The present teachings relate generally to high-frequency radiators and, more particularly, to microstrip patch antennas.
Antennas have been integrated on to silicon wafers. Examples of different classes of doing so include:
At least one problem associated with such antennas is the coupling loss behavior. As the operating frequency approaches the mm-wave and THz range, coupling loss at the interface to conventional antennas becomes more critical, especially when additional components are required for functions such as tuning and impedance matching. Other problems include trying to make an antenna dynamically tunable. As the frequency increases to mm-waves and THz frequencies, the potential antenna tenability becomes vital for proper impedance matching.
What is needed is a better antenna to solve these and other problems.
The needs set forth herein as well as further and other needs and advantages are addressed by the present embodiments, which illustrate solutions and advantages described below.
The system of the present embodiment includes, but is not limited to, a patch antenna for microwave radiation comprising a wide semiconductor pn-junction having the depletion region as the natural resonator volume.
Other embodiments are described in detail below and are also part of the present teachings.
For a better understanding of the present embodiments, together with other and further aspects thereof, reference is made to the accompanying drawings and detailed description and its scope will be pointed out in the appended claims.
a-9e show, for one embodiment of these teachings, a)—Doping profiles; b)—free carrier concentrations; c)—electric potential, d)—charge density, and e)—electric field for the pin junction with ND=NA=4×1016 cm−3, and the i-layer width of 200 μm; The bias voltage is −1000V;
a-10e show, for the same embodiment are in
The present teachings are described more fully hereinafter with reference to the accompanying drawings, in which the present embodiments are shown. The following description is presented for illustrative purposes only and the present teachings should not be limited to these embodiments.
As discussed above, the existing classes of antennas integrated into silicon wafers have many problems. These include coupling loss behavior, which becomes more critical as the operating frequency approaches the mm-wave and THz range, as well as the ability to dynamically tune the antenna, which is vital for the proper impedance matching as the frequency increases to mm-waves and THz frequencies. These existing classes, however, do not suggest the use of a semiconductor pn junction as an antenna type.
The present teachings relate to a semiconductor patch antenna. This may be used for microwave radiation, in one instance from about 50 GHz to about 1 THz, although not limited thereto. The semiconductor patch antenna uses non-traditional highly-doped semiconductor pin junction-based (in some embodiments, pn junction based) transmission lines instead of a traditional metal transmission lines. Embodiments that do not include a metal ground plane and/or a metal plate are within the scope of these teachings.
The resonating volume of the semiconductor patch antenna is the depletion region of the pin-junction (in some embodiments, the pn junction) with the low carrier concentration, e.g., the low loss tangent and a low absorption. The antenna is integrated into a silicon (“Si”) or Gallium Arsenide (“GaAs”) wafer, although not limited thereto. A semiconductor patch antenna so constructed may be used at GHz frequencies, for mm waves, or for THz radiation, although not limited thereto.
The semiconductor composition includes the p- and n-doping specimens with doping concentrations (both donor and acceptor) on the order of approximately 1018-1020 cm−3, although not limited thereto. The semiconductor patch antenna may use the pin-junction, or the pn-junction with a thin buried oxide layer or, in some embodiments, the pn-junction, although not limited thereto. In the embodiments analyzed to date, semiconductor patch antennas utilizing the pin junction exhibit higher efficiency, which is a desirable characteristic.
Referring now to
Since the depletion region is free of charge carriers at zero and negative bias voltages, it possesses a very low conductivity (and a low loss tangent) on the order of intrinsic silicon. At the same time, it has a certain static depletion capacitance per unit length 103, much as the parallel-plate transmission line has a distributed static capacitance.
A further aspect of the semiconductor patch antenna of these teachings is use of the wide depletion region at the pn-junction 100, or, similarly, of a pin-junction, as a transmission line. The depletion region has two necessary ingredients of a transmission line: 1) a lengthy carrier-free region between two high carrier-concentration zones (conductors); and, 2) an appreciable depletion capacitance per unit length 103. It is noted that the static (immovable doping ions) charges also exist along that transmission line. Since the charges are fixed in the lattice, this does not preclude RF transmission line operation.
Referring now to
The semiconductor patch antenna of these teachings replaces the upper metal patch (of conventional patch antennas) 202 (shown in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The tunability of the semiconductor patch antenna of these teachings is enabled by the changes in the channel width (or in the depletion layer width) due to the applied voltage. These changes may reach up to 100% and more for an embodiment utilizing a pn-junction. For wide channels of the type p+in+ (“pin”) or p+iSiO2in+ (pn-junction with a thin buried oxide layer) the tunability approximately reduces by the factor of approximately d/D where d is the (effective) depletion layer width and D is the thickness of the intermediate intrinsic layer and/or the passivation layer. The depletion layer d still exists at the p+i and in+junctions; it is affected by the applied bias voltages similar to the ordinary pn-junction depletion layer. In one embodiment utilizing the pin junction, the estimated resulting resonant frequency change is on the order of 0.1%. Although this number appears to be very small, it may be quite sufficient for fine antenna tuning in the band 50 GHz-1 THz.
Referring now to
Referring now to
Some exemplary embodiments of these teachings, these teachings not being limited only to those exemplary embodiments, are described herein below.
A Pin-Junction Antenna
In one embodiment, the channel width is extended by either using the pin-junction instead of the pn-junction, or a separating buried oxide (SiO2) layer between p- and n-doped regions. In terms of the extended channel width, the pin junction embodiment has more adaptability than the pn-junction embodiment. The typical pin-junction includes a layer of intrinsic (or compensated) Si between p- and n-doped regions. The built-in voltage is again given by
When the intrinsic layer is sufficient thickness, and the doping concentrations are sufficiently high, the particular value of the negative bias voltage has led us influence on the width of the depletion region, which now includes the i-region, and two small carrier-free regions on either side of the pin-junction. This is in contrast to the pn-junction where the applied bias voltage largely influences the width of the depletion region.
As an example,
Approximation of the electric field region described in B. R. Chawla and H. K. Gummel, “Transition region capacitance of diffused p-n junctions,” IEEE Trans. on Electron Devices, vol. ED-18, no. 3, March 1971, pp. 178-195, which is incorporated by reference herein in its entirety, was used to model the pin-junction.
The (large) reverse-bias voltage slightly widens the depletion region (the i-region) as seen in
However, a positive bias voltage leads to a flood of free carriers into the intrinsic region so that this region becomes conducting, quite similar to the depletion region of the pn-junction. As an example,
The efficiency was calculated for the square patch (W=L). The antenna height is exactly the width of the i-Si (or weakly-doped Si) region (370 μm). The minimum antenna thickness and is 370 μm plus twice the skin layer width from either side. The calculations are assembled in a MATLAB script. From the results of the calculations, it can be concluded that, for the embodiment presentable, the pin-junction may serve as a patch antenna starting with frequencies f≧50 GHz (the efficiency is greater than 50%). At 50 GHz, the minimum antenna thickness is 0.4 mm. To move down to lower frequencies (e.g. to the X-band), the antenna thickness should be larger. The calculations also indicate that the Si pin-junction can be used in the 60 GHz band and in the low-THz range.
Wafer design: A series of 100 m antenna wafers have been used with semiconductor patch antennas. Silicon wafers may have, although not limited thereto, the parameters listed in Table 1, below, with estimated carrier concentrations:
The built-in voltage of the junction is given by (the abrupt-junction approximation):
The depletion layer width W is given by:
Thus, the junction has a wide depletion layer with ∈r=12 (intrinsic Si). The oxide layer is approximately 100 times thinner and will be ignored in the antenna design below.
Antenna design and measurement: An example, but not limited thereto, of a semiconductor patch antenna design without a ground plane is listed in Table 2, below. Here, a number of rectangular patches were cut with a diamond saw. The patch resonates along its longer dimension. The semiconductor patch antenna was designed for the S-band as follows, although not limited thereto:
Referring now to
Referring now to
The resonance is highly repetitive and has been established for four consecutive measurements with a resonant frequency deviation of about 1%. One major source for deviation is the string holder. The S11 measured for the holder without the antenna shows nearly the same amount of loss in the flat region of S11.
The embodiments shown above do not include a metal ground plane and/or a metal plate.
Although embodiments disclosed above utilizes a silicon (“Si”) or Gallium Arsenide wafer, this is not a limitation of these teachings. Exemplary materials utilized for the semiconductor material, either n-doped or p-doped or intrinsic, include, but are not limited to, Silicon (“Si)”, Germanium (“Ge”), Gallium Arsenide (“GaAs”), Indium Gallium Arsenide (“InGaAs”), Indium Phosphide (“InP”), Aluminum Gallium Arsenide (“AlGaAs”), Silicon Carbide (“SiC”), Gallium Nitride (“GaN”), Gallium Antiminide (“GaSb”), Gallium Phosphide (“GaP”), Indium Gallium Phosphide (“InGaP”), Aluminum Gallium Phosphide (“AlGaP”), Aluminum Gallium Nitride (“AlGaN”), Indium Arsenide (“InAs”), Indium Aluminum Arsenide (“InAlAs”), Silicon Germanium (“SiGe”), Diamond (“C” (diamond)), Aluminum Nitride (“AlN”), Cadmium Telluride (“CdTe”), Mercury Cadmium Telluride (“HgCdTe”), Indium Antiminide (“InSb”).
For the purposes of describing and defining the present invention it is noted that the term “substantially” is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” is also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
While the present teachings have been described above in terms of specific embodiments, it is to be understood that they are not limited to these disclosed embodiments. Many modifications and other embodiments will come to mind to those skilled in the art to which this pertains, and which are intended to be and are covered by this disclosure. It is intended that the scope should be determined by proper interpretation and construction of the disclosure, as understood by those of skill in the art relying upon the disclosure in this specification and the attached drawings and the appended claims.
The present application claims priority to U.S. Provisional Application No. 61/168,119 filed Apr. 9, 2009 entitled SEMICONDUCTOR PATCH ANTENNA, which is incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
4780724 | Sharma et al. | Oct 1988 | A |
7612728 | Heinrich et al. | Nov 2009 | B2 |
7649496 | Silver et al. | Jan 2010 | B1 |
7964932 | Silver et al. | Jun 2011 | B2 |
20090026579 | Silver et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
1793451 | Jun 2007 | EP |
Number | Date | Country | |
---|---|---|---|
20100258919 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
61168119 | Apr 2009 | US |