1. Field of the Invention
This present invention relates to a semiconductor structure, and more particularly, to a semiconductor structure with silicon on insulator (SOI).
2. Description of the Related Art
In recent years, with the development of the semiconductor manufacture technology, the integration of the semiconductor device is increasing, and the semiconductor element is continuously scaling down. With the above-mentioned development, many new defects are found and have to be overcome.
For example, as the shrinking of metal oxide semiconductor field effect transistor (MOSFET), the channel length of gate is scaling down for higher driving current. The shorter channel of device also causes a higher leakage current. Therefore, new substrates and/or structures, such as silicon on insulator (SOI) and double-gate device, are adapted to improve the performance of the short channel device.
According to the study in the related art, the mobility of electron is related to the crystal orientation of the wafer. When the crystal orientation is in one plane azimuth favorable to the migration of electron, the mobility of electrons in a semiconductor device will be increased. However, the above-mentioned crystal orientation of the wafer is not suitable to the orientation of dicing the wafer into chips. The semiconductor devices on the above-mentioned wafer usually get damage or fracture during dicing, and thus the yield of the semiconductor device is decreased. Particularly, with the scaling down of the semiconductor device, the defects of the semiconductor device during dicing are more and more seriously.
Hence, for improving the electron mobility of the semiconductor device and raising the yield of the semiconductor device, it is an important object to provide a semiconductor structure for increasing the electron migration rate and decreasing the damage of the semiconductor device during dicing.
In accordance with the present invention, a semiconductor structure is provided for decreasing the damage of the semiconductor device during dicing by employing a substrate with a crystal orientation, wherein the crystal orientation is favorable to the dicing of the semiconductor structure, so that the yield of the semiconductor device can be improved.
It is another object of this invention to improve the performance of the semiconductor device by utilizing a substrate with a crystal orientation favorable to electron migration.
In accordance with the above-mentioned objects, the invention provides a semiconductor structure at least comprises a first substrate, an insulating layer on the first substrate, and a second substrate on the insulating layer. The semiconductor structure may further comprise at least one semiconductor device formed on the second substrate. The crystal orientations of the first substrate and the second substrate are respectively in a first orientation and a second orientation. The first orientation is favorable for dicing the semiconductor structure into chips, and thus the damage of the semiconductor device during the dicing process can be efficiently reduced. The second orientation is favorable to the electron migration of the semiconductor device, and the electron carrier mobility of the semiconductor can be efficiently improved. Therefore, the design of this prevent invention can efficiently improve the yield and the performance of the semiconductor device.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Some sample embodiments of the invention will now be described in greater detail. Nevertheless, it should be recognized that the present invention can be practiced in a wide range of other embodiments besides those explicitly described, and the scope of the present invention is expressly not limited except as specified in the accompanying claims.
Then, the components of the semiconductor devices are not shown to scale. Some dimensions are exaggerated to the related components to provide a more clear description and comprehension of the present invention.
According to the study, the crystal orientation is related with the character of the semiconductor structure. For example, when the crystal orientation of the substrate is in some orientation, the semiconductor structure will have better cleavage and break cleaner along scribe lines, so that the chips do not fracture during dicing. Additionally, when the crystal orientation of the substrate is in some orientation, the mobility of the carriers will be raised. In this invention, a semiconductor structure comprising both of the above-mentioned features is disclosed, so that the yield and the performance of the semiconductor device will be improved.
In the present invention, a semiconductor structure is disclosed herein. The semiconductor structure comprises a first substrate, an insulating layer on the first substrate, and a second substrate on the insulating layer. The crystal orientation of the first substrate is in a first orientation, and the crystal orientation of the second substrate is in a second orientation. The first orientation of the first substrate is favorable for dicing the semiconductor structure into chips. That is, according to this embodiment, the first substrate with the first crystal orientation has better cleavage and breaks cleaner alone scribe lines, so that the semiconductor device do not fracture during dicing the semiconductor structure into chips. Additionally, the second crystal orientation of the second substrate is favorable for raising the electron carrier mobility of the semiconductor device on the second substrate, such as the MOSFET. Hence, not only the damages of the semiconductor device during the dicing can be reduced, but also the electron carrier mobility of the semiconductor device can be raised. Therefore, the yield and the performance of the semiconductor device can be efficiently improved by the design of this embodiment.
According to the second embodiment of the present invention, a second semiconductor structure is disclosed herein. The difference between the second embodiment and the first embodiment is that in the second embodiment a second substrate is a (110) silicon wafer having a notch in a <100>direction.
According to above-mentioned embodiment, because the crystal orientation of the first substrate is favorable for dicing the semiconductor structure, the semiconductor structure will break cleaner along scribe lines and the chips of this embodiment do not fracture or get damages during dicing the semiconductor structure into chips. On the other hand, because the crystal orientation of the second substrate is favorable to the electron migration, the electron carrier mobility of the semiconductor device will be raised. Hence, according to this embodiment, the yield and the performance of the semiconductor device can be efficiently improved.
In order to explain this present invention more detailed, the following is the formation of a semiconductor structure. The formation is employed only for explaining this invention, and this invention should not be limited by the following description. The above-mentioned semiconductor structure may comprise a bonding and etch-back silicon on insulator (BESOI) structure.
First of all, a first substrate 200 and a second substrate 220 are provided. Referring to
Subsequently, the second substrate 220 can be bonded to the first substrate 200 with the ion-implanted side of the second substrate 220 by a wafer bonding technology. The wafer bonding technology comprises a process performed at a high temperature. In this manner, a semiconductor structure comprising the first substrate 200—silicon oxide layer 240—second substrate 220 SOI structure is formed, as shown in
In the first and second embodiment of the present invention, the second substrate can be directly bonded to the first substrate with the ion-implanted side without rotation.
In the third embodiment of the present invention, before bonding the second substrate to the first substrate, the second substrate may be rotated in an angle, such as 45 degrees. Therefore, in the SOI structure of this embodiment, the crystal orientation of the first substrate is favorable for dicing the semiconductor structure into chips, and the crystal orientation of the second substrate is favorable to the electron migration.
Next, a portion of the second substrate 220 is removed by a smart cut technology. Under a high temperature treatment, the region without ion implantation of the second substrate 220, marked as 225 in
In the semiconductor structure of the related art, in order to keep the semiconductor device from the fracture or damage during dicing, the semiconductor device is formed on a substrate with the crystal orientation favorable for dicing the semiconductor structure into chips. For example, the above-mentioned substrate which is a (100) silicon wafer having a notch in a <110>direction is not favorable to the electron migration, and the electron carrier mobility of the semiconductor device will be decreased by the substrate.
With the development of the manufacture, in another semiconductor structure of the related art, in order to improve the electron carrier mobility, the semiconductor device can be formed on the substrate with the crystal orientation favorable to the electron migration, such as <100>. In this manner, the electron carrier mobility in the substrate can be raised, and the performance of the semiconductor device can be efficiently improved. However, the crystal orientation of the above-mentioned substrate is not favorable for dicing. When dicing the semiconductor structure into chips, the semiconductor device will get damage or fracture, and the yield of the semiconductor device is decreased.
Comparing with the above-mentioned semiconductor structures in the related art, this invention provides a semiconductor structure comprising two substrates with two crystal orientations. The above-mentioned semiconductor structure may further comprise a SOI structure. The crystal orientation of one substrate of the semiconductor structure is favorable for dicing the semiconductor structure into chips, and the crystal orientation of another substrate of the semiconductor structure is favorable to the electron migration. Therefore, according to the design of this invention, the electron carrier mobility of this prevent invention is higher than the electron carrier mobility in the related art. Moreover, the semiconductor structure of this invention has better cleavage than the semiconductor structure in the related art, and breaks cleaner along scribe lines so that the chips do not fracture during dicing. In one preferred case of this invention, the mobility of the carriers in the substrate of this invention is higher than the mobility of the carriers in the related art by about 70-80%. Hence, according to this invention, the fracture and damage of the semiconductor device during dicing can be reduced, and the electron carrier mobility of the semiconductor device can be increased. That is, this invention can efficiently improve the yield and the performance of the semiconductor device.
According to the preferred embodiments, this invention discloses a semiconductor structure with SOI. In this present invention, the semiconductor structure comprises a first substrate, an insulating layer on the first substrate, and a second substrate on the insulating layer. The semiconductor structure may further comprise at least one semiconductor device on the second substrate. The crystal orientation of the first substrate is favorable for dicing the semiconductor structure into chips. The crystal orientation of the second substrate is favorable to the electron carrier mobility. The second substrate may be formed on the first substrate by a wafer bonding technology. Before bonding to the first substrate, the second substrate may be rotated in an angle. According to this invention, the fracture of the semiconductor device during dicing can be reduced, and the electron carrier mobility of the semiconductor device can be raised. Therefore, the semiconductor structure according to this present invention can efficiently improve the yield and the performance of the semiconductor device.
Although specific embodiments have been illustrated and described, it will be obvious to those skilled in the art that various modifications may be made without departing from what is intended to be limited solely by the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/407,256, filed on Apr. 7, 2003, entitled Semiconductor Structure With Silicon On Insulator, all of which are incorporated herein by reference and for which priority is claimed under 35 U.S.C. § 120.
Number | Date | Country | |
---|---|---|---|
Parent | 10407256 | Apr 2003 | US |
Child | 11583139 | Oct 2006 | US |