This invention relates to semiconductor light emitting devices and methods, and also to devices and methods that include wave mixing modulation laser transistors and techniques.
A part of the background hereof lies in the development of light emitters based on direct bandgap semiconductors such as III-V semiconductors. Such devices, including light emitting diodes and laser diodes, are in widespread commercial use.
Another part of the background hereof lies in the development of wide bandgap semiconductors to achieve high minority carrier injection efficiency in a device known as a heterojunction bipolar transistor (HBT), which was first proposed in 1948 (see e.g. U.S. Pat. No. 2,569,376; see also H. Kroemer, “Theory Of A Wide-Gap Emitter For Transistors” Proceedings Of The IRE, 45, 1535-1544 (1957)). These transistor devices are capable of operation at extremely high speeds. An InP HBT has been demonstrated to exhibit operation at a speed above 500 GHz (see W. Hafez, J. W. Lai, and M. Feng, Elec Lett. 39, 1475 (October 2003). In the parent Application hereof (the above-referenced copending U.S. patent application Ser. No. 11/068,561), very short laser pulses are produced by switching a heterojunction bipolar transistor laser back and forth between a stimulated emission mode that produces laser pulses, and a spontaneous emission mode.
It is among the objects of the present invention to produce heterojunction bipolar transistor lasers and techniques that are capable of advantageous signal processing to obtain a variety of selected optical outputs, including wave mixing modulation laser transistors and techniques.
In the above referenced prior U.S. patent application Ser. Nos. 10/646,457, 10/861,103, 10/861,320 and 11/068,561, (hereinafter, collectively, “the referenced prior applications”), all assigned to the same assignee as the present Application, there is disclosed a direct bandgap heterojunction transistor that exhibits light emission from the base layer. Modulation of the base current produces modulated light emission. [As used herein, “light” means optical radiation that can be within or outside the visible range.] The prior copending applications also disclose three port operation of a light emitting HBT. Both spontaneous light emission and electrical signal output are modulated by a signal applied to the base of the HBT.
Another aspect of the referenced prior applications involves employing stimulated emission to advantage in the base layer of a bipolar transistor (e.g. a bipolar junction transistor (BJT) or a heterojunction bipolar transistor (HBT), in order to enhance the speed of the transistor. Spontaneous emission recombination lifetime is a fundamental limitation of bipolar transistor speed. In an embodiment of the prior copending applications, the base layer of a bipolar transistor is adapted to enhance stimulated emission (or stimulated recombination) to the detriment of spontaneous emission, thereby reducing recombination lifetime and increasing transistor speed. In one embodiment, at least one layer exhibiting quantum size effects, preferably a quantum well or a layer of quantum dots, preferably undoped or lightly doped, is provided in the base layer of a bipolar transistor. At least a portion of the base layer containing the at least one layer exhibiting quantum size effects, is highly doped, and of a wider bandgap material than the at least one layer. The at least one quantum well, or layer of quantum dots, within the higher gap highly doped material, enhances stimulated recombination and reduces radiative recombination lifetime. A two-dimensional electron gas (“2-DEG”) enhances carrier concentration in the quantum well or quantum dot layer, thereby improving mobility in the base region. Improvement in base resistance permits reduction in base thickness, with attendant reduction of base transport time. As described in the prior copending applications, these advantages in speed are applicable in high speed bipolar transistors in which light emission is utilized, and/or in high speed bipolar transistors in which light emission is not utilized. In light emitting bipolar transistor devices, for example heterojunction bipolar transistors of direct bandgap materials, the use of one or more layers exhibiting quantum size effects can also be advantageous in enhancing light emission and customizing the emission wavelength characteristics of the devices.
In a further embodiment disclosed in the referenced prior applications, a semiconductor laser is set forth, including: a heterojunction bipolar transistor structure comprising collector, base, and emitter of direct bandgap semiconductor materials; an optical resonant cavity enclosing at least a portion of the transistor structure; and means for coupling electrical signals with the collector, base, and emitter regions to cause laser emission from the device.
In another embodiment disclosed in the referenced prior applications, a plurality of spaced apart quantum size regions (e.g. quantum wells and/or quantum dots) having different thicknesses are provided in the base region of a bipolar transistor and are used to advantageously promote carrier transport unidirectionally through the base region. As an example, the base region can be provided with several spaced apart quantum size regions of different thicknesses, with the thicknesses of the quantum size regions being graded from thickest near the collector to thinnest near the emitter. An injected electron is captured in a smaller well, tunnels into the next bigger well, and then the next bigger well, and so forth, until, at the biggest well closest to the collector, it tunnels to and relaxes to the lowest state of the biggest well and recombines. The arrangement of wells encourages carrier transport unidirectionally from emitter toward collector. Maximum recombination and light are derived from the biggest well as near as possible to the collector, which is an advantageous position, such as for optical cavity reasons. Carriers diffuse “downhill” in energy; i.e., toward the thicker wells. The asymmetry in well size provides improved directionality and speed of carrier transport. In a light emitting HBT, light emission and device speed are both enhanced.
In accordance with a further embodiment disclosed in the referenced prior applications, and first referred to above, a device and technique are set forth for high speed optical signal generation with an enhanced signal to noise ratio and control of “on” and “off” time durations utilizing the stimulated emission process for the “on” state and spontaneous emission process for the “off” state. The operating point and excitation of the transistor laser are selected to obtain cycles that each have an “on” portion of stimulated emission (laser optical output, and electrical signal output) and an “off” portion of spontaneous emission (without sensible optical output, and electrical noise).
In accordance with an embodiment of the present invention, a method is set forth for producing an optical output, comprising the following steps: providing first and second electrical signals; providing a bipolar light-emitting transistor device that includes collector, base, and emitter regions; providing a collector electrode coupled with said collector region and an emitter electrode coupled with said emitter region, and coupling electrical potentials with respect to said collector and emitter electrodes; providing an optical coupling in optical communication with said base region; providing first and second base electrodes coupled with said base region; and coupling said first and second electrical signals with said first and second base electrodes, respectively, to produce an optical output emitted from said base region and coupled into the optical coupling, said optical output being a function of said first and second electrical signals. In one preferred embodiment of the invention, the step of providing a bipolar light-emitting transistor device comprises providing a laser transistor, and the optical output comprises a plurality of coupled laser beams. In a form of this embodiment, the first electrical signal has a frequency f1, the second electrical signal has a frequency f2, and said optical output includes a frequency component from the group consisting of f1+f2, |f1−f2|, 2f1+f2, 2f2+f1, |2f1−f2|, and |2f2−f1|.
In another embodiment of the invention, the step of providing first and second electrical signals comprises providing first and second controllable oscillators for producing said first and second electrical signals.
In a further embodiment of the invention, the step of providing first and second electrical signals comprises providing a signal generator for producing said first and second electrical signals, and a phase shifter for producing a phase shift between said first and second electrical signals.
Further features and advantages of the invention will become more readily apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The fabrication process sequence included e-beam defined Ti/Pt/Au emitter contacts (165), a self-aligned emitter etch, a self-aligned Ti/Pt/Au base metal deposition, a base-collector etch, and collector metal deposition. A bisbenzocyclobutene (BCB) based etch-back process was employed for “backend” fabrication (i.e., to render the electrode and contact formation on the top of the transistor).
As described in the referenced prior applications, for conventional PN junction diode operation, the recombination process is based on both an electron injected from the n-side and a hole injected from the p-side, which in a bimolecular recombination process can be limited in speed. In the case of the described HBT light emission, the base “hole” concentration is so high that when an electron is injected into the base, it recombines (bimolecular) rapidly. The base current merely re-supplies holes via relaxation to neutralize charge imbalance. For a heterojunction bipolar transistor (HBT), the base current can be classified into seven components, namely: (1) hole injection into the emitter region (iBp); (2) surface recombination current in the exposed extrinsic base region (iBsurf); (3) base ohmic contact recombination current (iBcont); (4) space charge recombination current (iBscr); (5) bulk base non-radiative recombination current due to the Hall-Shockley-Reed process (HSR) (iBHSR); (6) bulk base Auger recombination current (iBAug); and (7) bulk base radiative recombination current (iBrad).
For a relatively efficient HBT with ledge passivation on any exposed base region, the surface recombination current can be reduced significantly. Hence, the base current and recombination lifetime can be approximated as primarily bulk HSR recombination, the Auger process, and radiative recombination. The base current expressed in the following equation (1) is then related to excess minority carriers, Δn, in the neutral base region, the emitter area, AE, the charge, q, and the base recombination lifetime, τn as
iB=iBHSR+iBAUG+iBrad=qAEΔn/τn (1)
The overall base recombination lifetime, τn, is related to the separate recombination components of Hall-Shockley-Read, τHSR, Auger, τAUG, and radiative recombination, τrad, as
τn=(1/τHSR+1/τAUG+1/τrad)−1 (2)
As also described in the referenced prior applications, the light emission intensity Δl in the base is proportional to iBrad and is related to the minority carrier electron with the majority hole over the intrinsic carrier concentration, (np−ni2), in the neutral base region and the rate of radiative recombination process, B, set forth in Equation (3) below, where the hole concentration can be approximated as equal to base dopant concentration, NB. The radiative base current expressed in equation (3) is then related to excess minority carriers, Δn, in the neutral base region, and the base recombination lifetime, τrad as
iBrad=qAEB(np−ni2)=qAEBnp=qAEΔn(BNB)=qAEΔn/τrad (3)
For a high speed HBT, it is easy to predict that the base recombination lifetime can be less than half of the total response delay time. Hence, the optical recombination process in the base should be at least two times faster than the speed of the HBT. In other words, HBT speed, which can be extremely fast, is limiting.
In typical transistor operation, one of the three terminals of a transistor is common to both the input and output circuits. This leads to familiar configurations known as common emitter (CE), common base (CB), and common collector (CC). The common terminal (often ground reference) can be paired with one or the other of the two remaining terminals. Each pair is called a port, and two pairs for any configurations are called a two-port network. The two ports are usually identified as an input port and as an output port. As described in the referenced prior applications, and as illustrated in
As described in the referenced prior applications,
As described in the referenced prior applications, stimulated emission can be employed to advantage in the base layer of a bipolar transistor (e.g. a bipolar junction transistor (BJT) or a heterojunction bipolar transistor (HBT), in order to enhance the speed of the transistor. Spontaneous emission recombination lifetime is a fundamental limitation of bipolar transistor speed. The base layer of a bipolar transistor is adapted to enhance stimulated emission (or stimulated recombination) to the detriment of spontaneous emission, thereby reducing recombination lifetime and increasing transistor speed. In a form of this aspect of the invention, at least one layer exhibiting quantum size effects, preferably a quantum well or a layer of quantum dots, preferably undoped or lightly doped, is provided in the base layer of a bipolar transistor. Preferably, at least a portion of the base layer containing the at least one layer exhibiting quantum size effects, is highly doped, and of a wider bandgap material than said at least one layer. The at least one quantum well, or layer of quantum dots, within the higher gap highly doped material, enhances stimulated recombination and reduces radiative recombination lifetime. A two-dimensional electron gas (“2-DEG”) enhances carrier concentration in the quantum well or quantum dot layer, thereby improving mobility in the base region. Improvement in base resistance permits reduction in base thickness, with attendant reduction of base transport time. These advantages in speed are applicable in high speed bipolar transistors in which light emission is utilized, and/or in high speed bipolar transistors in which light emission is not utilized. In light emitting bipolar transistor devices, for example heterojunction bipolar transistors of direct bandgap materials, the use of one or more layers exhibiting quantum size effects can also be advantageous in enhancing light emission and customizing the emission wavelength characteristics of the devices. Doped or highly doped quantum size regions can also be utilized.
As described in the referenced prior applications, a cavity with reflectors can be utilized laterally (e.g.
The
In the embodiment of
The embodiment of
The embodiment of
Although two base electrodes are illustrated in the foregoing embodiments, it will be understood that other suitable pluralities of base electrodes can be employed with some or all having independent control. In the embodiment of
The embodiments of
The present application is a continuation-in-part of U.S. patent application Ser. No. 11/068,561, filed Feb. 28, 2005 now U.S. Pat. No. 7,286 583, which is, in turn, a continuation-in-part of two U.S. patent applications (Ser. No. 10/861,103, filed Jun. 4, 2004 now U.S. Pat. No. 7,091,082, and Ser. No. 10/861,320, filed Jun. 4, 2004) each of these two last-mentioned Applications being, in turn, a continuation-in-part of U.S. patent application Ser. No. 10/646,457, filed Aug. 22, 2003 now abandoned.
This invention was made with Government support under Contract Number HR 0011-04-1-0034 awarded by the Defense Advanced Research Projects Agency (DARPA). The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
2569347 | Shockley | Sep 1951 | A |
4485391 | Poulain et al. | Nov 1984 | A |
4710936 | Shibata et al. | Dec 1987 | A |
4845535 | Yamanishi et al. | Jul 1989 | A |
4958208 | Tanaka | Sep 1990 | A |
5003366 | Mishima et al. | Mar 1991 | A |
5239550 | Jain | Aug 1993 | A |
5293050 | Chapple-Sokol et al. | Mar 1994 | A |
5334854 | Ono et al. | Aug 1994 | A |
5389804 | Yokoyama et al. | Feb 1995 | A |
5399880 | Chand | Mar 1995 | A |
5414273 | Shimura et al. | May 1995 | A |
5588015 | Yang | Dec 1996 | A |
5684308 | Lovejoy et al. | Nov 1997 | A |
5723872 | Seabaugh et al. | Mar 1998 | A |
5780880 | Enquist | Jul 1998 | A |
5796714 | Chino et al. | Aug 1998 | A |
6337494 | Ryum et al. | Jan 2002 | B1 |
6479844 | Taylor | Nov 2002 | B2 |
6737684 | Takagi et al. | May 2004 | B1 |
20020030195 | Yoshii et al. | Mar 2002 | A1 |
20040094760 | Taylor et al. | May 2004 | A1 |
Number | Date | Country |
---|---|---|
61231788 | Oct 1986 | JP |
Number | Date | Country | |
---|---|---|---|
20080310467 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11068561 | Feb 2005 | US |
Child | 12008796 | US | |
Parent | 10861103 | Jun 2004 | US |
Child | 11068561 | US | |
Parent | 10861320 | Jun 2004 | US |
Child | 10861103 | US | |
Parent | 10646457 | Aug 2003 | US |
Child | 10861320 | US |