Conventional hard x-ray imaging devices are based on vacuum tube photomultipliers, which are bulky—generally having dimensions on the scale of tens of centimeters—and require a high voltage. As a result, the spatial resolution that can be achieved be these hard x-ray imaging devices is limited.
X-ray detectors that utilize a flexible array of photodiodes wrapped around the circumference of a scintillator core are provided. One embodiment of an x-ray detector includes: a crystalline scintillator having a circumference; and a flexible array of flexible avalanche photodiodes wrapped at least partially around the circumference of the crystalline scintillator. In some embodiments of the detectors, the crystalline scintillators are cylindrical and the photodiodes of the photodiode array are disposed on a polymeric substrate. Depending upon the design of the photodiodes, the flexible array of photodiodes may be configured with the substrate facing toward or facing away from the scintillator core.
Other principal features and advantages of the invention will become apparent to those skilled in the art upon review of the following drawings, the detailed description, and the appended claims.
Illustrative embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like numerals denote like elements.
Micrometer-scale photodetectors that utilize a flexible array of photodiodes wrapped around the circumference of a scintillator core are provided. The photodetectors use dense and flexible pixelated arrays of photodiodes wrapped around the circumference of a crystalline scintillator to provide highly compact photodetectors with high spatial, temporal, and energy resolution.
In some embodiments, the photodiodes are avalanche photodiodes, including high-sensitivity single-photon detectors, which enable high detection efficiency and device flexibility. The photodiodes are formed from semiconductor epitaxial structures composed of multiple thin layers of single-crystalline semiconductor materials. The semiconductor layers are sufficiently thin to render the photodiodes mechanically flexible. Typically, the semiconductor layers in the epitaxial structures have thicknesses of 1 μm or less and the photodiodes have thicknesses of 5 μm or less. The flexible photodiode array, including the flexible substrate, can have a total thickness of 5 μm or less, but can also be thicker depending upon the thickness of the substrate. For example, the substrate may have a thickness of 1 μm or less but can be thicker—provided it remains mechanically flexible. By way of illustration, in some embodiments of the flexible photodiode arrays, the substrate has a thickness in the range from about 0.5 μm to about 50 μm, including substrates having a thickness in the range from about 0.5 μm to about 10 μm. The flexible photodiode arrays can be wrapped around highly curved scintillator crystals without significantly reducing the photo-responsivities of the photodiodes.
One embodiment of an avalanche photodiode on a flexible polymeric substrate is shown schematically in
Another embodiment of an avalanche photodiode on a flexible polymeric substrate is shown schematically in
The photodiode arrays can be assembled on a flexible substrate, such as a polymeric film, using semiconductor membrane transfer printing techniques. In the transfer printing techniques, one or more thin layers of semiconductor material are formed on a sacrificial substrate. That substrate is then selectively removed to release the one or more thin layers of semiconductor material (also referred to as semiconductor “nanomembranes” because they are so thin). The released layers are then transferred onto a flexible array substrate. A detailed illustration of the transfer printing process is described in Ma et al., Opt. Mater. Express 3, 1313 (2013). The semiconductor multilayer structures that make up the photodiodes can be fully formed using, for example, epitaxial growth on the sacrificial substrate prior to the release of the fully formed multilayer structures. Alternatively, the multilayer structure can be partially formed by growing one or more, but not all, of the semiconductor layers that make up the structure on the sacrificial substrate prior to release and then forming the remaining semiconductor structures after the release of the one or more semiconductor layers.
The method of forming and transferring partially- or fully-formed photodiode multilayer structures onto a flexible array substrate can be carried out starting with a semiconductor-on-insulator (“SOI”) substrate comprised of a handle wafer, a buried oxide (“BOX”) layer, and a thin layer of single-crystalline semiconductor (a device layer). One or more semiconductor heterostructures can be formed on the device layer via epitaxial growth, lithography, and self-assembly, as illustrated in the Example. These layers can include p-type and n-type contact layers, and the light absorption and pn junction layers that makes up the avalanche region of the diode. Other photodiode device components can also be formed at this stage, including nano-cone (i.e., inverted pyramid) arrays for increased light-trapping and absorption and electrical contacts, which can be formed via standard metallization processes. The photodiode multilayer structures can then be mounted to a temporary host substrate and the handle wafer can be removed using, for example, mechanical grinding and/or etching. The removal of the handle wafer releases the photodiode multilayer structures together with the device layer and buried oxide layer on which they are formed and allows the released structure to be transferred onto and bonded to a flexible array substrate, such as a polymeric film.
A detailed, illustrative process for forming silicon avalanche photodiodes and transfer bonding the photodiodes to a flexible polymeric substrate is provided in the Example. However, other semiconductor materials can be used in the photodiodes, including silicon carbide (SiC), germanium (Ge), and gallium arsenide (GaAs). By way of illustration, methods for forming SiC nanomembranes for use as ultraviolet detectors using transfer printing techniques can be found in Kim et al., J. Mater. Chem. C, 2017, 5, 264.
The photodiodes can be assembled onto the flexible arrays substrate with high densities. By way of illustration, some embodiments of the flexible arrays of flexible photodiodes have a photodiode density of at least 100 photodiodes per mm2 on the array substrate. For example, embodiments of the arrays can have a photodiode density in the range from 100 to 10,000 photodiodes per mm2. Optionally, the photodiodes of the array can be separated by a material that provides optical isolation. Reflective materials, such as metals or photonic crystals can be used for this purpose.
The transfer printing process enables the formation of photodiode arrays that include photodiodes made from different semiconductor materials and that have different absorption and photoemission spectra. By way of illustration, photodiodes comprising silicon nanomembranes and photodiodes comprising silicon carbide nanomembranes can be combined in the same photodiode array. This design enables the array to include different detectors to detect radiation of different wavelengths.
Once formed, the flexible photodiode array can be fixed to the surface of a scintillator crystal. An optically transparent bonding agent, such as a grease, can be used to bond the array to the crystal. Because the photodiode arrays are flexible, they can be wrapped around the circumference of even highly curved scintillator crystals. Thus, the flexible photodiode arrays can be disposed on the surface of a scintillator having a circumference that defines an arc with a low radius of curvature and the array substrate and photodiodes can conform to the curvature of the surface. In some embodiments of the detectors, the scintillator crystal is cylindrical and has a circular circumference with a radius of 100 mm or smaller. This includes cylindrical scintillator crystals having radii of than 50 mm or smaller. For example, the radii of the scintillator crystals can be in the range from 5 mm to 50 mm. However, the crystals need not be cylindrical with a circular circumference. The scintillator crystals may be a slab. For example, the scintillator crystals may take the form of hollow tubes. The use of hollow scintillator crystals may be useful for applications where it is desirable to pass an x-ray radiation source through the detector.
The flexible photodiode array can be disposed on only a portion of the circumference of the crystal or can be wrapped around the full circumference. For example, the flexible photodiode array can be wrapped around at least half the circumference of the scintillator, at least 75% of the circumference, or at least 95% of the circumference.
During operation, incident x-ray radiation from a radiation source is absorbed by the scintillator crystal and is converted into optical photons with energies in the wavelength from ultraviolet to visible regions of the electromagnetic spectrum. (Usually in the range from about 200 nm to about 500 nm.) The optical photons are then absorbed by the light-absorption layers of the photodiodes, which operate near the breakdown voltage under a reverse bias, to generate detectable electrical signals. This is illustrated in
Example 1: This example describes a process for the fabrication of a flexible avalanche photodiode of
To analyze the absorption performance of the flexible photodetector, Fourier Transform Infrared (FTIR) spectroscopy was used to measure the reflectance and transmittance of the device. In order to demonstrate an avalanche photodiode with wide angle detection under different bending conditions, the mesa was defined at a diameter of 500 μm. Then, the finished avalanche photodiode was flipped and mounted onto the PDMS to remove the silicon substrate, as described above. The first step of substrate removal was the grinding process to reduce the substrate thickness from 1 mm to 100 μm. The device was then rinsed with DI water and etched by XeF2 to remove the rest of the silicon substrate. The device was mounted on the PDMS, and then transferred onto the PET substrates.
The photodiode was tested under different bending conditions, controlled by a lab-made stretcher. First, the light signal was fixed and the device was bent to a curvature of 6 mm. The photoresponse did not change in different bending conditions, demonstrating that the device structure was well-suited for use in a flexible working environment. The device was then fixed under a curvature of 6 mm and the light signal was moved. The device exhibited high and uniform performance as a function of the light source angle.
Example 2: This example describes the results of Monte-Carlo simulations of an X-ray detector as described herein. In the simulation, the Monte-Carlo method was used to simulate the emission of 10, 30, and 60 photons, as shown in
The word “illustrative” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “illustrative” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Further, for the purposes of this disclosure and unless otherwise specified, “a” or “an” means “one or more.”
The foregoing description of illustrative embodiments of the invention has been presented for purposes of illustration and of description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The embodiments were chosen and described in order to explain the principles of the invention and as practical applications of the invention to enable one skilled in the art to utilize the invention in various embodiments and with various modifications as suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
The present application is a continuation of U.S. patent application Ser. No. 16/055,577 that was filed Aug. 6, 2018, the entire contents of which are incorporated herein by reference.
This invention was made with government support under DE-NA0002915 awarded by the U.S. Department of Energy. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
Parent | 16055577 | Aug 2018 | US |
Child | 17002836 | US |