Semiconductor laser with disordered and non-disordered quantum well regions

Information

  • Patent Grant
  • 6594295
  • Patent Number
    6,594,295
  • Date Filed
    Friday, November 16, 2001
    23 years ago
  • Date Issued
    Tuesday, July 15, 2003
    21 years ago
Abstract
In a semiconductor laser, non-disordered quantum well active region functions as a lasing region. Surrounding the non-disordered quantum well active region is a disordered quantum well active region which prevents diffusion of injected carriers from the non-disordered quantum well active region or provides a lateral heterobarrier. The disordered quantum well active region is formed by rapid thermal annealing in which defects from one or two InP defect layers diffuse into the parts of the quantum well active region to be disordered.
Description




FIELD OF THE INVENTION




The present invention is directed to a semiconductor laser and more particularly to a semiconductor laser having disordered and non-disordered quantum well active regions for increased efficiency.




DESCRIPTION OF RELATED ART




Many areas of technology require compact, low-power sources of coherent light which can be coupled into a waveguide such as an optical fiber. To that end, semiconductor lasers and light-emitting diodes are widely used. Typically, a semiconductor laser includes a quantum well active region in which light is produced. However, carriers which have been injected into the quantum well active region can diffuse into surrounding areas of the semiconductor substrate, in which case they are wasted. Such diffusion increases the threshold current required for lasing and reduces the efficiency of the laser.




U.S. Pat. No. 4,805,179 to Harder et al teaches a lateral current injection laser formed in a semiconductor heterostructure. However, Harder et al does not provide a solution to the above-noted difficulty.




U.S. patent application Ser. No. 09/833,078 to Thompson et al, filed Apr. 12, 2001, entitled “A method for locally modifying the effective bandgap energy in indium gallium arsenide phosphide (InGaAsP) quantum well structures,” and published on Mar. 14, 2002, as U.S. 2002/0030185 A1, whose entire disclosure is hereby incorporated by reference into the present disclosure, teaches a method for locally modifying the effective bandgap energy of indium gallium arsenide phosphide (InGaAsP) quantum well structures. That method allows the integration of multiple optoelectronic devices within a single structure, each comprising a quantum well structure.




In one embodiment, as shown in

FIG. 1A

, an InGaAsP multiple quantum well structure


104


formed on a substrate


102


is overlaid by an InP (indium phosphide) defect layer


106


having point defects


108


, which are donor-like phosphorus antisites or acceptor-like indium vacancies. Rapid thermal annealing (RTA) is carried out under a flowing nitrogen ambient, using a halogen lamp rapid thermal annealing system. During the rapid thermal annealing, the point defects


108


in the defect layer


106


diffuse into the active region of the quantum well structure


104


and modify its composite structure. The controlled inter-diffusion process causes a large increase in the bandgap energy of the quantum well active region, called a wavelength blue shift.




Another embodiment, as shown in

FIG. 1B

, uses two defect types, one to generate a wavelength blue shift and the other to decrease carrier lifetime. A first InP defect layer


110


contains slowly diffusing vacancy defects


114


, while a second InP defect layer


112


includes rapidly diffusing group V interstitial defects


116


. Rapid thermal annealing causes both types of defects to diffuse into the quantum well active region.




However, the prior art has yet to provide a technique to address the issue of diffusion of injected carriers.




SUMMARY OF THE INVENTION




It will be readily apparent that a need exists in the art to overcome the problem of diffusion of injected carriers. It is therefore an object of the invention to provide a semiconductor laser which includes an element for blocking such diffusion.




To achieve the above and other objects, the present invention is directed to the realization of a disordered region of quantum well active region surrounding a region of non-disordered quantum well region in order to prevent diffusion of injected carriers from the non-disordered, light emitting quantum well active region. The method provides blocking of current in a vertical-cavity surface-emitting laser, lowering its threshold current and raising its efficiency. The method provides the formation of a lateral heterobarrier in lateral-current-injected edge-emitting lasers, lowering threshold and raising efficiency. The disordered region can be produced by any of the techniques of the above-cited Thompson et al patent application or by any other suitable intermixing or other disordering techniques.











BRIEF DESCRIPTION OF THE DRAWINGS




A preferred embodiment of the present invention will be set forth in detail with reference to the drawings, in which:





FIGS. 1A and 1B

show two embodiments of the technique of the above-cited Thompson et al patent application;





FIG. 2

shows a schematic diagram of a semiconductor laser according to the preferred embodiment;





FIG. 3

shows a schematic diagram of a variation of the semiconductor laser of

FIG. 2

; and





FIG. 4

shows a flow chart of steps for producing the laser of

FIG. 2

or FIG.


3


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




A preferred embodiment of the present invention will now be set forth in detail with reference to the drawings. In the VCSEL (vertical-cavity surface-emitting laser)


200


of

FIG. 2

, a non-intermixed quantum well active region


202


is surrounded by a strongly intermixed quantum well active region


204


. The strongly intermixed quantum well active region


204


is produced by any of the techniques of the above-cited Thompson et al patent application. The non-intermixed quantum well active region


202


functions as the light-emitting region of the semiconductor laser


200


. Also provided in the preferred embodiment are distributed Bragg reflector mirrors


206


and


208


, positive and negative electrodes


210


and


212


, and corresponding p- and n-doped regions


214


and


216


.





FIG. 3

shows a variation of the preferred embodiment, implemented as an edge-emitting laser


300


. A semiconductor substrate


302


has formed thereon a non-disordered quantum well active region


304


bounded by Bragg gratings


306


and


308


and by strongly intermixed disordered regions


310


and


312


.




The laser


200


or


300


is formed in accordance with the process shown in the flow chart of FIG.


4


. In step


402


, a quantum well active region is formed. In step


404


, using any of the techniques of the above-cited Thompson et al patent application for spatially selective intermixing, certain areas of the quantum well active region are disordered through strong intermixing to form the strongly intermixed regions


214


,


216


or


310


,


312


. Then, in step


406


, the remainder of the steps for forming a working laser are carried out.




While a preferred embodiment and a variation have been set forth above, those skilled in the art who have reviewed the present disclosure will readily appreciate that other embodiments can be realized within the scope of the invention. For example, any suitable configuration of a semiconductor laser could be used. Therefore, the present invention should be construed as limited only by the appended claims.



Claims
  • 1. A semiconductor laser comprising:a semiconductor substrate; reflectors for defining a laser cavity; and a quantum well active region formed in the semiconductor substrate so as to be disposed between the reflectors, the quantum well active region comprising: a first, non-disordered non-intermixed quantum well active region for emitting light; and a second, disordered, strongly intermixed quantum well active region surrounding the first quantum well active region, said second, disordered quantum well active region being disordered through intermixing in the second quantum well active region.
  • 2. The semiconductor laser of claim 1, wherein the semiconductor laser is a surface-emitting laser.
  • 3. The semiconductor laser of claim 1, wherein the semiconductor laser is an edge-emitting laser.
  • 4. The semiconductor laser of claim 1, wherein the quantum well active region is an indium gallium arsenide phosphide (InGaAsP) quantum well active region.
  • 5. A method of making a semiconductor laser, the method comprising:(a) forming, in a semiconductor substrate, a semiconductor quantum well structure comprising a quantum well active region; (b) carrying out spatially selective intermixing in part of the quantum well active region to define a first, non-disordered, non-intermixed quantum well active region in which the spatially selective intermixing is not carried out and a second, disordered, strongly intermixed quantum well active region surrounding the first quantum well active region; and (c) forming reflectors to define a laser cavity which contains the first quantum well active region.
  • 6. The method of claim 5, wherein the quantum well active region is an indium gallium arsenide phosphide (InGaAsP) quantum well active region.
  • 7. The method of claim 6, wherein step (b) comprises rapid thermal annealing for controlled diffusion of defects into the second quantum well active region.
US Referenced Citations (26)
Number Name Date Kind
4805179 Harder et al. Feb 1989 A
4871690 Holonyak, Jr. et al. Oct 1989 A
5138625 Paoli et al. Aug 1992 A
5298454 D'Asaro et al. Mar 1994 A
5353295 Holonyak, Jr. et al. Oct 1994 A
5395793 Charbonneau et al. Mar 1995 A
5425043 Holonyak, Jr. et al. Jun 1995 A
5455429 Paoli et al. Oct 1995 A
5530580 Thompson et al. Jun 1996 A
5539763 Takemi et al. Jul 1996 A
5574738 Morgan Nov 1996 A
5574745 Paoli et al. Nov 1996 A
5608753 Paoli et al. Mar 1997 A
5699375 Paoli Dec 1997 A
5707890 Emery et al. Jan 1998 A
5708674 Beernink et al. Jan 1998 A
5766981 Thornton et al. Jun 1998 A
5771256 Bhat Jun 1998 A
5799024 Bowers et al. Aug 1998 A
5843802 Beernink et al. Dec 1998 A
5878066 Mizutani et al. Mar 1999 A
5882951 Bhat Mar 1999 A
5915165 Sun et al. Jun 1999 A
6027989 Poole et al. Feb 2000 A
6075804 Deppe et al. Jun 2000 A
6233264 Sato May 2001 B1
Non-Patent Literature Citations (6)
Entry
Journal of Crystal Growth (2000), “Growth of novel InP-based materials by He-plasma-assisted epitaxy,” Authors: Pinkney et al.; pp. 237-241. No month.
J. Vac. Sci. Technol. A 16(2), Mar./Apr. 1998, “Characterization of annealed high-resistivity InP grown by He-plasma-assisted epitaxy,” Authors: Pinkney et al.; pp. 772-775. No month.
J. Vac. Sci. Technol. A 16(2), Mar./Apr. 1998, “Quantum well intermixing in material system sfor 1.5 μm (invited),” Authors: Marsh et al.; pp. 810-816. No month.
IEEE Photonics Technology Letters, vol. 8, No. 9, Sep. 1996, “10 Gb/s Wavelength Conversion with Integrated Multiquantum-Well-Based 3-Port Mach-Zehnder Interferometer,” Authors: Idler et al.; pp. 1163-1165.
J. Appl. Phys. 79(2), Jan. 15, 1996, “Compositional disordering of InGaAs/GaAs heterostructures by low-temperature-grown GaAs layers,” Authors: Tsang et al.; pp. 664-670.
IEEE Photonics Technology Letters, vol. 7, No. 9, Sep. 1995, “Monolithic Integration of InGaAsP-InP Stratined-Layer Distributed Feedback Laser and External Modulator by Selective Quantum-Well Interdiffusion,” Authors: Ramdane et al.; pp. 1016-1018.