; the second type waveguide layer 15 can be a p-type waveguide layer; and the second type cladding layer 16 can be a p-type cladding layer. In another embodiment, the first type cladding layer 12 can be a p-type cladding layer; the first type waveguide layer 13 can be a p-type waveguide layer; the second type waveguide layer 15 can be an n-type waveguide layer; and the second type cladding layer 16 can be an n-type cladding layer.
In one embodiment, the substrate 11 can be formed of GaAs or InP. In another embodiment, the n-type cladding layer can be formed of AlGaAs, InP, or AlGaInP. The n-type cladding layer can have a thickness ranging from 100 nm to 5000 nm. In a yet another embodiment, the n-type waveguide layer can be formed of GaAs, GaInP, InAlAs, or InGaAsP. The n-type waveguide layer can have a thickness ranging from 10 nm to 2000 nm. In another embodiment, the p-type cladding layer can be formed of AlGaAs, InP, or AlGaInP. The p-type cladding layer can have a thickness ranging from 100 nm to 5000 nm. In a yet another embodiment, the p-type waveguide layer can be formed of GaAs, GaInP, InAlAs, or InGaAsP. The p-type waveguide layer can have a thickness ranging from 10 nm to 2000 nm. In a yet another embodiment, the active layer 14 can be formed of InGaAs, InAlGaAs, GaAs, or GaAsP.
In one embodiment of the present disclosure, a far-field vertical beam divergence angle and a far-field lateral beam divergence angle of the semiconductor laser apparatus 10 can be reduced by the active layer 14 with a special refractive index region. Please refer to
In one embodiment, the light emitting portion 142 of the active layer 14 includes a first inactive region 142A, a light emitting region 142B, and a second inactive region 142C, where the light emitting region 142B is disposed between the first inactive region 142A and the second inactive region 142C. In one embodiment, the first inactive region 142A and the first inactive light producing region 141A are adjacent to and connected with each other; the light emitting region 142B and the light producing region 141B are adjacent to and connected with each other; and the second inactive region 142C and the second inactive light producing region 141C are adjacent to and connected with each other. In one embodiment, each of the first inactive region 142A and the second inactive region 142C has a high refractive index, and the light emitting region 142B has a low refractive index, where the light emitting region 142B expands substantially along a direction D1 from the light producing portion 141 towards the light emitting portion 142. For example, width of the light emitting region 142B will continuously increase in a direction from a connection of the light emitting region 142B and the light emitting region 141B toward the light emitting region 142B (e.g., from width W1 to width W2), such that the light emitting region 142B is substantially trapezoidal in shape.
In a specific example, the width of the light emitting region 142B can be defined by the first inactive region 142A and the second inactive region 142C. For example, a first boundary B1 is located between the first inactive region 142A and the light emitting region 142B; and a second boundary B2 is located between the light emitting region 142B and the second inactive region, where the width of the first part of the light emitting region 142B is defined by a distance between the first boundary B1 and the second boundary B2. In one embodiment, the first boundary B1 and the second boundary B2 can be linear in shape (as shown in
In one embodiment, a first border J1 is located between the first inactive light producing region 141A and the first inactive region 142A, and a first angle α is located between the first border J1 and the first boundary B1, where the first angle α ranges from 0.1 degrees to 89.9 degrees. For example, the first angle α can be 1 degree, 2 degrees, 5 degrees, 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, 45 degrees, 50 degrees, 60 degrees, 65 degrees, 70 degrees, 75 degrees, 80 degrees, 85 degrees, 88 degrees, 89 degrees, etc. In another embodiment, a second border J2 is located between the second inactive light producing region 141C and the second inactive region 142C, and a second angle β is located between the second border J2 and the second boundary B2, where the second angle β ranges from 0.1 degrees to 89.9 degrees. For example, the second angle β can be 1 degree, 2 degrees, 5 degrees, 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, 45 degrees, 50 degrees, 60 degrees, 65 degrees, 70 degrees, 75 degrees, 80 degrees, 85 degrees, 88 degrees, 89 degrees, etc.
In one embodiment, the first boundary B1 can be connected to a boundary between the first inactive light producing region 141A and the light producing region 141B; and the second boundary B2 can be connected to a boundary between the light producing region 141B and the second inactive light producing region 141C (as shown in
It is noted that the light emitting region 142B having a width with a continuous increase (e.g., from width W1 to width W2) can be used as an anti-waveguide effect region. For example, when a laser beam is produced in the light producing region 141B and moves towards the light emitting region 142B, the formed anti-waveguide structure would expand the laser beam, since the light emitting region 142B has a low refractive index and the first inactive region 142A together with the second inactive region 142C in a periphery are high refractive index regions. Therefore, the laser beam has an increased near-field lateral beam divergence angle and an increased near-field vertical beam divergence angle. Since the near-field lateral beam divergence angle and vertical beam divergence angle have an inverse relationship against the far-filed lateral beam divergence angle and vertical beam divergence angle, the far-filed lateral beam divergence angle and vertical beam divergence angle are reduced accordingly.
It is noted that, generally speaking, in a technical field of semiconductor laser apparatus, the high refractive index and the low refractive index indicated in the active layer 14 show a relative relationship. For example, a material of the active layer 14 has an intrinsic refractive index (i.e., a refractive index of the material of the active layer 14 itself), and the intrinsic refractive index in a part of region of the active layer 14 can increase or decrease by a process treating (e.g., intermixing or diffusion), such that the part of region of the active layer 14 has a refractive index greater than or less than a remaining part of region of the active layer 14. For example, if the refractive index of the part of region of the active layer 14 can be decreased after the process treatment, the treated part of region has a refractive index less than the intrinsic refractive index, and a low refractive index is referred to herein; while the untreated part of region is called a high refractive index (i.e., the intrinsic refractive index). On the contrary, if the refractive index of the part of region of the active layer 14 can be raised after the process treatment, the treated part of region has a refractive index greater than the intrinsic refractive index, and a high refractive index is referred to herein; while the untreated part of region is called a low refractive index (i.e., the intrinsic refractive index). The layer may also be formed by selectively growing or etching a part of a region of the active layer 14 and then growing a material with a required refractive index.
In addition, it is noted that, in one embodiment of the present disclosure, the semiconductor laser apparatus 10 can be fabricated by a conventional process, where the present disclosure is different from the conventional technology in that the active layer 14 of the semiconductor laser apparatus 10 in one embodiment of the present disclosure further has the high refractive index region and the low refractive index region different from those in the conventional technology.
Hereinafter, an embodiment and a comparative example will be proposed to demonstrate that the semiconductor laser apparatus 10 of one embodiment of the present disclosure indeed has an effect of reducing the far-field lateral beam divergence angle and the far-field vertical beam divergence angle.
An n-type cladding layer, an n-type waveguide layer, an active layer, a p-type waveguide layer, a p-type cladding layer, and a capping layer are formed sequentially on the substrate, where the active layer includes a light producing portion and a light emitting portion neighboring each other. Each of a first inactive region and a second inactive region of the light emitting portion has a high refractive index, and the light emitting region has a low refractive index, where the light emitting region expands along a direction from the light producing portion toward the light emitting portion, and then the light emitting region is trapezoidal in shape. In the present Embodiment 1, a first angle α of 45 degrees is located between the first border J1 (being located between the first inactive light producing region 141A and the first inactive region 142A) and the first boundary B1; and a second angle β of 45 degrees is located between the second border J2 (being located between the second inactive light producing region 141C and the second inactive region 142C) and the second boundary B2. The present Embodiment 1 can be referred to as shown in
Please refer to
Then an analysis and comparison step is performed on the semiconductor laser apparatuses of Embodiment 1 and Comparative Example 1 by a measuring machine so as to obtain the analysis result as shown in
From the analysis result in
From the analysis result in
As described above, the semiconductor laser apparatus 10 of one embodiment of the present disclosure, by an active layer with a special design or a special structure, may decrease a far-field lateral beam divergence angle and a far-field vertical beam divergence angle of an emitted laser, and does not substantially affect light output efficiency.
The present disclosure has been described with a preferred embodiment thereof and it is understood that many changes and modifications to the described embodiment can be carried out without departing from the scope and the spirit of the disclosure that is intended to be limited only by the appended claims.
This application claims priority to U.S. Provisional Application No. 62/432,814, filed Dec. 12, 2016, titled “SEMICONDOCTOR LASER APPARATUS WITH NARROW BEAM DIVERGENCE ANGLE AND METHOD OF FABRICATING THE SAME”, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5987046 | Kobayashi | Nov 1999 | A |
6717971 | Marsh | Apr 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20180166857 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
62432814 | Dec 2016 | US |