Embodiments relate to a semiconductor device and, more particularly, to a semiconductor memory device with improved integration density.
Semiconductor devices are widely used in an electronic industry because of their small sizes, multi-functional characteristics, and/or low manufacture costs. Data storage devices among the semiconductor devices may store logical data. The data storage devices have been highly integrated with the development of the electronic industry. Thus, widths of elements or components of the data storage devices have been reduced.
In addition, high reliability of the data storage devices is required with the high integration of the data storage devices. However, the reliability of the data storage devices may be deteriorated by the high integration. Thus, various researches have been carried out to improve the reliability of the data storage devices.
It is an aspect to provide a semiconductor memory device with improved integration density.
According to an aspect of one or more embodiments, there is provided a semiconductor memory device comprising a substrate, a first active pattern on the substrate, a gate electrode intersecting a channel region of the first active pattern, a first insulating layer covering the first active pattern and the gate electrode, a contact penetrating the first insulating layer so as to be electrically connected to a first source/drain region of the first active pattern, and a second active pattern on the first insulating layer. A channel region of the second active pattern may vertically overlap with the contact.
According to an aspect of one or more embodiments, there is provided a semiconductor memory device comprising a substrate, a first active pattern on the substrate, a first device isolation layer covering a sidewall of the first active pattern, a gate electrode and a capacitor electrode provided on the first active pattern and the first device isolation layer, respectively, an insulating layer covering the first active pattern, the gate electrode, and the capacitor electrode, a contact penetrating the insulating layer so as to be electrically connected to the first active pattern, the contact provided between the gate electrode and the capacitor electrode, and a second active pattern on the contact.
According to an aspect of one or more embodiments, there is provided a semiconductor memory device comprising a substrate, a first transistor on the substrate, a first word line connected to a gate of the first transistor, a first bit line connected to a first source/drain of the first transistor, a second transistor vertically stacked on the first transistor, a storage node vertically connecting a second source/drain of the first transistor and a gate of the second transistor, a second bit line connected to a first source/drain of the second transistor, and a second word line connected to a second source/drain of the second transistor.
Various embodiments will become more apparent in view of the attached drawings and accompanying detailed description, in which:
Referring to
One memory cell MC may be disposed between the first word line WL1 and the second word line WL2 and between the first bit line BL1 and the second bit line BL2. Each of the memory cells MC may include a first transistor TR1, a second transistor TR2, and a capacitor CAP. The first transistor TR1 may be a writing transistor, and the second transistor TR2 may be a reading transistor. In other words, the memory cell MC according to the embodiment shown in
In some embodiments, a source (or drain) of the first transistor TR1 may be connected to the first bit line BL1, and a gate of the first transistor TR1 may be connected to the first word line WL1. A source (or drain) of the second transistor TR2 may be connected to the second bit line BL2, and a drain (or source) of the second transistor TR2 may be connected to the second word line WL2. A drain (or source) of the first transistor TR1 may be connected to a gate of the second transistor TR2 through a storage node SN. A first electrode of the capacitor CAP may be connected to the storage node SN, and a second electrode of the capacitor CAP may be connected to the capacitor electrode line CEL.
Referring to
A first insulating layer 110 may be provided on the substrate 100. First active patterns AP1 may be provided on the first insulating layer 110. Each of the first active patterns AP1 may extend in the third direction D3. A long axis of each of the first active patterns AP1 may be parallel to the third direction D3. The first active patterns AP1 may be two-dimensionally arranged in the first direction D1 and the second direction D2. Each of the memory cells MC may include one of the first active patterns AP1. For example, the first active pattern AP1 of the first memory cell MC1 may be spaced apart from the first active pattern AP1 of the second memory cell MC2 in the third direction D3, as shown in
The first active pattern AP1 may include a first source/drain region SD1, a second source/drain region SD2, and a channel region CH between the first and second source/drain regions SD1 and SD2. The first active pattern AP1 may have a first surface SF1 and a second surface SF2 opposite to the first surface SF1. The second surface SF2 of the first active pattern AP1 may face the substrate 100. The first active pattern AP1 may include an amorphous oxide semiconductor (AOS). The first active pattern AP1 may include a compound of oxygen (O) and at least two metals selected from a group consisting of zinc (Zn), indium (In), gallium (Ga), and tin (Sn). For example, the first active pattern AP1 may include indium gallium zinc oxide (IGZO) or indium tin zinc oxide (ITZO).
A first device isolation layer ST1 may be provided between the first active patterns AP1. The first device isolation layer ST1 may cover a sidewall of each of the first active patterns AP1. The first active patterns AP1 may be spaced apart from the substrate 100 with the first insulating layer 110 interposed therebetween. The first active patterns AP1 may be spaced apart from each other with the first device isolation layer ST1 interposed therebetween. The first surface SF1 of the first active pattern AP1 may be substantially coplanar with a top surface of the first device isolation layer ST1. For example, the first device isolation layer ST1 may include a silicon oxide layer.
In some embodiments, the first insulating layer 110 may directly cover the top surface of the substrate 100. For example, the substrate 100 and the first insulating layer 110 may be a portion of a silicon-on-insulator (SOI) substrate. In certain embodiments, logic transistors and interconnection lines constituting a logic circuit may be formed on the substrate 100 (see
Gate electrodes GE may be provided on the first surfaces SF1 of the first active patterns AP1. Capacitor electrodes CGE may be provided on the top surface of the first device isolation layer ST1. The gate electrodes GE and the capacitor electrodes CGE may extend in the second direction D2 in parallel to each other, as shown in
The gate electrode GE may cross over the channel region CH of the first active pattern AP1. A first gate dielectric layer GI1 may be disposed between the gate electrode GE and the first active pattern AP1 and between the gate electrode GE and the first device isolation layer ST1. The first gate dielectric layer GI1 may extend in the second direction D2 along a bottom surface of the gate electrode GE.
For example, the first active pattern AP1 and the gate electrode GE of the first memory cell MC1 may constitute the first transistor TR1 of the memory cell MC described above with reference to
The capacitor electrode CGE may cross over the first device isolation layer ST1 between the first active patterns AP1. The capacitor electrode CGE may be spaced apart from the first active patterns AP1. In some embodiments, the first gate dielectric layer GI1 may also be disposed between the capacitor electrode CGE and the first device isolation layer ST1. The first gate dielectric layer GI1 may extend in the second direction D2 along a bottom surface of the capacitor electrode CGE. In certain embodiments, the first gate dielectric layer GI1 between the capacitor electrode CGE and the first device isolation layer ST1 may be omitted.
The gate electrode GE may have a first width W1 in the first direction D1, as shown in
In some embodiments, the gate electrode GE and the capacitor electrode CGE may include the same conductive material. For example, the conductive material may include at least one of a conductive metal nitride (e.g., titanium nitride or tantalum nitride) or a metal material (e.g., titanium, tantalum, tungsten, copper, or aluminum). The first gate dielectric layer GI1 may include a silicon oxide layer, a silicon nitride layer, a silicon oxynitride layer, and/or a high-k dielectric layer. For example, the high-k dielectric layer may include hafnium oxide, hafnium-silicon oxide, lanthanum oxide, zirconium oxide, zirconium-silicon oxide, tantalum oxide, titanium oxide, barium-strontium-titanium oxide, barium-titanium oxide, strontium-titanium oxide, lithium oxide, aluminum oxide, lead-scandium-tantalum oxide, lead-zinc niobate, or any combination thereof.
A second insulating layer 120 may be provided on the gate electrodes GE and the capacitor electrodes CGE. Lower conductive lines LCL may be provided on the second insulating layer 120. The lower conductive lines LCL may extend in the first direction D1 in parallel to each other, as shown in
First vias VI1 may penetrate the second insulating layer 120 so as to be connected to the second source/drain regions SD2 of the first active patterns AP1, respectively. The lower conductive line LCL may be disposed on the first via VI1 and may be connected to the first via VI1. The lower conductive line LCL may be electrically connected to the second source/drain region SD2 of the first active pattern AP1 through the first via VI1. The lower conductive line LCL may be the first bit line BL1 connected to the source (or drain) of the first transistor TR1 of
A third insulating layer 130 may be provided on the second insulating layer 120 to cover the lower conductive lines LCL. Contacts CNT may penetrate the third and second insulating layers 130 and 120 so as to be connected to the first source/drain regions SD1 of the first active patterns AP1, respectively. Each of the first vias VI1, the lower conductive lines LCL and the contacts CNT may include a conductive metal nitride and/or a metal material.
The contact CNT may be adjacent to the capacitor electrode CGE, as best seen in
Second active patterns AP2 may be provided on the third insulating layer 130. Each of the second active patterns AP2 may extend in the third direction D3, as shown in
The second active pattern AP2 may include a first source/drain region SD1, a second source/drain region SD2, and a channel region CH between the first and second source/drain regions SD1 and SD2. The second active pattern AP2 may have a first surface SF1 and a second surface SF2 opposite to the first surface SF1. The second surface SF2 of the second active pattern AP2 may face the substrate 100. The second active pattern AP2 may include an amorphous oxide semiconductor. For example, the second active pattern AP2 may include indium gallium zinc oxide (IGZO) or indium tin zinc oxide (ITZO).
A second device isolation layer ST2 may be provided between the second active patterns AP2. The second device isolation layer ST2 may cover a sidewall of each of the second active patterns AP2. The second active patterns AP2 may be spaced apart from each other with the second device isolation layer ST2 interposed therebetween. The first surface SF1 of the second active pattern AP2 may be substantially coplanar with a top surface of the second device isolation layer ST2. For example, the second device isolation layer ST2 may include a silicon oxide layer.
The first active pattern AP1 may be offset from the second active pattern AP2 disposed thereon in the third direction D3, as best seen in
The channel region CH of the second active pattern AP2 may vertically overlap with the contact CNT. The second surface SF2 of the second active pattern AP2 may face the contact CNT. A second gate dielectric layer GI2 may be disposed between the second surface SF2 of the second active pattern AP2 and the contact CNT. For example, the second gate dielectric layer GI2 may include a silicon oxide layer, a silicon nitride layer, a silicon oxynitride layer, and/or a high-k dielectric layer. The contact CNT may function as a gate of a transistor including the second active pattern AP2.
For example, the contact CNT and the second active pattern AP2 of the first memory cell MC1 may constitute the second transistor TR2 of the memory cell MC described above with reference to
First upper conductive lines UCL1 may be provided on the first surfaces SF1 of the second active patterns AP2. The first upper conductive lines UCL1 may extend in the second direction D2 in parallel to each other, as best seen in
A fourth insulating layer 140 may be provided on the first upper conductive lines UCL1. Second upper conductive lines UCL2 may be provided on the fourth insulating layer 140. The second upper conductive lines UCL2 may extend in the first direction D1 in parallel to each other, as best seen in
Second vias VI2 may penetrate the fourth insulating layer 140 so as to be connected to the second source/drain regions SD2 of the second active patterns AP2, respectively. The second upper conductive line UCL2 may be disposed on the second via VI2 and may be connected to the second via VI2. The second upper conductive line UCL2 may be electrically connected to the second source/drain region SD2 of the second active pattern AP2 through the second via VI2. The second upper conductive line UCL2 may be the second bit line BL2 connected to the source (or drain) of the second transistor TR2 of
The semiconductor memory device according to some embodiments may realize the memory cell of the 2T1C DRAM device by using a first thin film transistor and a second thin film transistor which are vertically stacked. Since the first thin film transistor and the second thin film transistor partially overlap with each other, an area of the memory cell of the 2T1C DRAM device may be reduced. As a result, an integration density of the semiconductor memory device may be improved.
Referring to
A first device isolation layer ST1 filling a space between the first active patterns AP1 may be formed on the first insulating layer 110. The formation of the first device isolation layer ST1 may include forming an insulating layer on the first insulating layer 110 and the first active patterns AP1, and performing a planarization process on the insulating layer until the first surfaces SF1 of the first active patterns AP1 are exposed.
Referring to
A second mold layer ML2 and a first mold pattern MP1 on the second mold layer ML2 may be formed on the electrode layer EL. The formation of the first mold pattern MP1 may include forming a first mold layer on the second mold layer ML2, and patterning the first mold layer using a photolithography process. The first mold pattern MP1 may have a line shape extending in the second direction D2.
Referring to
Referring to
Referring to
Referring to
The gate electrodes GE and the capacitor electrodes CGE may be alternately arranged in the first direction D1 at a pitch P1. In some embodiments, the pitch P1 may be a constant pitch. The gate electrode GE may have a first width W1 equal to the third width W3 of the second spacer SP2. The capacitor electrode CGE may have a second width W2 equal to the third width W3 of the second spacer SP2.
According to the embodiments described above, four electrodes GE and CGE may be formed using the first mold pattern MP1 as a mandrel. In other words, the four electrodes GE and CGE may be formed from one first mold pattern MP1. However, this is only an example, and the number of electrodes GE and CGE may be less than or more than four.
The capacitor electrodes CGE may be formed together by the process of forming the gate electrodes GE. The capacitor electrode CGE may constitute a capacitor CAP together with a contact CNT and a second insulating layer 120, which will be formed later. An additional process for forming the capacitor may not be required in the manufacturing method according to some embodiments, and thus manufacturing processes may be simplified and an area of the memory cell may be reduced.
Referring to
Lower conductive lines LCL may be formed on the second insulating layer 120. The lower conductive lines LCL may extend in the first direction D1 in parallel to each other. The lower conductive lines LCL may be arranged in the second direction D2. The lower conductive line LCL may be connected to the first via VI1. For example, the formation of the lower conductive lines LCL may be performed using a similar method to the method of forming the gate electrodes GE and the capacitor electrodes CGE, described above.
Referring to
For example, the formation of the contacts CNT may include patterning the third and second insulating layers 130 and 120 to form contact holes exposing the first source/drain regions SD1 of the first active patterns AP1, and filling the contact holes with a conductive material. The formation of the second gate dielectric layer GI2 may include recessing an upper portion of the contact CNT and filling the recessed region with a dielectric layer.
Referring to
The first active pattern AP1 may be offset from the second active pattern AP2 disposed thereon in the third direction D3. Thus, the channel region CH of the second active pattern AP2 may vertically overlap with the contact CNT. The second surface SF2 of the second active pattern AP2 may face the contact CNT.
A second device isolation layer ST2 filling a space between the second active patterns AP2 may be formed on the third insulating layer 130. The formation of the second device isolation layer ST2 may include forming an insulating layer on the third insulating layer 130 and the second active patterns AP2, and performing a planarization process on the insulating layer until the first surfaces SF1 of the second active patterns AP2 are exposed.
Referring again to
A fourth insulating layer 140 may be formed to cover the first upper conductive lines UCL1. Second vias VI2 may be formed to penetrate the fourth insulating layer 140. The second vias VI2 may be connected to the second source/drain regions SD2 of the second active patterns AP2, respectively. Second upper conductive lines UCL2 may be formed on the fourth insulating layer 140. The second upper conductive lines UCL2 may extend in the first direction D1 in parallel to each other. The second upper conductive lines UCL2 may be arranged in the second direction D2. The second upper conductive line UCL2 may be connected to the second via VI2.
Referring to
An active contact AC may penetrate the first sub-insulating layer 110a so as to be connected to a source/drain pattern SP of the logic transistor LTR. A gate contact GC may penetrate the first sub-insulating layer 110a so as to be connected to a gate pattern LGP of the logic transistor LTR.
A first interconnection layer may be provided in the second sub-insulating layer 110b disposed on the first sub-insulating layer 110a. The first interconnection layer may include a plurality of first interconnection lines INL1. At least one of the first interconnection lines INL1 may be electrically connected to the active contact AC. For example the at least one of the first interconnection lines INL1 may be electrically connected to the active contact AC by a through via. At least one of the first interconnection lines INL1 may be electrically connected to the gate contact GC. For example, the least one of the first interconnection lines INL1 may be electrically connected to the gate contact GC by a through via.
A second interconnection layer may be provided in the third sub-insulating layer 110c disposed on the second sub-insulating layer 110b. The second interconnection layer may include a plurality of second interconnection lines INL2. At least one of the second interconnection lines INL2 may be electrically connected to the first interconnection line INL1. The memory cells MC described with reference to
Referring to
The first gate dielectric layer GI1 may conformally cover an inner surface of the recess RS. The gate electrode GE may be spaced apart from the inner surface of the recess RS with the first gate dielectric layer GI1 interposed therebetween, as shown in
The capacitor electrodes CGE may be provided on the first device isolation layer ST1. A level of a bottom surface of the capacitor electrode CGE may be the same as or higher than a level of a top surface of the gate electrode GE. The first gate dielectric layer GI1 between the capacitor electrode CGE and the first device isolation layer ST1 may be omitted, as shown in
The semiconductor memory device according to various embodiments described herein may realize the memory cell of the 2T1C DRAM device by using the first transistor and the second transistor which are vertically stacked. Thus, the area of the memory cell may be reduced, and the integration density of the semiconductor memory device may be improved.
While the inventive concepts have been described with reference to various example embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirits and scopes of the inventive concepts. Therefore, it should be understood that the above embodiments are not limiting, but illustrative. Thus, the scopes of the inventive concepts are to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing description.
Number | Date | Country | Kind |
---|---|---|---|
10-2018-0133421 | Nov 2018 | KR | national |
This is a continuation of U.S. application Ser. No. 16/442,769, filed Jun. 17, 2019, which claims priority under 35 U.S.C. § 119 from Korean Patent Application No. 10-2018-0133421, filed on Nov. 2, 2018, in the Korean Intellectual Property Office, the disclosures of each of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
8378499 | Hasunuma | Feb 2013 | B2 |
9331071 | Sunamura et al. | May 2016 | B2 |
9806082 | Tanaka et al. | Oct 2017 | B2 |
9990997 | Matsuzaki et al. | Jun 2018 | B2 |
10032777 | Chen et al. | Jul 2018 | B1 |
20080111198 | Jang | May 2008 | A1 |
20090250735 | Asao | Oct 2009 | A1 |
20100213458 | Prall | Aug 2010 | A1 |
20100221889 | Youn | Sep 2010 | A1 |
20150255490 | Miyairi | Sep 2015 | A1 |
20160049406 | Sandhu | Feb 2016 | A1 |
20170154909 | Ishizu | Jun 2017 | A1 |
20180083049 | Sakata et al. | Mar 2018 | A1 |
Entry |
---|
Cheng et al., “A Logic-compatible Embedded DRAM Utilizing Common-body Toggled Capacitive Cross-talk”, Journal of Semiconductor Technology and Science, vol. 16, No. 6, Dec. 2016, pp. 781-792, 13 pages total. |
Number | Date | Country | |
---|---|---|---|
20210257369 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16442769 | Jun 2019 | US |
Child | 17313570 | US |