This invention relates to a semiconductor memory device and, especially, to an improved open bit line architecture applicable to the semiconductor memory device.
Architecture of semiconductor memory device such as dynamic random access memory (DRAM) device is generally divided into two types, open bit line architecture and folded bit line architecture. According to open bit line architecture, a pair of bit lines connected to a sense amplifier extend over different memory mats (memory cell arrays or memory sub-arrays). In other words, the pair of bit lines extend from the connected sense amplifier in opposite directions. On the other hand, according to folded bit line architecture, a pair of bit lines connected to a sense amplifier extend over a common memory mat. In other words, the pair of bit lines extend from the connected sense amplifier in the same direction.
Open bit line architecture can accommodate disposition of a memory cell at each cross point of bit lines and word lines. In addition, the architecture allows each memory cell to have a size of 6F2. In practice, “F” or feature size is one-half of the bit line pitch. A memory cell having a size of 6F2 is called “6F2 cell”.
Folded bit line architecture does not allow disposition of a memory cell at each cross point of bit lines and word lines. In practice, a minimum realizable size for the architecture is 8F2; a memory cell having a size of 8F2 is called “8F2 cell”. 8F2 cell is further divided into two types, i.e. 8F2 half-pitch cell and 8F2 quarter-pitch cell. In case of 8F2 half-pitch cell, bit line contacts are arranged in a word line direction for each two bit lines. Namely, the distance between the two bit line contacts in the word line direction is 4F. In case of 8F2 quarter-pitch cell, bit line contacts are arranged in a word line direction for each four bit lines. Namely, the distance between the two bit line contacts in the word line direction is 8F.
As apparent from the above, open bit line architecture has an advantage in very close packing of memory mats by the use of 6F2 cells, in comparison with folded bit line architecture.
However, the conventional open bit line architecture requires dummy cells for two memory mats which are positioned at opposite ends in a row of memory mats; hereinafter each of two end mats of the memory mat raw is referred to as an “end memory mat”, while each of the others is referred to as a “normal memory mat.”According to the conventional open bit line architecture, the dummy cells occupy a half area of an end memory mat, as described in, for example, JP-A 2001-135075, the disclosure of which is incorporated herein by reference. In other words, the conventional architecture cannot make effective use of areas of the end memory mats.
Therefore, there is a need for improved open bit line architecture applicable to a semiconductor memory device, which can make effective use of areas of the end memory mats.
According to one aspect of the present invention, a semiconductor memory device comprises: a plurality of normal memory mats arranged along a predetermined direction, each of the normal memory mats comprising a first predetermined number of first type memory cells, each of the first type memory cells having a first size; and two end memory mats arranged so that the normal memory mats are placed between the end memory mats in the predetermined direction, each of the end memory mats comprising a second predetermined number of second type memory cells, each of the second type memory cells having a second size larger than the first size.
An appreciation of the objectives of the present invention and a more complete understanding of its structure may be had by studying the following description of the preferred embodiment and by referring to the accompanying drawings.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
A semiconductor memory device according to a first embodiment of the present invention is a DRAM device with improved open bit line architecture. As shown in
As shown in
Unlike the conventional architecture, the end memory mat 20 of the improved open bit line architecture of this embodiment does not comprise dummy cells. In other words, there is no area for dummy cell in the end memory mat 20 of the present embodiment. Therefore, the first predetermined number is larger than the second predetermined number. Specifically, the first predetermined number is about twice the second predetermined number in this embodiment.
Turning back to
Likewise, sense amplifiers 40 are arranged between the end memory mat 20 and the normal memory mat 10 nearest to the end memory mat 20. For the sake of clarity, the sense amplifier 40 is referred to as “end sense amplifier” while the foregoing sense amplifier 30 is referred to as “normal sense amplifier”, although there is no functional difference therebetween.
To the sense amplifier 40, a pair of bit lines 41, 42 are connected. The bit lines 42, 41 extend over the end memory mat 20 and the normal memory mat 10 nearest thereto, respectively. Hereinafter, the bit line 41 extending over the normal memory mat 10 is referred to as “first bit line”, while the bit line 42 extending over the end memory mat 20 is referred to as “second bit line”.
As illustrated in
More in detail, as shown in
As apparent from the positional relationship between the bit line contacts BCT1 and BCT2, each two bit line contacts sandwich any one of the first line segment 42a or the second line segment 42b. The first and the second line segments 42a, 42b are arranged with a center-to-center distance equal to 2F.
With the above-described novel architecture, some advantages of folded bit line structure are introduced into open bit line structure. As the result, the conventional dummy cells can be omitted, and the size of the end memory mat can be reduced. For example, if each bit line is connected to 6F2 cells of 2n bits (n is integer), the bit line requires, as a plane size, 24 nF2 (=2n×6F2×2) in the conventional end memory mat. According to the present embodiment, if each bit line is connected to 8F2 cells of 2n bits (n is integer), the bit line requires, as a plane size, 16 nF2 (=2n×8F2) in the end memory mat because there are not required areas for dummy cells.
A semiconductor memory device according to a second embodiment of the present invention is a DRAM device with improved open bit line architecture, like the first embodiment. As shown in
In detail, first and second bit lines 41 and 42 extend from the end sense amplifier 40 over the normal memory mat 10 and the end memory mat 25, respectively, as shown in
As apparent from the positional relationship between the bit line contacts BCT3 and BCT3, each two bit line contacts sandwich a combination of three line segments; one first line segment 43a and two second line segment 43b or two first line segment 43a and one second line segment 43b. The first and the second line segments 43a, 43b are arranged with a center-to-center distance equal to 4F. The corresponding pair of the first and the second line segments 43a and 43b sandwich any one of the first and the second line segments 43a and 43b which constitute another pair.
In this embodiment, the conventional dummy cells can be omitted, and the size of the end memory mat can be reduced. For example, according to the present embodiment, if each bit line is connected to 8F2 cells of 2n bits (n is integer), the bit line requires, as a plane size, 16 nF2 (=2n×8F2) in the end memory mat because there is not required dummy cells.
Although it is described that one pair of bit lines are connected to one sense amplifier, a plurality of pairs of bit lines may be connected to one sense amplifier.
While there has been described what is believed to be the preferred embodiment of the invention, those skilled in the art will recognize that other and further modifications may be made thereto without departing from the sprit of the invention, and it is intended to claim all such embodiments that fall within the true scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2005-182693 | Jun 2005 | JP | national |