The present invention relates to a semiconductor light emitting device and a fabrication method for the same, and in particular, relates to a semiconductor light emitting device formed for bonding a light emitting diode having a metallic reflecting layer, and a non-transparent substrate layer by wafer bonding technology, and a fabrication method for the same.
A structure which forms a metallic reflecting layer as an optical reflecting layer between a substrate and an active layer composed of an MQW (Multi-Quantum Well) layer is proposed in order to perform the high brightness of an LED (Light Emitting Diode). As a method of forming such a metallic reflecting layer, the wafer bonding technology of a substrate of a light emitting diode layer is disclosed in Patent Literature 1 and Patent Literature 2, for example.
In Patent Literature 1 and Patent Literature 2, the purpose is to provide a fabrication method of a light emitting diode which can fabricate a light emitting diode having a desired mechanical characteristic and optical transparency, and can make a minimum specific resistance of boundary surface between a transparent layer and a growth layer; and it is characterized by fabricating the light emitting diode by removing a temporary growth substrate after growing up a light emitting diode layer one after another on the temporary growth substrate and forming a light emitting diode structure having a relatively thin layer, and wafer-bonding a conductive and optical transparent substrate on the light emitting diode layer which becomes a buffer layer of lower layer on the position instead of the temporary growth substrate.
In Patent Literature 1 and Patent Literature 2, transparent materials, such as GaP and sapphire, are applied to the substrate used for the wafer bonding.
Patent Literature 1: Japanese Patent Application Laying-Open Publication No. H06-302857
Patent Literature 2: U.S. Pat. No. 5,376,580
A schematic cross-section structure of a conventional semiconductor light emitting device formed by the wafer bonding technology is expressed as shown in
For example, as shown in
In the conventional semiconductor light emitting device shown in
However, since the thermal diffusion of Sn occurs when using the Au—Sn alloy layer 14, in order to prevent the diffusion of Sn, as shown in
For example, as shown in
In order to perform high brightness of the semiconductor LED (Light Emitting Device), there is also a method of inserting a DBR (Distributed Bragg Reflector) layer between the GaAs substrate and the active layer (MQW) as an optical reflecting layer. The LED of the structure which does not insert the DBR becomes dark since the light which emitted in the MQW layer is absorbed by the GaAs substrate. Therefore, in order to perform the high brightness of the LED using the GaAs substrate, the DBR is used as the optical reflecting layer.
That is, as shown in
The conventional semiconductor light emitting device formed by the wafer bonding technology needs to insert the barrier metal layer, in order to prevent the thermal diffusion of Sn, when using the Au—Sn alloy layer as a metal used for the wafer bonding. Moreover, the Au—Sn alloy layer has a wrong optical reflection factor.
Moreover, even if the metallic reflecting layer is formed by bonding the substrate, the optical absorption occurs in the interface between the metal and the semiconductor, and then the light cannot be reflected efficiently.
Moreover, when the DBR layer is used as the reflecting layer, the DBR layer reflects only an incident light from a certain one way, the DBR layer does not reflect and passes through the incident light if an incident angle changes, and the incident light is absorbed by the GaAs substrate, thereby the light emitting brightness of LED is reduced.
Then, the purpose of the present invention is to provide a semiconductor light emitting device with the high luminance formed by performing the wafer bonding of the substrate using a non-transparent semiconductor substrate, such as GaAs and Si, and forming the metallic reflecting layer, and a fabrication method for the same.
Moreover, the purpose of a present invention is to provide a semiconductor light emitting device with the high luminance formed by avoiding the contact between a semiconductor and metal, preventing the optical absorption in the interface between the semiconductor and the metal, and forming the metallic reflecting layer having a sufficient reflection factor, by inserting a transparent insulating film between the metal and the semiconductor, and a fabrication method for the same.
Moreover, the purpose of the present invention is to provide a semiconductor light emitting device with the high luminance which becomes possible to reflect the light of all angles by using not the DBR but a metal layer for the optical reflecting layer, and a fabrication method for the same.
One aspect of the semiconductor light emitting device of the present invention for achieving the above-mentioned purpose is characterized by comprising: a GaAs substrate structure including a GaAs layer, a first metal buffer layer disposed on a surface of the GaAs layer, a first metal layer disposed on the first metal buffer layer, a second metal buffer layer disposed at a back side of the GaAs layer, and a second metal layer disposed on a surface of an opposite side of the GaAs layer of the second metal buffer layer; and a light emitting diode structure disposed on the GaAs substrate structure and including a third metal layer, a metal contact layer disposed on the third metal layer, a p type cladding layer disposed on the metal contact layer, a multi-quantum well layer disposed on the p type cladding layer, an n type cladding layer disposed on the multi-quantum well layer, and a window layer disposed on the n type cladding layer, wherein the GaAs substrate structure and the light emitting diode structure are bonded by using the first metal layer and the third metal layer.
Another aspect of the semiconductor light emitting device of the present invention is characterized by comprising: a GaAs substrate; a metal layer disposed on the GaAs substrate; and a light emitting diode structure including a patterned metal contact layer and a patterned insulating layer disposed on the metal layer, a p type cladding layer disposed on the patterned metal contact layer and the patterned insulating layer, a multi-quantum well layer disposed on the p type cladding layer, an n type cladding layer disposed on the multi-quantum well layer, and a window layer disposed on the n type cladding layer, wherein the GaAs substrate and the light emitting diode structure are bonded by using the metal layer.
Another aspect of the semiconductor light emitting device of the present invention is characterized by comprising: a GaAs substrate structure including a GaAs substrate, and a first metal layer disposed on a surface of the GaAs substrate; and a light emitting diode structure disposed on the aforementioned GaAs substrate structure and including a second metal layer, a p type cladding layer disposed on the second metal layer, a multi-quantum well layer disposed on the p type cladding layer, an n type cladding layer disposed on the multi-quantum well layer, and a window layer disposed on the n type cladding layer, wherein the GaAs substrate and the light emitting diode structure are bonded by using the first metal layer and the second metal layer.
Another aspect of the semiconductor light emitting device of the present invention is characterized by comprising: a silicon substrate structure including a silicon substrate, a titanium layer disposed on the silicon substrate, and a first metal layer disposed on the titanium layer; and a light emitting diode structure including a second metal layer disposed on the first metal layer, a patterned metal contact layer and a patterned insulating layer disposed on the second metal layer, an epitaxial growth layer disposed on the patterned metal contact layer and the patterned insulating layer and having a frosting processing region on a surface exposed, a patterned n type GaAs layer disposed on the epitaxial growth layer, and a patterned surface electrode layer disposed on the n type GaAs layer, wherein the silicon substrate structure and the light emitting diode structure are bonded by using the first metal layer and the second metal layer.
Another aspect of the semiconductor light emitting device of the present invention is characterized by comprising: a GaAs substrate structure including a GaAs substrate, a metal buffer layer disposed on the GaAs substrate, and a first metal layer disposed on the metal buffer layer; and a light emitting diode structure including a second metal layer disposed on the first metal layer, a patterned metal contact layer and a patterned insulating layer disposed on the second metal layer, an epitaxial growth layer disposed on the patterned metal contact layer and the patterned insulating layer and having a frosting processing region on a surface exposed, a patterned n type GaAs layer disposed on the epitaxial growth layer, and a patterned surface electrode layer disposed on the n type GaAs layer, wherein the GaAs substrate structure and the light emitting diode structure are bonded by using the first metal layer and the second metal layer.
Another aspect of the fabrication method for the semiconductor light emitting device of the present invention is characterized by comprising: preparing a semiconductor substrate structure for wafer bonding and a light emitting diode structure for wafer bonding; forming a first metal layer on a semiconductor substrate in the semiconductor substrate structure; forming an AlInGaP layer on a GaAs substrate, an n type GaAs layer, and an epitaxial growth layer one after another in the light emitting diode structure; forming a metal contact layer and a second metal layer for a patterned insulating layer on the epitaxial growth layer; bonding the semiconductor substrate structure for the wafer bonding, and the light emitting diode structure for the wafer bonding by thermocompression bonding; removing the GaAs substrate by etching; removing an AlInGaP layer; performing pattern formation of a surface electrode layer; and removing the n type GaAs layers except the n type GaAs layer directly under the surface electrode layer by performing frosting processing.
Next, an embodiment of the invention is described with reference to drawings. In the description of the following drawings, the same or similar reference numeral is attached to the same or similar part. However, a drawing is schematic and it should care about differing from an actual thing. Drawings are schematic, not actual, and may be inconsistent in between in scale, ratio, etc.
The embodiment shown in the following exemplifies the device and method for materializing the technical idea of the invention, and the technical idea of the invention does not specify assignment of each component parts, etc. as the following. Various changes can be added to the technical idea of the invention in scope of claims.
(Element Structure)
It is applicable also in any of a p type and an n type, as a conductivity type of a GaAs substrate applied to a semiconductor light emitting device and a fabrication method for the same according to a first embodiment of the present invention.
A schematic cross-section structure of a p type GaAs substrate applied to the semiconductor light emitting device and the fabrication method for the same according to the present embodiment is expressed as shown in
A schematic cross-section structure of the semiconductor light emitting device according to the present embodiment formed by bonding mutually the LED shown in
As shown in
As shown in
In the structure of
As shown in
In the structure of
As shown in
That is, as shown in
In order to solve the problem of the Sn diffusion from the Au—Sn alloy layer, the p(n) type GaAs substrate structure and the LED structure which is composed of epitaxial growth layer are bonded by using the metal layer 1 and the metal layer 12. Accordingly, it is possible to form the metallic reflecting layer which does not need a barrier metal and has a sufficient reflection factor. The metallic reflecting layer is beforehand formed of the metal layer 12 disposed at the LED structure side. Since a mirror surface is formed of the interface between the p type cladding layer 10 and the metal layer 12, the radiated light from the LED is reflected in the aforementioned mirror surface. Although the metallic contacts layer 11 is a layer for achieving the ohmic contact of the metal layer 12 and the p type cladding layer 10, the metallic contacts layer 11 is intervened to the interface between the metal layer 12 and the p type cladding layer 10, and forms a part of the mirror surface.
As shown in
The conditions of wafer bonding are about 250 degrees C. to 700 degrees C., for example, and are 300 degrees C. to 400 degrees C. preferable, and the pressure of thermocompression bonding is about 10 MPa to 20 MPa, for example.
According to the semiconductor light emitting device according to the present embodiment, since the metallic reflecting layer having the effective optical reflection factor can be formed on the structure at the side of the LED by using the metal layer 12 composed of Au, the high brightness of LED can be achieved.
(Element Structure)
A schematic cross-section structure of an LED applied to a semiconductor light emitting device and a fabrication method for the same according to a second embodiment of the present invention is expressed as shown in
A schematic cross-section structure of a semiconductor light emitting device according to the present embodiment formed by the wafer bonding technology by bonding mutually the LED shown in
As shown in
In the structure of
(Modified Example of Second Embodiment)
As shown in
In the structure of
The semiconductor light emitting device according to the present embodiment is formed by bonding mutually the LED structure shown in
That is, as shown in
It is possible to form the metallic reflecting layer having a sufficient reflection factor by bonding the GaAs substrate 15 and the LED structure composed of the epitaxial growth layer by using the metal layer 12. The metallic reflecting layer is beforehand formed of the metal layer 12 disposed at the LED structure side. Since a mirror surface is formed of the interface between the insulating layer 17, and the metal layer 12 or the metal buffer layer 18, the radiated light from the LED is reflected on the aforementioned mirror surface. Although the metallic contacts layer 11 is a layer for achieving the ohmic contact of the metal layer 12 or the metal buffer layer 18, and the p type cladding layer 10, the metallic contacts layer 11 is intervened to the interface between the metal layer 12 and the p type cladding layer 10, and has the thickness of the same grade as the insulating layer 17.
Since a substantial light emitting region is limited when the pattern width of the metallic contacts layer 11 is wide, the area efficiency reduces and the light emitting efficiency decreases. On the other hand, since the sheet resistivity of the metallic contacts layer 11 increases and the forward voltage Vf of the LED rises when the pattern width of the metallic contacts layer 11 is narrow, the optimal pattern width and pattern structure exist. In some examples of a pattern, there is a honeycomb pattern structure based on a hexagon or a dotted pattern structure based on a round shape. Such pattern shape will be explained in relation to a fourth embodiment, referring to
As shown in
The conditions of wafer bonding are about 250 degrees C. to 700 degrees C., for example, and are 300 degrees C. to 400 degrees C. preferable, and the pressure of thermocompression bonding is about 10 MPa to 20 MPa, for example.
According to the semiconductor light emitting device according to the present embodiment, the contact between the semiconductor layer, such as the p type cladding layer 10, and the metal layer 12 can be avoided, the optical absorption can be prevented, and the metallic reflecting layer having a sufficient reflection factor can be formed by forming the transparent insulating layer 17 between the metal layer 12 acting as the metallic reflecting layer or the metal buffer layer 18, and the semiconductor layer, such as the p type cladding layer 10.
In order to perform patterning formation of the transparent insulating layer 17 and to achieve ohmic contact, the metallic contacts layer 11 composed of AuBe etc. is vapor-deposited by lift off.
Then, the Au layer used for bonding with the GaAs substrate 15 on the insulating layer 17 is vapor-deposited, and the metal layer 12 is formed.
According to the semiconductor light emitting device according to the present embodiment, the high brightness of LED can be achieved since the contact the semiconductor layer, such as the p type cladding layer 10, with the metal layer 12 can be avoided, the optical absorption can be prevented, and the metallic reflecting layer having the sufficient reflection factor can be formed, by intervening the transparent insulating layer 17 between the metallic reflecting layer and the semiconductor layer.
Moreover, according to the semiconductor light emitting device according to the present embodiment, the light of short wavelength, such as ultraviolet rays having a low reflection factor, can be efficiently reflected on Au, and the high brightness of LED can be achieved by forming the metal buffer layer 18 composed of Ag, Al, etc. between the insulating layer 17 and the metal layer 12.
Moreover, according to the semiconductor light emitting device according to the present embodiment, since the light is not absorbed in the interface between the p type cladding layer and the metallic reflecting layer, the high brightness of LED can be achieved.
(Element Structure)
A schematic cross-section structure of a GaAs substrate applied to a semiconductor light emitting device and a fabrication method for the same according to a third embodiment of the present invention is expressed as shown in
A schematic cross-section structure of the semiconductor light emitting device according to the third embodiment of the present invention formed by bonding mutually the GaAs substrate 15 provided with the metal layer 20 shown in
A p type or n type GaAs substrate structure applied to a semiconductor light emitting device and the fabrication method for the same according to the present embodiment includes a GaAs substrate 15 and a metal layer 20 disposed on the surface of the GaAs substrate 15, as shown in
In the structure of
As shown in
In the structure of
As shown in
That is, as shown in
The metallic reflecting layer is beforehand formed of the metal layer 12 disposed at the LED structure side. Since a mirror surface is formed of the interface between the p type cladding layer 10 and the metal layer 12, the radiated light from the LED is reflected in the aforementioned mirror surface.
As shown in
The conditions of wafer bonding are about 250 degrees C. to 700 degrees C., for example, and are 300 degrees C. to 400 degrees C. preferable, and the pressure of thermocompression bonding is about 10 MPa to 20 MPa, for example.
According to the semiconductor light emitting device and the fabrication method for the same according to the present embodiment, it has the characteristic at the point of performing total reflection of the light by using the metal for the reflecting layer in order to prevent the optical absorption to the GaAs substrate, and preventing the absorption to the GaAs substrate. As a material of the semiconductor substrate to bond, non-transparent semiconductor substrate materials, such as GaAs and Si, are used.
The metal layer 20 and the metal layer 12 are bonding by using the Au layer as the metal layer 20 at the side of the GaAs substrate 15 and using the Au layer also as the metal layer 12 at the side of the LED including the epitaxial growth layer, and the metal layer 12 used for bonding is applied to the optical reflecting layer as the metallic reflecting layer.
According to the semiconductor light emitting device and the fabrication method for the same according to the present embodiment, the high brightness of the LED can be performed since it is possible to perform total reflection of the light by using the metal for the reflecting layer, to prevent the absorption to the GaAs substrate, and to reflect the light of all angles, in order to prevent the optical absorption to the GaAs substrate.
(Element Structure)
A schematic cross-section structure of a silicon substrate applied to a semiconductor light emitting device and a fabrication method for the same according to a fourth embodiment of the present invention is expressed as shown in
As shown in
In the structure of
As shown in
In the structure of
Moreover, the metallic contacts layer 11 is formed, for example of an AuBe layer or an alloy layer of AuBe and Ni, for example. The thickness is the same grade as the insulating layer 17, and is about 450 nm.
The metallic contacts layer 11 may be formed, for example as layered structure, such as Au/AuBe—Ni alloy/Au. The insulating layer 17 is formed, for example of a silicon dioxide film, a silicon nitride film, an SiON film, an SiOxNy film, or these multilayer films.
The metal layer 12 is formed, for example of an Au layer, and the thickness is about 2.5 to 5 μm, for example. The p type cladding layer in the epitaxial growth layer 26 is formed of an AlGaAs layer or a multilayer structure of an AlGaAs layer applying the conductivity type as p− type and an AlGaAs layer applying the conductivity type as p+ type, for example, and the thickness is about 0.1 μm, for example. The n type cladding layer in the epitaxial growth layer 26 is formed, for example of a n type AlGaAs layer, and the thickness is about 0.1 μm, for example. An n type window layer is composed, for example of a multilayer structure of an AlGaAs layer and a GaAs layer formed on the multilayer structure of the AlGaAs layer, and the whole thickness is about 0.95 μm, for example. A p type window layer is composed, for example of a multilayer structure of an AlGaAs layer and a GaP layer formed on the multilayer structure of the AlGaAs layer, and the whole thickness is about 0.32 μm, for example.
As shown in
That is, as shown in
Also in the semiconductor light emitting device according to the present embodiment, as shown in
(Plane Pattern Structure)
Since a substantial light emitting region is limited when the pattern width of the metallic contacts layer 11 is wide, the area efficiency reduces and the light emitting efficiency decreases. On the other hand, when the pattern width of the metallic contacts layer 11 is narrow, the sheet resistivity of the metallic contacts layer 11 increases and the forward voltage Vf of LED rises. Accordingly, there are the optimal pattern width W and the pattern pitch D1. In some examples of the pattern, there is a honeycomb pattern structure based on a hexagon or a circular dotted pattern structure based on a circular dotted shape basic structure.
A schematic plane pattern structure of the LED applied to the semiconductor light emitting device and the fabrication method for the same according to the present embodiment has the honeycomb pattern structure based on a hexagonal basic structure, for example, as shown in
Another schematic plane pattern structure of the LED applied to the semiconductor light emitting device and the fabrication method for the same according to the present embodiment has a dotted pattern structure based on a round shape, for example, as shown in
The schematic plane pattern structure of the LED applied to the semiconductor light emitting device the fabrication method for the same according to the present embodiment and is not limited to the hexagonal honeycomb pattern and the circular dotted pattern, but a random pattern for disposing a triangular pattern, a rectangular pattern, a hexagonal pattern, an octagonal pattern, a circular dotted pattern, etc. at random is also applicable.
The schematic plane pattern structure of the LED applied to the semiconductor light emitting device according to the present embodiment has only to be able to secure the metal wiring pattern width which is a level in which the forward voltage Vf of LED does not rise without reducing the light emitting brightness from the LED securing the size of a light guide region.
(Fabrication Method)
The fabrication method of the semiconductor light emitting device according to the present embodiment will be explained hereinafter.
Schematic cross-section structures for explaining one process of the fabrication method of the semiconductor light emitting device according to the present embodiment is expressed as shown in
(a) First of all, a silicon substrate structure for wafer bonding is prepared as shown in
(b) Next, as shown in
(c) Next, as shown in
(d) Next, as shown in
(e) Next, as shown in
(f) Next, as shown in
(g) Next, as shown in
In addition, a tungsten (W) barrier metal, a platinum (Pt) barrier metal, etc. can also be used as an alternative of the titanium layer 22 and the titanium layer 27, for example.
According to the above explanation, as shown in
(Modified Example of Fourth Embodiment)
A schematic cross-section structure for explaining one process of a fabrication method of a semiconductor light emitting device according to a modified example of the present embodiment is expressed as shown in
The semiconductor light emitting device according to the modified example of the present embodiment is formed by bonding mutually a silicon substrate structure shown in
That is, as shown in
Also in the semiconductor light emitting device according to the modified example of the present embodiment, as shown in
In the structure of
Since each process of the fabrication method of the semiconductor light emitting device according to the present embodiment shown in
A schematic plane pattern structure of LED applied to the semiconductor light emitting device and the fabrication method for the same according to the modified example of the present embodiment can also apply the same structure as
It is also available to form the metal buffer layer 18 (refer to
According to the semiconductor light emitting device according to the present embodiment and its modified example, and the fabrication method for the same, the high brightness of LED can be achieved since the contact with the epitaxial growth layer 26 and the metal layer 12 can be avoided, the optical absorption can be prevented, and the metallic reflecting layer having a sufficient reflection factor can be formed by intervening the transparent insulating layer 17 between the metallic reflecting layer and the semiconductor layer.
Moreover, according to the semiconductor light emitting device according to the present embodiment and its modified example, and the fabrication method for the same, the light of short wavelength, such as ultraviolet rays having a low reflection factor, can be efficiently reflected at Au, and the high brightness of the LED can be achieved, by forming the metal buffer layer composed of Ag, Al, etc. between the insulating layer 17 and the metal layers 12 and 20.
Moreover, according to the semiconductor light emitting device according to the present embodiment and its modified example, and the fabrication method for the same, the high brightness of the LED can be achieved since the contact with the epitaxial growth layer 26 and the metal layer 12 is avoided and the light is not absorbed in the interface between the epitaxial growth layer 26 and the metallic reflecting layer.
According to the semiconductor light emitting device according to the present embodiment and its modified example, and the fabrication method for the same, the high brightness of the LED can be performed since it becomes possible to perform the total reflection of the light by using the metal for the reflecting layer in order to prevent the optical absorption to the silicon substrate or the GaAs substrate, to prevent the absorption to the silicon substrate or the GaAs substrate, and to reflect the light of all angles.
The present invention has been described by the first to fourth embodiments, as a disclosure including associated description and drawings to be construed as illustrative, not restrictive. With the disclosure, artisan might easily think up alternative embodiments, embodiment examples, or application techniques.
In the semiconductor light emitting device and the fabrication method for the same according to the first to fourth embodiment, although the silicon substrate and the GaAs substrate are mainly explained to the example as the semiconductor substrate, it is available enough in Ge SiGe, SiC, GaN substrate, or a GaN epitaxial substrate on SiC.
Although the LED is mainly explained to the example as the semiconductor light emitting device according to the first to fourth embodiment, an LD (Laser Diode) may be composed, and in that case, a DFB (Distributed Feedback) LD, a DBR (Distributed Bragg Reflector) LD, a VCSEL (Vertical Cavity Surface Emitting Laser Diode), etc. may be composed.
Such being the case, the present invention covers a variety of embodiments, whether described or not. Therefore, the technical scope of the present invention is appointed only by the invention specific matter related appropriate scope of claims from the above-mentioned explanation.
According to the semiconductor light emitting device and the fabrication method for the same according to the present invention, the high brightness of the LED can be achieved since the barrier metal becomes unnecessary by bonding the epitaxial growth layer and the semiconductor substrate by using the metal layer composed of Au in order to solve the problem of Sn diffusion by Au—Sn alloy layer, and the metallic reflecting layer having a sufficient optical reflection factor can be formed in the structure at the side of the LED by using the metal layer composed of Au.
According to the semiconductor light emitting device and the fabrication method for the same according to the present invention, the high brightness of the LED can be achieved since the contact with the semiconductor layer and the metallic reflecting layer can be avoided, the optical absorption in the interface between the semiconductor layer and the metallic reflecting layer can be prevented, and the metallic reflecting layer having a sufficient reflection factor can be formed, by inserting the transparent insulating film between the metallic reflecting layer and the semiconductor layer.
According to the semiconductor light emitting device, and the fabrication method for the same according to the present invention, the high brightness of the LED can be performed since it is possible to perform the total reflection of the light by using the metal for the reflecting layer in order to prevent the optical absorption to the GaAs substrate, to prevent the absorption to the GaAs substrate, and to reflect the light of all angles.
The semiconductor light emitting device and the fabrication method for the same according to the embodiments of the invention can be used for whole semiconductor light emitting devices, such as an LED device having a non-transparent substrate, such as a GaAs substrate and a Si substrate, and an LD device.
Number | Date | Country | Kind |
---|---|---|---|
2007-107130 | Apr 2007 | JP | national |
This application is a continuation of application Ser. No. 16/015,282, filed Jun. 22, 2018, and allowed on Jul. 19, 2019, which is a continuation of Ser. No. 15/716,452, filed on Sep. 26, 2017 (issued on Jul. 24, 2018), which is a continuation of application Ser. No. 15/248,332, filed on Aug. 26, 2016 (issued on Oct. 10, 2017 as U.S. Pat. No. 9,786,819), which is a continuation of application Ser. No. 14/928,349, filed on Oct. 30, 2015 (issued on Sep. 20, 2016 as U.S. Pat. No. 9,450,145), which is a continuation of application Ser. No. 14/286,696, filed on May 23, 2014 (issued on Nov. 24, 2015 as U.S. Pat. No. 9,196,808), which is in turn a divisional application of U.S. application Ser. No. 14/024,696, filed on Sep. 12, 2013 (issued on Apr. 28, 2015 as U.S. Pat. No. 9,018,650), which is a divisional application of Ser. No. 13/327,860, filed on Dec. 16, 2011 (issued on Sep. 17, 2013 as U.S. Pat. No. 8,536,598), which is a divisional application of Ser. No. 12/596,004, filed on Oct. 15, 2009 (issued on Jan. 31, 2012 as U.S. Pat. No. 8,106,412), which is a National Stage application of PCT/JP2008/057176, filed on Apr. 11, 2008. The prior U.S. applications and the present application claim the benefit of priority of Japanese application Serial No. JP 2007-107130, filed on Apr. 16, 2007. The contents of these prior applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5376580 | Kish et al. | Dec 1994 | A |
5898192 | Gerner | Apr 1999 | A |
5917202 | Haitz et al. | Jun 1999 | A |
7019323 | Shakuda et al. | Mar 2006 | B2 |
7508001 | Ueda et al. | Mar 2009 | B2 |
7675072 | Konno et al. | Mar 2010 | B2 |
7847313 | Shibata | Dec 2010 | B2 |
RE42422 | Hsieh et al. | Jun 2011 | E |
8049243 | Kamei et al. | Nov 2011 | B2 |
8106412 | Takao et al. | Jan 2012 | B2 |
8536598 | Takao et al. | Sep 2013 | B2 |
9018650 | Takao et al. | Apr 2015 | B2 |
9196808 | Takao et al. | Nov 2015 | B2 |
9450145 | Takao et al. | Sep 2016 | B2 |
10032961 | Takao et al. | Jul 2018 | B2 |
20020179929 | Takahashi et al. | Dec 2002 | A1 |
20030151044 | Yamada | Aug 2003 | A1 |
20040079967 | Shakuda et al. | Apr 2004 | A1 |
20050199904 | Yamamoto | Sep 2005 | A1 |
20050205886 | Murofushi et al. | Sep 2005 | A1 |
20050230690 | Hata | Oct 2005 | A1 |
20050236632 | Lai | Oct 2005 | A1 |
20060003467 | Karnutsch | Jan 2006 | A1 |
20060054899 | Takahashi et al. | Mar 2006 | A1 |
20060102933 | Yamamoto | May 2006 | A1 |
20060237733 | Yamada | Oct 2006 | A1 |
20070121690 | Fujii et al. | May 2007 | A1 |
20070224714 | Ikeda et al. | Sep 2007 | A1 |
20080157115 | Chuang | Jul 2008 | A1 |
20090039367 | Iso et al. | Feb 2009 | A1 |
20090097521 | Nakahara | Apr 2009 | A1 |
20090121241 | Keller et al. | May 2009 | A1 |
20090203161 | Hashimoto | Aug 2009 | A1 |
20090206354 | Kitano et al. | Aug 2009 | A1 |
20090275154 | Suzuki et al. | Nov 2009 | A1 |
20100133505 | Takao et al. | Jun 2010 | A1 |
20100230690 | Kyono et al. | Sep 2010 | A1 |
20100283081 | Huang et al. | Nov 2010 | A1 |
20110175130 | Lee | Jul 2011 | A1 |
20120132889 | Takao et al. | May 2012 | A1 |
20120146083 | Liu et al. | Jun 2012 | A1 |
20120249009 | Walter et al. | Oct 2012 | A1 |
20130056707 | Kozaki | Mar 2013 | A1 |
20140008610 | Takao et al. | Jan 2014 | A1 |
20140166975 | Ito | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
H06302857 | Oct 1994 | JP |
H09186365 | Jul 1997 | JP |
2000277804 | Oct 2000 | JP |
2003068715 | Mar 2003 | JP |
2003218383 | Jul 2003 | JP |
2003282946 | Oct 2003 | JP |
2004080042 | Mar 2004 | JP |
2004146593 | May 2004 | JP |
2005123530 | May 2005 | JP |
2005513787 | May 2005 | JP |
2005259820 | Sep 2005 | JP |
2006013381 | Jan 2006 | JP |
2007012688 | Jan 2007 | JP |
2008103627 | May 2008 | JP |
03052838 | Jun 2003 | WO |
2004051758 | Jun 2004 | WO |
2004082033 | Sep 2004 | WO |
2006006556 | Jan 2006 | WO |
2007015330 | Feb 2007 | WO |
Entry |
---|
Office Action dated Jul. 28, 2014 by State Intellectual Property Office of the People's Republic of China (English translation supplied). |
Office Action dated Jul. 29, 2014 by Taiwanese Patent Office (English translation supplied). |
Search Report issued by European Patent Office dated Nov. 28, 2013. |
Number | Date | Country | |
---|---|---|---|
20200052163 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14024696 | Sep 2013 | US |
Child | 14286696 | US | |
Parent | 13327860 | Dec 2011 | US |
Child | 14024696 | US | |
Parent | 12596004 | US | |
Child | 13327860 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16015282 | Jun 2018 | US |
Child | 16657403 | US | |
Parent | 15716452 | Sep 2017 | US |
Child | 16015282 | US | |
Parent | 15248332 | Aug 2016 | US |
Child | 15716452 | US | |
Parent | 14928349 | Oct 2015 | US |
Child | 15248332 | US | |
Parent | 14286696 | May 2014 | US |
Child | 14928349 | US |