1. Field of the Invention
The invention relates generally to a semiconductor structure and method of manufacturing and more particularly to an on-chip PIN diode working at millimeter wave range and a method of manufacturing the same using a dual epitaxial process.
2. Background Description
High frequency applications such as, millimeter wave devices (f30 GHz), require multifunction circuits with different types of devices for optimum operation. For example, in advanced microwave devices, transmitter circuits of communication and radar systems use heterojunction bipolar transistors (HBTs). But, in this same device, receiver circuits comprise III-V material based field effect transistors (FETs), such as high electron mobility transistors (HEMTs), to minimize the noise figure and therefore improve the receiver sensitivity. The performance of such multifunction circuit devices can be reduced if all of the subsystem functions can be accomplished with the use of a common device process technique to integrate all of the relevant advanced devices onto the same substrate.
In currently known manufacturing processes, high-speed three terminal devices and microwave diodes such as PIN diodes, etc. are fabricated by epitaxial growth techniques on high resistive or insulating substrates. In one conventional process, conventional on-chip PIN diodes are processed by sharing the NPN C-B structures. However, this poses problems with the overall performance of the device. For example, known processing using a single wafer technology cannot provided a thin film collector for a high performance NPN (bipolar) device and a thick film collector for high breakdown voltage devices.
By way of one specific example, it is known to implant an HBT subcollector region of a first conductivity in a substrate at a first surface. A PIN diode region of a first conductivity is then implanted in the substrate at the first surface and spaced from the HBT subcollector region. Next, an HBT base/PIN diode layer of a second conductivity is selectively grown on the i-layer over the HBT subcollector region and the PIN diode region. Then, an HBT emitter layer on the first conductivity is selectively grown over the HBT base/PIN diode layer. An isolation region is then made by polysilicon filled deep trench and shallow trench at the boundary between the HBT subcollector region and the PIN diode region, with the deep trench isolation region extending into the substrate. Next, the HBT emitter layer is etched away over the PIN diode region, and conductive contacts are formed to the HBT emitter layer, HBT base layer, HBT subcollector region, PIN diode anode region and PIN diode cathode region. Thus, in a single process, HBTs and PIN diodes can be fabricated on the same substrate.
It is the aim of the above technique to use a common i-layer between the devices and to use modified processing techniques to enable the growth of all structures on the same wafer without compromising the performance of any of the devices. Although the process described above contemplates fabricating each circuit on a single substrate (i.e., eliminating the need to use separate substrates and then connecting the substrates in a module), there still remain several limitations. To name one, for example, the PIN diodes i-layer cannot be freely tuned to achieve desired T/R switch speed due to NPN performance requirements.
In a first aspect of the invention, a structure comprises a single wafer with a first subcollector formed in a first region having a first thickness and a second subcollector formed in a second region having a second thickness, different from the first thickness.
In a second aspect of the invention, a multicircuit structure comprises a far side subcollector formed in the first region having a first thickness and a near side subcollector formed in the second region. The second subcollector region has a thickness less than that of a thickness of the first region. The far side subcollector forms a high breakdown voltage device and the near side subcollector forms a high performance NPN device.
In another aspect of the invention, a method of forming a structure comprises providing a substrate including a first layer and forming a first doped region in the first layer. The method further includes forming a second layer on the first layer and forming a second doped region in the second layer. The second doped region is formed at a different depth than the first doped region:
The invention relates to a semiconductor structure and method of manufacturing. In one embodiment, the invention more specifically relates to a structure and method of combining very high breakdown and very high performance NPN (e.g., bipolar) devices on a wafer without compromising the performance of either device, i.e., to optimize both devices. In one embodiment, the method of fabrication uses a dual epitaxial process for on-chip PIN diodes working at millimeter wave range; although other devices such as, for example, high breakdown NPN HBT, varacters, passives, schottky diodes are also contemplated for use with the invention. By implementing the invention, using the same wafer, a high performance NPN can be fabricated with a thin collector and a high breakdown voltage device can be fabricated with a thick film collector. Additionally, in the invention, a second subcollector can be used as a reachthrough of the high breakdown device to contact the subcollector to the surface. The system and method of the invention is fully compatible to the existing BiCMOS technologies.
Referring to
In
In
Referring to
In
In
In
In
In
By fabricating a second epi layer 36, which can be of a desired thickness, a thin film collector for high performance NPN devices and a thick film collector for high breakdown voltage devices can be fabricated on a single wafer. By having a thin film collector and a thick film collector, performance of both the high performance NPN devices and the high breakdown voltage devices can be optimized.
In
In
Still referring to
The remaining process steps required to complete the integrated circuit involve such steps as forming a high performance NPN emitter layer, forming passive components, forming interconnect metallization, etc. which are performed as is well known in the art. For example, in
In the embodiment of
Table 1 shows the characteristics of the PIN Diode RF response in accordance with an embodiment of the invention. The characteristics include, for example, insertion loss (db) in forward mode and isolation (db) characteristics in reverse mode.
While the invention has been described with reference to exemplary embodiments, it is understood that the words, which have been used herein, are words of description and illustration, rather than words of limitation. Changes may be made, within the purview of the appended claims, without departing from the scope and spirit of the present invention in its aspects. Thus, although the invention has been described herein with reference to particular materials and embodiments, the invention is not intended to be limited to the particulars disclosed herein; rather, the invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 11/163,882, filed Nov. 2, 2005, now U.S. Pat. No. 7,329,940 the disclosure of which is expressly incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4005469 | Chang et al. | Jan 1977 | A |
4159915 | Anantha et al. | Jul 1979 | A |
4228448 | Lalumia et al. | Oct 1980 | A |
4644383 | Akcasu | Feb 1987 | A |
5422501 | Bayraktaroglu | Jun 1995 | A |
5605851 | Palmieri et al. | Feb 1997 | A |
5798560 | Ohkawa et al. | Aug 1998 | A |
6011297 | Rynne | Jan 2000 | A |
6281565 | Yoshitake | Aug 2001 | B1 |
6414371 | Freeman et al. | Jul 2002 | B1 |
6489660 | Einthoven et al. | Dec 2002 | B1 |
6656815 | Coolbaugh et al. | Dec 2003 | B2 |
6891251 | Coolbaugh et al. | May 2005 | B2 |
6927452 | Shin et al. | Aug 2005 | B2 |
7001806 | Tilke et al. | Feb 2006 | B2 |
7180157 | Freeman et al. | Feb 2007 | B2 |
7202514 | Ahmed et al. | Apr 2007 | B2 |
7329940 | Coolbaugh et al. | Feb 2008 | B2 |
20010042867 | Furuhata | Nov 2001 | A1 |
20020084506 | Voldman et al. | Jul 2002 | A1 |
20030094673 | Dunn et al. | May 2003 | A1 |
20040014271 | Cantell et al. | Jan 2004 | A1 |
20040036115 | Disney | Feb 2004 | A1 |
20040227210 | Tilke et al. | Nov 2004 | A1 |
20050207077 | Xu et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
1531102 | Sep 2004 | CN |
1817497 | Jun 1980 | DE |
Number | Date | Country | |
---|---|---|---|
20080099787 A1 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11163882 | Nov 2005 | US |
Child | 11873696 | US |