1. Field of the Invention
The present invention relates to a semiconductor substrate, more specifically, a semiconductor substrate in which a large number of electrodes are formed on a substrate, a semiconductor device and a solid-state imaging device using the semiconductor substrate, and a method of manufacturing a semiconductor substrate.
Priority is claimed on Japanese Patent Application No. 2012-229760, filed Oct. 17, 2012, the contents of which are incorporated herein by reference.
2. Description of Related Art
For higher performance and a reduction in the size of a system, a smaller and higher-performance semiconductor device is required, and a stacked semiconductor device which is configured by joining wafers with a large number of minute electrodes formed thereon to each other has been studied.
In the stacked semiconductor device, semiconductor substrates are connected by electrodes. However, connection by only electrodes is weak with respect to an external force or stress, and corrosion of the electrode sometimes occurs due to humidity, temperature, or the like. In order to prevent this, there is a case where portions other than the electrodes between the semiconductor substrates are sealed by a resin called an underfill. The sealing by the underfill is usually performed by injecting the underfill from the gap between the semiconductor substrates after connection of the electrodes. However, due to a reduction in pitch of the electrodes in recent years and a reduction in a gap according to the reduction in pitch, it has become difficult to inject the underfill after the connection.
Therefore, in recent years, attention has been paid to a method in which connection is performed after the underfill is applied onto the semiconductor substrate before connection of the electrodes. As a method of obtaining a connection structure in which the electrode and the underfill can be connected at the same time, for example, Japanese Unexamined Patent Application, First Publication No. 2005-64451 can be given. In Japanese Unexamined Patent Application, First Publication No. 2005-64451, a method is disclosed in which the underfill is applied onto the entire surface after electrodes are formed on a substrate and in order to simultaneously realize exposure of the electrodes from the underfill and planarization, the surface of the underfill is cut.
In addition, a method is also proposed in which after an electrode pattern is formed by using a photosensitive underfill and an electrode material such as copper is embedded therein, planarization is performed by chemical mechanical polishing (CMP).
According to a first aspect of the present invention, a semiconductor substrate is provided including: a substrate; an electrode array which is provided on a surface on one side in a thickness direction of the substrate and in which a plurality of electrodes is two-dimensionally arranged in a plan view; and a resin layer which is provided on the surface on one side and seals peripheries of the plurality of electrodes, in which the plurality of electrodes protrudes further than the height in the thickness direction of the resin layer by greater than or equal to 5% of a height that is a dimension in the thickness direction of the electrode and is capable of being accommodated in the resin layer by being compressed in the thickness direction.
According to a second aspect of the present invention, in the first aspect, the plurality of electrodes may be formed by using metal so as to have a porous structure.
According to a third aspect of the present invention, in the first aspect, the plurality of electrodes may be formed of a resin material having electrical conductivity.
A semiconductor device according to a fourth aspect of the present invention may include the semiconductor substrate according to any one of the first aspect to the third aspect.
A solid-state imaging device according to a fifth aspect of the present invention may include the semiconductor device according to the fourth aspect.
According to a sixth aspect of the present invention, a method of manufacturing a semiconductor substrate is provided including: forming a resin layer on a surface on one side of a substrate; forming a sacrificial layer on the resin layer; forming an opening portion which penetrates the sacrificial layer and the resin layer and in which the substrate is exposed at a bottom portion; filling an electrode material in the opening portion; and removing the sacrificial layer, thereby forming an electrode which protrudes in a thickness direction of the substrate further than the resin layer.
According to a seventh aspect of the present invention, in the sixth aspect, in the thickness direction, a thickness of the sacrificial layer may be greater than or equal to 5% of the sum of a thickness of the resin layer and the thickness of the sacrificial layer.
An embodiment of the present invention will be described referring to
The upper side of the paper of
The substrate 10 is formed in a plate shape or a sheet shape having a predetermined thickness of an insulator or a semiconductor. As the insulator and the semiconductor constituting the substrate 10, for example, silicon, resin, ceramic, glass, or the like can be used. In this embodiment, as the substrate 10, a silicon wafer is used.
Further, although illustration is omitted, a wiring electrically connected to the electrode array 20 is formed on the substrate 10. An aspect of the wiring may be formed on the surface on one side or the surfaces on both sides in a thickness direction of the substrate 10 by printing, etching, or the like and may also be formed so as to penetrate the substrate like a via or the like. Moreover, three-dimensional wiring using a laminating technique is also acceptable and these may also be combined appropriately. Further, a semiconductor element may be mounted on the substrate 10.
The surface on one side of the substrate 10 becomes a joint surface 10A which is joined to another semiconductor substrate. A plurality of rectangular unit areas 11 is provided on the joint surface 10A, and the electrode array 20 in which a plurality of electrodes is formed in the same layout is formed one for each unit area 11 and the wiring of the same aspect is formed at each unit area 11.
As a material of the resin layer 31, for example, any of epoxy, benzocyclobutene, polyimide, and polybenzoxazole, a composite material of those, or the like can be given. All these materials have a characteristic in which adhesion is possible by heating and pressurization.
The electrode pad 32 is formed in a multi-layer structure or the like using, for example, any of Au, Cu, Al, Ni, Ti, Cr, and W, an alloy of those, or two or more of the metals, and there is no particular limitation to a forming method or a structure thereof. The electrode pad 32 may be formed by widening of the width of a portion of the wiring, or the like. Further, the electrode 20a and the wiring formed on the substrate 10 may be directly connected to each other without providing the electrode pad.
As shown in
In the electrode 20a having a dense structure formed of metal, even if a normal compressive force acts thereon, a dimension in a compression direction cannot be reduced by greater than or equal to 5%. In the embodiment of the present invention, in order to enable the deformation as described above by compression, the electrode 20a is formed by using a metal material so as to take a porous structure having minute voids in the inside. As a method of forming an electrode having the porous structure, for example, a plating method such as electrolytic plating or electroless plating, a squeegee printing method using paste of metal particles, or the like can be given. Among them, since the electroless plating has the advantage that electrodes having uniform heights can be formed in a plane, it is suitable.
An example of the manufacturing procedure of the semiconductor substrate 1 configured as described above will be described.
First, as shown in
Next, as shown in
Next, as shown in
In addition, the opening portion 31a may be formed by using a photosensitive material in the resin layer 31 and using photolithography, in addition to a wet etching method or a plasma etching method.
Next, as shown in
Finally, if the sacrificial layer 33 is removed, as shown in
The removal of the sacrificial layer 33 can be performed by a wet etching method, a plasma etching method, or the like. However, at this time, it is preferable to set conditions or the like so as not to cause a large amount of damage to the resin layer 31 or the electrode 20a, and then perform the removal.
The semiconductor substrate 1 and a substrate 100 that faces the semiconductor substrate 1 are sandwiched between pressurizing plates 131 and 132 in a state where the joint surface 10A faces the substrate 100, as shown on the lower side of the paper of
In addition, there is no particular limitation to the substrate that faces the semiconductor substrate 1, and for example, another semiconductor substrate 1 is also acceptable and a substrate in which only an electrode pad and wiring are formed on a joint surface is also acceptable.
Hereinafter, an operation of the semiconductor substrate 1 at the time of joining will be described taking as an example a case where the substrate 100 faces the semiconductor substrate 1 and only an electrode pad and wiring is formed on the substrate 100.
First, alignment of the semiconductor substrate 1 and the substrate 100 is performed such that the electrode 20a and an electrode pad 101 are aligned. For the alignment, a known wafer joining device or the like can be used. If the semiconductor substrate 1 and the substrate 100 are brought close to each other in an aligned state, as shown in
Subsequently, if pressure is applied to the semiconductor substrate 1 and the substrate 100 while performing heating, the electrode 20a which is in contact with the electrode pad 101 is compressed first, whereby the protrusion length is shortened. If pressure is further applied, as shown in
If heating and pressurization are further continued, each electrode 20a is further compressed, thereby being accommodated in the resin layer 31. As shown in
Here, a case where two substrates are joined to each other has been taken and described as an example. However, more substrates may be joined to each other. In this case, for example, the resin layer 31 and the electrode array 20 may be formed on both surfaces of a single semiconductor substrate 1.
After the joining of the substrates, if the joined substrates are cut for each unit area 11 along the boundary line 12 by a blade 110 or the like (are divided into individual pieces), as shown in
As described above, according to the semiconductor substrate 1 of this embodiment, since a plurality of electrodes 20a in the electrode array 20 protrudes greater than or equal to 5% of its own height on the resin layer 31 and can be accommodated in the resin layer 31 by being compressed in the height direction, even if the protrusion length of each electrode varies, all the electrodes can be reliably connected to a substrate that faces the semiconductor substrate 1 by heating and pressurization at the time of joining.
Further, since the electrode 20a can be greatly compressed in the height direction, an allowable range of variation in protrusion length in an electrode forming process is wide. As a result, a planarization process such as cutting or CMP is almost not required after electrode formation, and thus manufacturing efficiency can be significantly improved and yield can also be improved.
In addition, according to the method of manufacturing a semiconductor substrate in this embodiment, by appropriately setting the thickness of the sacrificial layer 33, it is possible to roughly control the protrusion length of the electrode 20a. Therefore, in the present invention, coupled with the fact that an allowable range of variation in protrusion length in electrode formation is wide, as described above, it is possible to completely omit a planarization process.
While preferred embodiments of the present invention have been described and illustrated above, it should be understood that these are exemplary of the present invention and are not to be considered as limiting. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit or scope of the present invention. Accordingly, the present invention is not to be considered as being limited by the foregoing description, and is only limited by the scope of the appended claims.
For example, first, in the present invention, the shape in the plan view of the electrode array is not limited to a rectangular shape and there is no particular limitation. Further, the number or a disposition aspect of electrodes in the unit area may also be appropriately set in consideration of the configuration or the like of a semiconductor device to be manufactured.
Further, the electrode in the present invention is not limited to an electrode having the above-described porous structure made of metal. For example, even if the electrode is formed of a resin material having electrical conductivity, such as conductive resin or a resin material with conductive fillers mixed therein, since the electrode can be greatly compressed in the height direction, the same effects can be obtained.
In addition, the types of the semiconductor substrate according to the present invention and a semiconductor device using the semiconductor substrate are not particularly limited. However, for example, in a solid-state imaging device or the like having a large number of pixels, since it is necessary for a very large number of circuit electrodes to be formed at a narrow pitch, for example, in order for the diameter of the circuit electrode or a formation pitch of the circuit electrode to be 20 μm, a merit which is obtained by applying the present invention is very large and it is very suitable to apply the structure according to the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2012-229760 | Oct 2012 | JP | national |