Embodiments described herein relate generally to a semiconductor light emitting device.
Nitride-based III-V group compound semiconductors such as gallium nitride (GaN) are applied to a high-intensity light emitting diode (LED), a laser diode (LD), and the like, by taking advantage of their features of a wide band gap.
Each of these light emitting devices includes: an n-type semiconductor layer; a p-type semiconductor layer; and a light emitting layer provided between them and having a quantum well layer and a barrier layer.
Such semiconductor light emitting devices are being required to realize a high light emission efficiency.
According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer containing a nitride semiconductor, a p-type semiconductor layer containing a nitride semiconductor and a light emitting layer provided between the n-type semiconductor layer and the p-type semiconductor layer. The light emitting layer includes a barrier layer containing III group elements, and a well layer stacked with the barrier layer in a direction going from the n-type semiconductor layer toward the p-type semiconductor layer and containing III group elements.
The barrier layer is divided into a first portion on a side of the n-type semiconductor layer and a second portion on a side of the p-type semiconductor layer. When at least the first portion contains In, an In composition ratio in the III group elements of the second portion is lower than an In composition ratio in the III group elements of the first portion.
The well layer is divided into a third portion on a side of the n-type semiconductor layer and a fourth portion on a side of the p-type semiconductor layer. When at least the fourth portion contains In, an In composition ratio in the III group elements of the fourth portion is higher than an In composition ratio in the III group elements of the third portion.
Various embodiments of the invention will be described hereinafter with reference to the accompanying drawings.
The drawings are schematic or conceptual; and the relationships between the thicknesses and widths of portions, the proportions of sizes among portions, etc., are not necessarily the same as the actual values thereof. Further, the dimensions and the proportions may be illustrated differently among the drawings, even for identical portions.
In the specification and the drawings of the application, components similar to those described in regard to a drawing thereinabove are marked with like reference numerals, and a detailed description is omitted as appropriate.
(Embodiments)
As shown in
Each of the n-type semiconductor layer 20 and the p-type semiconductor layer 50 contains a nitride semiconductor.
The light emitting layer 40 is, for example, an active layer. The stacked body 30 is, for example, a super-lattice layer.
In the semiconductor light emitting device 110, the buffer layer 11 is provided on a major surface (for example, c-plane) of a substrate 10 composed of, for example, sapphire, and, for example, an undoped-GaN foundation layer 21 and an n-type GaN contact layer 22 are provided thereon. The n-type GaN contact layer 22 is contained in the n-type semiconductor layer 20. The GaN foundation layer 21 may also be contained in the n-type semiconductor layer 20 for convenience.
A stacked body 30 is provided on the n-type GaN contact layer 22. In the stacked body 30, for example, first crystal layers 31 and second crystal layers 32 are stacked alternatively.
On the stacked body 30, the light emitting layer 40 (active layer) is provided. The light emitting layer 40 has, for example, a multiple quantum well (MQW) structure. That is, the light emitting layer 40 includes the structure in which a plurality of barrier layers 41 and a plurality of well layers 42 are stacked alternatively and repeatedly. The detailed configuration of the barrier layer 41 and the well layer 42 will be described later.
On the light emitting layer 40, a p-type AlGaN layer 51, a Mg doped GaN layer 52, and a p-type GaN contact layer 53, are provided in this order. The p-type AlGaN layer 51 has a function as an electron overflow suppression layer. The p-type AlGaN layer 51, the Mg doped GaN layer 52, and the p-type GaN contact layer 53, are contained in the p-type semiconductor layer 50. Furthermore, a transparent electrode 60 is provided on the p-type GaN contact layer 53.
Then, an n-side electrode 70 is provided on the n-type GaN contact layer 22 by removing a part of the n-type GaN contact layer 22, which is the n-type semiconductor layer 20, and areas of the stacked body 30, the light emitting layer 40, and the p-type semiconductor layer 50, which correspond to the part. A stacked structure of, for example, Ti/Pt/Au is used for the n-side electrode 70, for example. In contrast, a p-side electrode 80 is provided on the transparent electrode 60.
As described above, the semiconductor light emitting device 110 of the specific example according to the embodiment is a light emitting diode (LED).
The semiconductor light emitting device 110 can be manufactured, for example, as follows.
First, the substrate 10 of, for example, a c-plane sapphire subjected to organic cleaning or acid cleaning, is introduced into a reactor of MOCVD (Metal Organic Chemical Vapor Deposition) apparatus, and is heated to about 1100° C. on a susceptor in the reactor. Thereby, the oxide film of the surface of the substrate 10 is removed.
Next, the buffer layer 11 is grown on the major surface (c-plane) of the substrate 10 at a thickness of 30 nm. Furthermore, an undoped GaN foundation layer 21 of is grown on the buffer layer 11 at a thickness of 3 micrometers (μm). Moreover, an n-type GaN contact layer 22 composed of Si doped GaN is grown on the GaN foundation layer 21 at a thickness of 2 μm.
Next, on the n-type GaN contact layer 22, the stacked body 30 is formed by stacking the first crystal layers 31 composed of InxGa1-xN, and second crystal layers 32 composed of InyGa1-yN, alternatively by 30 periods.
Next, the barrier layers 41 and the well layers 42 are alternatively stacked on the stacked body 30.
Furthermore, a 5 nm thick AlGaN layer having Al composition ratio of 0.003 is grown on the top barrier layer 41, and subsequently, a 10 nm thick Mg doped AlGaN layer 51 having Al composition ratio of 0.1, a 80 nm thick Mg doped p-type GaN layer 52 (Mg concentration is 2×1019/cm3), and an about 10 nm thick high concentration Mg doped GaN layer 53 (Mg concentration is 1×1021/cm3), are stacked thereon. Then, the substrate on which the above-mentioned crystals are grown is taken out from the reactor of MOCVD apparatus.
Next, a part the multilayered film structure is exposed by subjecting the n-type GaN contact layer 22 to dry etching to the middle, and the n-side electrode 70 of Ti/Pt/Au is formed thereon. Furthermore, the transparent electrode 60 composed of ITO (Indium Tin Oxide) is formed on the surface of the high concentration Mg doped GaN layer 53, and the p-side electrode 80 composed of Ni/Au with diameter of, for example, 80 μm is formed in a part of the transparent electrode 60. Thereby, the semiconductor light emitting device 110 is fabricated.
Although, the example using MOCVD (metalorganic chemical vapor deposition) method as a film formation method have been described above, another method, such as for example, a molecular beam epitaxial (MBE) method or a halide vapor phase epitaxial (HVPE) method, is also applicable.
Next, the multiple quantum well structure of the light emitting layer 40 will be described.
As shown in
In the specification, when the plurality of barrier layers 41 (1) to 41 (n) and the plurality of well layers 42 (1) to 42 (n) are referred to without being distinguished, they are referred to as the barrier layers 41 and the well layers 42, respectively.
The plurality of barrier layers 41 have the first barrier layer 41(1), the second barrier layer 41(2), - - , the (n−1)-th barrier layer 41(n−1), and the n-th barrier layer 41(n) from the n-type semiconductor layer 20 towards the p-type semiconductor layer 50.
The plurality of well layers 42 have the first well layer 42(1), the second well layer 42(2), - - , the (n−1)-th well layer 42(n−1), and the n-th well layer 42(n) from the n-type semiconductor layer 20 toward the p-type semiconductor layer 50.
Each of the barrier layer 41 and the well layer 42 contains III group elements. Small amounts of Al or the like may be contained therein.
An nitride semiconductor containing, for example, In, is used for the well layer 42. The band gap energy of the barrier layer 41 is larger than the band gap energy of the well layer 42.
For example, the barrier layer 41 contains InbGa1-bN (b≧0). The thickness of the barrier layer 41 is represented as tb (nanometers). The thickness tb of the barrier layer 41 is, for example, not more than 10 nanometers (nm).
The well layer 42 contains InwGa1-wN (0<w<1). The thickness of the well layer 42 is represented as tw (nanometers). The thickness tw of the well layer 42 is, for example, not less than 2.5 nm and not more than 6 nm.
Here, the band gap of the well layer 42 is lower than the band gap of the barrier layer 41. This is equivalent to b<w, for a case of, for example, a system using InbGa1-bN as the barrier layer 41 and InwGa1-wN as the well layer 42.
In
In
In
In both of the drawings, for the sake of simple explanation, In composition ratios of two well layers 42 and one barrier layer 41 provided between these two well layers 42 are represented.
As represented in
That is, when one barrier layer 41 is divided into a first portion 411 on the side of the n-type semiconductor layer 20 and a second portion 412 on the side of the p-type semiconductor layer 50, In composition ratio averaged by the thickness of the second portion 412 is lower than In composition ratio averaged by the thickness of the first portion 411.
Here, In composition ratio averaged by the thickness of a layer is set to average In composition ratio.
If In composition ratio in the III group elements of the barrier layer 41 decreases toward the first direction D1, the band gap of the barrier layer 41 becomes smaller as the barrier layer 41 is closer to the n-type semiconductor layer 20, and the gap becomes larger as the barrier layer 41 is closer to the p-type semiconductor layer 50. That is, the band gap in one barrier layer 41 becomes larger gradually toward the first direction D1.
In contrast, when one well layer 42 is divided into a third portion 423 on the side of the n-type semiconductor layer 20 and a fourth portion 424 on the side of the p-type semiconductor layer 50, average In composition ratio of the fourth portion 424 is lower than average In composition ratio of the third portion 423.
If In composition ratio in the III group elements of the well layer 42 increases in the first direction D1, the band gap of the well layer 42 becomes larger as the well layer 42 is closer to the n-type semiconductor layer 20, and the gap becomes smaller as the well layer 42 is closer to the p-type semiconductor layer 50. That is, the band gap in one well layer 42 becomes smaller gradually toward the first direction D1.
In order to change the band gap gradually, for a case of, for example, a system using InbGa1-bN as the barrier layer 41 and InwGa1-wN as the well layer 42, In composition ratio b of the barrier layer 41 may be gradually made smaller toward the first direction D1 and In composition ratio w of the well layer 42 may be gradually made larger toward the first direction D1.
As described above, the band structure in the light emitting layer 40 is modulated by decreasing In composition ratio in the III group elements of the barrier layer 41 toward the first direction D1 and increasing In composition ratio in the III group elements of the well layer 42 toward the first direction D1 to thereby optimize the band structure when a voltage is applied to the light emitting layer 40. This suppresses decline in the recombination probability of electrons and holes or the efficiency of carrier injection, thereby achieving improvement in light emission efficiency.
In the profile 190P of In composition ratio of the semiconductor light emitting device 190 according to the reference example shown in
Here, in a quantum well layer composed of a nitride semiconductor having a wurtzite structure grown in the c-axis direction, the internal electric field generated in the layer degrades the light emission recombination and the efficiency of carrier injection of a light emitting device such as LED. This is due to generation of a piezo-electric field by lattice strain derived from mismatch between the lattice constant of the crystal (for example, InGaN) constituting the well layers 42 and 42′, and the lattice constant of the crystal (for example, InGaN with In composition ratio different from In composition ratio of the well layer 42′) constituting the barrier layers 41 and 41′. If the band structure of the light emitting layer 40 is modulated by the piezo-electric field, the recombination probability of electrons and holes and the efficiency of carrier injection are degraded.
In the semiconductor light emitting device 190 according to the reference example, the light emission efficiency is degraded due to the modulation of the band structure by the piezo-electric field.
In contrast, in the semiconductor light emitting device 110 according to the embodiment, as shown in
In addition, in the MQW structure where a plurality of barrier layers 41 and a plurality of well layers 42 are provided, the profile as shown in
Next, a specific example of the barrier layer 41 and the well layer 42 of the semiconductor light emitting device 110 according to the embodiment will be described.
In addition, although the light emitting layer 40 has a plurality of barrier layers 41 and a plurality of well layers 42, for the sake of simple explanation, description will be done for a case in which average In composition ratios in each of the plurality of barrier layers 41 are mutually the same and thicknesses in each of the plurality of barrier layers 41 are also mutually the same. Furthermore, similarly, description will be done for a case in which average In composition ratios in each of the plurality of well layers 42 are mutually the same and thicknesses in each of the plurality of well layers 42 are also mutually the same.
In the semiconductor light emitting device 110 according to the specific example, thickness tb of the barrier layer 41 is made thin being not more than 10 nm. By this procedure, holes injected from the p-type semiconductor layer 50 are efficiently supplied to the light emitting layer 40, thereby, enhancing the light emission efficiency of the semiconductor light emitting device 110. Furthermore, the operating voltage of the semiconductor light emitting device 110 is reduced to a practically demanded level.
In the semiconductor light emitting device 110 according to the embodiment, it is desirable that the thickness tw of the well layer 42 is as thick as possible, preferably, not less than 3 nm, more preferably, not less than 4 nm.
In the semiconductor light emitting device 110 according to the embodiment, when In composition ratio at the interface of one barrier layer 41 on the side of the n-type semiconductor layer 20 is defined as bn, and the In composition ratio at the interface of the barrier layer 41 on the side of the p-type semiconductor layer 50 is defined as bp, it is preferable to make bn not less than 0.02, more preferably about 0.04.
In one barrier layer 41, this In composition ratio b is gradually decreased toward the first direction D1. It is desirable to make In composition ratio by at the interface of the barrier layer 41 on the side of the p-type semiconductor layer 50 to 0.00. As In composition ratio by becomes smaller, improvement in light emission efficiency is achieved without degrading the crystallinity of the barrier layer 41. Here, 0.00 of the In composition ratio by includes the case where In is unintentionally contained in a manufacturing process.
Moreover, it is preferable to make the absolute value (Δb) of the difference between In composition ratio bn and In composition ratio bp, for example, larger than 0.02 and smaller than 0.06, more preferably about 0.04.
In the semiconductor light emitting device 110 according to the embodiment, when In composition ratio at the interface of one well layer 42 (for example, the well layer 42 neighboring the barrier layer 41 on the side of the p-type semiconductor layer 50) on the side of the n-type semiconductor layer 20 is defined as wn, and In composition ratio at the interface of the well layer 42 on the side of the p-type semiconductor layer 50 is defined as wp, if the device 110 is LED that emits blue light, it is preferable to make In composition ratio wn not more than 0.10, more preferably about 0.06.
This In composition ratio w is made to increase gradually toward the first direction D1 in one well layer 42. It is preferable to make In composition ratio wp at the interface of the well layer 42 on the side of the p-type semiconductor layer not less than 0.14, more preferably about 0.18. By modulating the composition ratio in such a manner, the light emission efficiency can be improved without degrading the crystallinity of the well layer 42.
Furthermore, it is preferable to make the absolute value (Δw) of the difference between In composition ratio wn and In composition ratio wp, for example, larger than 0.04 and smaller than 0.12, more preferably not less than 0.06, further preferably about 0.10.
The configuration of complementary energy bands produced by gradual changes of the thickness of In composition ratio of the barrier layer 41 and gradual changes of the thickness of In composition ratio of the well layer 42 described above, realizes high light emission efficiency of the semiconductor light emitting device 110.
In any of the drawings of
In
In the profile 110P of In composition ratio of the semiconductor light emitting device 110 according to the embodiment, for the well layer 42, In composition ratio wn is 0.10 and In composition ratio wp is 0.18, i.e., Δw=0.08, and in the barrier layer 41, In composition ratio by is 0.00 and In composition ratio bn is 0.04, i.e., Δb=0.04. In addition, the thickness tw of the well layer 42 is 3 nm and the thickness tb of the barrier layer 41 is 5 nm.
Furthermore, in the profile 190P of In composition ratio of the semiconductor light emitting device 190 according to the reference example, In composition ratio w of the well layer 42′ is 0.13 and In composition ratio b of the barrier layer 41′ is 0.00. In addition, the thickness tw of the well layer 42′ is 3 nm and the thickness tb of the barrier layer 41 is 5 nm.
As shown in
Especially, significant change appears in the energy band diagram of the valence band represented in
Thereby, as shown in
Hereinafter, results of examination acting as the base for finding out the conditions as mentioned above will be described.
In the examination, a semiconductor light emitting device is configured by changing the configuration of the light emitting layer 40 (the way for modulating the thickness or In composition ratio of the barrier layer 41 and the way for modulating the thickness or In composition ratio of the well layer 42), and the internal quantum efficiencies for the respective cases are compared.
In an semiconductor light emitting device 111 according to the embodiment, the number of the barrier layers 41 and the well layers 42 is eight periods.
In the semiconductor light emitting device 111, In composition ratio bn at the interface of the barrier layer 41 on the side of the n-type semiconductor layer 20 is 0.04, In composition ratio by at the interface of the barrier layer 41 on the side of the p-type semiconductor layer 50 is 0.00, and In composition ratio in the layer changes linearly.
Furthermore, in the semiconductor light emitting device 111, In composition ratio wn at the interface of the well layer 42 on the side of the n-type semiconductor layer 20 is 0.08, In composition ratio wp at the interface of the well layer 42 on the side of the p-type semiconductor layer 50 is 0.18, and In composition ratio in the layer changes linearly.
Moreover, in a semiconductor light emitting device 191 according to the reference example, the number of barrier layers 41′ and well layers 42′ is eight periods. In the semiconductor light emitting device 191 according to the reference example, In composition ratio b of the barrier layer 41′ is constant at 0.00 in the layer (namely, the layer is composed of GaN), and In composition ratio w of the well layer 42′ is constant at 0.13 in the layer (namely, the layer is composed of In0.13Ga0.87N).
In any of the semiconductor light emitting devices 110 and 190, the thickness tb of the barrier layer 41 is a constant value of 5 nm, and the thickness tw of the well layer 42 is a constant value of 3 nm.
In
In
In addition, in
As shown in
In
In
In
In
As shown in
In
In
As represented in
In
In
As represented in
For the semiconductor light emitting device 110 according to the embodiment shown in
In this case, as shown in
From the above-mentioned results, it is understood that the absolute value Δw of the difference in In composition ratio of the well layer 42 is desirable to be greater than 0.04 and smaller than 0.12.
In the semiconductor light emitting device 110 according to the embodiment, In composition ratio of the barrier layer 41 decreases toward the first direction D1, and In composition ratio of the well layer 42 increases toward the first direction D1.
In
The profile of the increase and decrease in In composition ratio shown in
The profile of the increase and decrease in In composition ratio shown in
The profile of the increase and decrease in In composition ratio shown in
The profile of the increase and decrease in In composition ratio shown in
In any of the above-mentioned cases shown in
The profile of increase and decrease in In composition ratio may also be one other than the above-mentioned profiles. Also, a profile constituted by suitably combining the profiles of
In each of
In the example of inclination of In composition ratio shown in
In the example of inclination of In composition ratio shown in
In the example of inclination of In composition ratio shown in
In the example of inclination of In composition ratio shown in
In the example of inclination of In composition ratio shown in
In the example of inclination of In composition ratio shown in
Profile P (f) is a profile of In composition ratio of the semiconductor light emitting device 110 according to the embodiment.
In the example of inclination of In composition ratio shown in
In the example of inclination of In composition ratio shown in
In
In the calculation of internal quantum efficiency, the thickness tw of the barrier layer 41 is set to 5 nm and the thickness tb of the well layer 42 is set to 2.9 nm. Furthermore, In composition ratio of the barrier layer 41 is from 0.00 to 0.04 (the absolute value of the difference Δw=0.04) when In composition ratio of the barrier layer 41 is inclined, and it is assumed that In composition ratio of the well layer 42 is from 0.08 to 0.16 (the absolute value of the difference Δw=0.08) when In composition ratio of the well layer 42 is inclined.
For all cases, 8 barrier layers 41 and 8 well layers 42 are stacked, and all of the 8 barrier layers 41 and 8 well layers 42 are defined to have In composition ratio profiles shown in
As shown in
Here, profile P(e) has also lead to the same internal quantum efficiency as the internal quantum efficiency of profile P (f).n However, like in the profile P(e) shown in
Therefore, profile P (f) of In composition ratio of the semiconductor light emitting device 110 according to the embodiment, which is a profile having a good internal quantum efficiency and good crystallinity, is the optimal one.
Any of the drawings shows simulation results when only the 8th barrier layer 41 of 8 barrier layers 41, which is nearest to the p-type semiconductor layer 50, is made to have inclined In composition ratio. Further, internal quantum efficiencies IQE are simulation results when current with current amount of current 170 A/cm2 is flown into the light emitting layer 40.
According to the simulation results shown in
According to the simulation results shown in
According to the simulation results shown in
According to the simulation results shown in
From the simulation results shown in
Although, the embodiment and the example described above, has described In composition in the III group elements of the barrier layer 41 and the well layer 42, they are also applicable to compositions of other than In.
Further, although the embodiment and the example has described a case in which a light emitting layer 40 has MQW structure, the In composition ratio profiles of the barrier layer 41 and the well layer 42 described above are also applicable to a light emitting layer 40 having SQW (Single Quantum Well) structure.
According to the embodiment, a semiconductor light emitting device having a high light emission efficiency is provided.
In the specification, “nitride semiconductor” shall include semiconductors with all composition ratios in chemical formula represented by of BαInβAlγGa1-α-β-γ (0≦α≦1, 0≦β≦1, 0≦γ≦1, and α+β+γ=1), where composition ratios α, β and γ are changed within each range. Furthermore, semiconductors with the chemical formula further including V group elements other than N (nitrogen) and any of various dopants added for controlling conduction type etc. shall also be included in the “nitride semiconductor”.
As above, the embodiment of the invention has been described with reference to the specific examples. However, the invention is not limited to these specific examples.
For example, even if specific configurations of elements of the semiconductor light emitting device, such as, an n-type semiconductor, a p-type semiconductor, an active layer, a well layer, a barrier layer, an electrode, a substrate, and a buffer layer are variously modified by a person skilled in the art, the modified configurations shall also included in the scope of the invention, as long as the person skilled in the art can implement the invention similarly to achieve the similar effect by suitable selection from a known scope.
Further, combination of two or more elements of each of the specific examples within a technically possible scope, shall also be included in the invention.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2011-224365 | Oct 2011 | JP | national |
This application is a continuation of U.S. application Ser. No. 13/405,565, filed Feb. 27, 2012, which claims the benefit of priority from the prior Japanese Patent Application No. 2011-224365, filed on Oct. 11, 2011, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5684309 | McIntosh et al. | Nov 1997 | A |
6359919 | Ishikawa et al. | Mar 2002 | B1 |
6400742 | Hatakoshi et al. | Jun 2002 | B1 |
6515313 | Ibbetson et al. | Feb 2003 | B1 |
6995389 | Kim et al. | Feb 2006 | B2 |
7291868 | Ando et al. | Nov 2007 | B2 |
7345324 | Bour et al. | Mar 2008 | B2 |
8022388 | Brandes | Sep 2011 | B2 |
8168986 | Nishinaka et al. | May 2012 | B2 |
8476615 | Enya et al. | Jul 2013 | B2 |
8610106 | Shioda et al. | Dec 2013 | B2 |
8642995 | Arena | Feb 2014 | B2 |
9018618 | Lee et al. | Apr 2015 | B1 |
20080273566 | Nishinaka et al. | Nov 2008 | A1 |
20080283822 | Yui | Nov 2008 | A1 |
20080290346 | Shim | Nov 2008 | A1 |
20090065762 | Lee et al. | Mar 2009 | A1 |
20100044674 | Kim | Feb 2010 | A1 |
20110064103 | Ohta et al. | Mar 2011 | A1 |
20110133156 | Won et al. | Jun 2011 | A1 |
20120217471 | Shioda et al. | Aug 2012 | A1 |
20120273796 | Zhao et al. | Nov 2012 | A1 |
20140034978 | Kimura et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
11-8406 | Jan 1999 | JP |
2000-174327 | Jun 2000 | JP |
2000-332364 | Nov 2000 | JP |
2003-46200 | Feb 2003 | JP |
2003-234545 | Aug 2003 | JP |
2005-56973 | Mar 2005 | JP |
2008-235606 | Oct 2008 | JP |
2008-288397 | Nov 2008 | JP |
2009-182347 | Aug 2009 | JP |
2009-302429 | Dec 2009 | JP |
Entry |
---|
Office Action issued Aug. 19, 2015 in Japanese Patent Application No. 2012-277463 (with English language translation). |
Japanese Office Action issued Nov. 22, 2012 in Patent Application No. 2011-224365 with English Translation. |
E. Fred Schubert, “Light Emission Diode”, Jan. 25, 2010, pp. 188-189 and additional page. |
Office Action issued Jul. 27, 2012 in Japanese Patent Application No. 2011-224365 with English language translation, citing documents AO and AP therein. |
Number | Date | Country | |
---|---|---|---|
20150228851 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13405565 | Feb 2012 | US |
Child | 14695812 | US |