The present invention relates in general to projection video displays including a spatial light modulator (SLM). The invention relates in particular to such video displays in which the SLM is illuminated by a semiconductor light-emitting device such as an edge-emitting semiconductor laser, a surface-emitting semiconductor laser, or a light-emitting diode (LED).
Several commercially important types of projection displays utilize pixilated modulators based on micro-mechanical devices, generally falling into a category of modulators collectively known as spatial light modulators. Some of these modulators operate digitally, in a sense that each pixel can fully transmit, reflect, or diffract (depending on the modulator type) or block light entirely. One example of such a modulator is a DLP® modulator available from Texas instruments Inc., of Dallas, Tex. This is a two-dimensional SLM in which each pixel element is a movable mirror. Using such a modulator, half tones or gray levels are produced by pulse-width modulating (PWM) the mirrors (pixels) over the operating refresh-period of a display. In this case, the refresh-period is the frame-period per color of the display. Input video signals are converted to the PWM format by supporting electronics.
A detailed description of this PWM technique is presented in a paper Emerging Digital Micromirror Device (DMD) Applications, Dudley et al., SPIE Proceedings Vol. 4985, Copyright 2003 Society of Photo-Optical Instrumentation Engineers. A summary of the teaching of this reference is set forth below including data extracted therefrom.
Higher intensities are formed by increasing “on” time, but the smallest grayscale increment is limited by the bit resolution. Maximum intensity is achieved by a pixel being “on” throughout a refresh-period. The human visual system effectively integrates the pulsed light such that the duration of the pulsed light determines the perception of desired intensity. The gray scale perceived is proportional to the percentage of time the mirror is “on” during the refresh-period. Lines B and C of
The maximum number of bits possible per refresh-period is limited by the switching time of an individual pixel. By way of example,
For high quality video reproduction, it is desirable to have high frame-rate, and high grayscale resolution at the same time. Reducing switching time of spatial light modulators is a challenging task, which may or may not be successfully accomplished. There is a need for a method for providing higher grayscale resolution with relying on improvements in the switching time of spatial light modulators.
The present invention is directed to expanding grayscale resolution in video display apparatus. In one aspect apparatus in accordance with the present invention comprises a light-source and a spatial light modulator arranged to spatially modulate light from the light-source. The spatial light modulator includes a plurality of pixel elements, the pixel elements being individually switchable between off and on states. The apparatus includes projection optics for projecting spatially modulated light from the spatial light modulator onto a screen to form a video display. Power output of the light-source is varied over a refresh-period of the display as a predetermined function of time and a pixel element of the spatial light modulator is switched to the on-state for a predetermined portion of the refresh-period to provide a desired relative brightness contribution of that pixel element in the projected video display.
In a preferred embodiment of the apparatus, the light source is semiconductor light-emitting device such as a laser-diode. Such a device is essentially responsive to changes in drive current. This provides flexibility in selecting a power-output versus time function for the light-source.
The accompanying drawings, which are incorporated in and constitute a part of the specification, schematically illustrate a preferred embodiment of the present invention, and together with the general description given above and the detailed description of the preferred embodiment given below, serve to explain principles of the present invention.
Referring now to the drawings,
Information about OPS lasers can be found in the following commonly owned U.S. patents, each of which is incorporated herein by reference: U.S. Pat. Nos. 6,438,153 and 6,940,880.
Display 14 includes a beam homogenizer for homogenizing the spatial distribution of light delivered from source 12. Source 12 includes an optical condenser arrangement for directing the light into the homogenizer. Light-output from the homogenizer illuminates an SLM 16, and projection optics 18 project light modulated by the SLM onto a screen 20 for display. A detailed description of optical arrangements of display 10 is not necessary for understanding principles of the present invention and accordingly is not presented herein. A detailed description of a semiconductor light-emitting device illuminated display including an SLM is provided in U.S. Pat. No. 7,244,028, assigned to the assignee of the present invention, and the complete disclosure of which is hereby incorporated by reference.
An important aspect in which the inventive display 10 differs from prior-art displays, in which intensity levels are determined by PWM alone, is that PWM is combined with modulation of the output of light-source 12 as a predetermined function of time during a refresh-period. Video input for projection is received by support electronics 22. Electronics 22 supplies a PWM signal specifying a particular pulse-width for a given pixel and provides an output power ramp-signal function to light-source 12. The perceived intensity of the pixel output depends on the pulse-width specified and the time during the refresh-period during which that pulse width occurs. This provides that higher grayscale resolution is available for a given number of bits than is available using PWM alone. A simple example is graphically schematically illustrated in
One possible drawback of the inventive light-source modulation scheme is that the output of the light-source is effectively reduced by the modulation, correspondingly reducing the brightness of the display. In the case of linear ramp as depicted in
If this cannot be done due to limitations of the peak power, it would be possible to provide that the ramp function reached a maximum in less than a refresh-period and stayed constant for the remainder of the period. This would achieve higher brightness at the expense of reduction in grayscale resolution, but still provide greater resolution than would possible with a comparable prior-art PWM-only arrangement. Those skilled in the art may use other non-linear modulation functions for the light-source, smoothly variable or with portions thereof constant during a refresh-period, without departing from the spirit and scope of the present invention. In one example, the laser can be energized to full output power at the beginning of the refresh period at terminated a predetermined time thereafter within the refresh period. By controlling the termination point, an almost limitless variation in available grey scale can be achieved.
In summary, the present invention is described above in terms of a preferred and other embodiments. The invention, however, is not limited to the embodiments described and depicted. Rather the invention is limited only by the claims appended hereto.
This application claims priority of U.S. Provisional Patent Application No. 60/927,226, filed May 2, 2007, the complete disclosure of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60927226 | May 2007 | US |