Sensing a status of an infuser based on sensing motor control and power input

Information

  • Patent Grant
  • 9889256
  • Patent Number
    9,889,256
  • Date Filed
    Friday, May 3, 2013
    11 years ago
  • Date Issued
    Tuesday, February 13, 2018
    6 years ago
Abstract
A status of a battery operated infuser may be detected by measuring a controlled input parameter. The measurement may be used to determine a magnitude of the input parameter and a parameter of the control. For example, control of power input to a motor may be by pulse density modulation. An integral of current over time may serve as a measure of current magnitude and pulse density. The result of the integral may be used to determine the status of the injector. The status may include normal functions for example start of pumping and/or malfunctions such as occlusion or drive disengagement.
Description
BACKGROUND OF THE INVENTION

The present invention, in some embodiments thereof, relates to a system and method to monitor drug infusion to a patient and, more particularly, but not exclusively, to a system and method to monitor the status of a portable battery operated infuser through monitoring a power input and/or control of a drive mechanism.


U.S. Pat. No. 6,830,558 discloses a device for delivering fluid to a patient including an exit port assembly adapted to connect to a transcutaneous patient access tool, a flow path extending from the exit port assembly, and a flow condition sensor assembly. The sensor assembly includes a resilient diaphragm having a first surface positioned against the flow path, a chamber wall defining a sensor chamber adjacent a second surface of the diaphragm, and at least one sensor arranged to provide a threshold signal when the second surface of the diaphragm expands into the chamber in response to at least one predetermined fluid flow condition occurring in the flow path. The sensor includes a first electrode secured on the diaphragm, a second electrode positioned in a fixed location with respect to the first electrode, and an impedance meter connected between the electrodes.


U.S. Pat. No. 7,828,528 discloses an occlusion sensor system for an infusion pump system that communicates with control circuitry to detect the presence of an occlusion. In some embodiments, the occlusion sensor system includes first components that are located within a disposable and non-reusable pump device, and second components that are located within a reusable controller device, the second components being in operable communication with the first components to determine whether a fluid is flowing from the pump device.


U.S. Pat. No. 7,122,982 discloses a rotation information detection device detecting rotation information of a DC motor based on a surge component waveform superimposed on a voltage waveform between the terminals of the DC motor or a current waveform of the DC motor. A circuit is provided which supplies a current of a current value Ipwm 45% during motor forward rotation or Ipwm 55% during reverse motor rotation to the motor over the period from when the motor starts braking operation to when it stops.


U.S. Pat. No. 7,692,399 discloses a method of controlling a DC motor is presented. In a determining action, a thermal power dissipation is determined from a motor input and a motor velocity. In another determining action, a motor temperature is determined based on a thermal model using the thermal power dissipation. In an adjusting action, a usage of the motor is adjusted, taking the motor temperature into account.


International Patent Application No. PCT/US12/66036 discloses a system that may regulate voltage supplied from a power source to an integrated circuit and/or an inertial device. A minimal voltage may be maintained in the integrated circuit by temporarily cutting off current to the inertial device to supply surges of voltage to the controller. Optionally voltage may be smoothed between said surges for example by adding capacitance and/or a current restrictor.


SUMMARY OF THE INVENTION

According to an aspect of some embodiments of the present invention there is provided a method of determining a status of a battery operated drug infusing device including: controlling the device based on a performance of the device; measuring an input parameter of the device, and ascertaining a status of the device dependent on both a magnitude of the input parameter and the controlling.


According to some embodiments of the invention, the performance of the device includes a cumulative movement of the device and the controlling includes limiting a time of current input to the device and the measuring includes measuring a magnitude of the current input to the device over time and the ascertaining includes combining the magnitude and the time of the current input to the device to determine a combined measure and wherein the ascertaining is based on a value of the combined measure.


According to some embodiments of the invention, the cumulative movement includes a number of revolutions during a time period.


According to some embodiments of the invention, the limiting includes limiting a pulse density of the current input in the time period.


According to some embodiments of the invention, the combined measure includes a product of the current magnitude over the time.


According to some embodiments of the invention, the controlling affects the input parameter.


According to some embodiments of the invention, a result of the measuring serves as a proxy for a parameter of the controlling.


According to some embodiments of the invention, a time dependence of the measured input parameter serves as the proxy for the parameter of the controlling.


According to some embodiments of the invention, the ascertaining includes determining a combined measure of the input parameter magnitude over time.


According to some embodiments of the invention, the combined measure includes a product of the input parameter magnitude and the time.


According to some embodiments of the invention, the controlling includes pulse density modulation and the ascertaining depends on the pulse density.


According to some embodiments of the invention, the controlling includes a feedback loop.


According to some embodiments of the invention, the controlling includes a negative feedback loop.


According to some embodiments of the invention, the status includes at least one element selected from the group consisting of, a blockage, a disengagement, changing of an active mechanical part, discharging medicine, and not discharging.


According to some embodiments of the invention, the input parameter is magnitude of current and the controlling includes counting a number of rotations wherein the number of rotations is proportional to a cumulative discharge of the device, and cutting off the current when the number reaches a threshold.


According to some embodiments of the invention, a rate of the counting is less than four times a sampling rate of the measuring.


According to some embodiments of the invention, the input parameter is unregulated.


According to some embodiments of the invention, the controlling includes temporarily cutting off the input parameter.


According to an aspect of some embodiments of the present invention there is provided a drug infusion device including: a DC power source; an actuator; a performance sensor operationally coupled to an output of the actuator; a controller which adjusts a power input of the actuator according to an output of the performance sensor; an input sensor operationally coupled to the power input; a processor which ascertains the status of the device dependent on the adjusting based on an output of the sensor.


According to some embodiments of the invention, the performance sensor includes a revolution counter.


According to some embodiments of the invention, the actuator includes a DC motor.


According to some embodiments of the invention, the drug infusion device further includes a pulse density circuit, and wherein the adjusting is by pulse density modulation.


According to some embodiments of the invention, the sensor is a current sensor and the power input includes a current.


According to some embodiments of the invention, the processor computes an product of a magnitude of the current over time and wherein the ascertaining is dependent on the product.


Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.


Implementation of the method and/or system of embodiments of the invention can involve performing or completing selected tasks manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of embodiments of the method and/or system of the invention, several selected tasks could be implemented by hardware, by software or by firmware or by a combination thereof using an operating system.


For example, hardware for performing selected tasks according to embodiments of the invention could be implemented as a chip or a circuit. As software, selected tasks according to embodiments of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In an exemplary embodiment of the invention, one or more tasks according to exemplary embodiments of method and/or system as described herein are performed by a data processor, such as a computing platform for executing a plurality of instructions. Optionally, the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard-disk and/or removable media, for storing instructions and/or data. Optionally, a network connection is provided as well. A display and/or a user input device such as a key board or mouse are optionally provided as well.





BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.


In the drawings:



FIG. 1 is a state chart of statuses of a patch injector, in accordance with an exemplary embodiment of the invention;



FIG. 2 is a schematic diagram of current vs. time for a direct powered patch injector, in accordance with an exemplary embodiment of the invention;



FIG. 3 is a flow chart illustrating determining a status of a patch injector, in accordance with an exemplary embodiment of the invention;



FIG. 4 is a schematic circuit diagram of a patch injector, in accordance with an exemplary embodiment of the invention;



FIG. 5 is a is a flow chart illustrating control of a patch injector, in accordance with an exemplary embodiment of the invention;



FIG. 6 is an experimental current vs. time graphs of a patch injector, in accordance with an exemplary embodiment of the invention;



FIG. 7A, B, C are expanded experimental current vs. time graphs of a patch injector, in accordance with an exemplary embodiment of the invention, and



FIG. 8 is a flow chart illustrating a method of ascertaining a status of an infuser, in accordance with an exemplary embodiment of the invention.





DESCRIPTION OF SPECIFIC EMBODIMENTS OF THE INVENTION

The present invention, in some embodiments thereof, relates to a system and method to monitor drug infusion to a patient and, more particularly, but not exclusively, to a system and method to monitor the status of a portable battery operated infuser through monitoring a power input and/or a control of a drive mechanism.


Overview


An aspect of some embodiments of the current invention includes determining the status of a medical infuser from multiple factors in motor power input and/or control mode. Optionally, a simple proxy measurement may be used in lieu of measuring motor performance. For example, integrating input current to the motor over time may be used to determine an input parameter (for example input current) and/or a control mode (for example pulse density) which may be dependent on a performance parameter (for example motor speed).


In some embodiments, measurements may be adjusted according to control parameters of the motor (for example measurements may be synchronized with power pulses to the motor) and/or measurement values may be deduced based on known control parameters of the motor (for example, measurements may be skipped when power is cut off to the motor and measurement values deduced based on the known control parameter [lack of input power]). Input levels may be compared to fixed threshold values, dynamic threshold values and/or or a differential measure may be computed. Changes may optionally be analyzed based on a logic structure that includes the expected status changes and/or or the expected time between statuses and/or the expected variability of values.


An aspect of some embodiments of the present invention relates to a system and method for determining a status of a portable infuser in the presence of confounding factors. For example, motor control of an infuser may include a negative feedback loop. For example the negative feedback loop may complicate determination of motor status based on a measured magnitude of the input parameter. In some embodiments knowledge of the control mode of the motor may be combined with a simple measurement the input parameter to determine the status of a complex system. The control mode optionally may be determined based on motor input and/or performance parameters. For example, the control mode may be determined from the time dependence of measurements of a controlled input parameter.


In some embodiments, the method of the current invention may be used to determine the loads status of a motor. For example motor output may be controlled by pulse density modulation, optionally employing a negative feedback loop to preserve performance over changing conditions. Changes in pulse density may complicate detection of changes of load using convention monitoring techniques (for instance based on input current to the motor). Optionally by combining a measured parameter (for example time dependence of an input current level) with a control mode (for example pulse width) the load may be determined under complex control conditions. Optionally, the control mode (for example pulse width) may be deduced from the measured input current. Optionally, input current measurements may be synchronized to motor input pulses. In some embodiments, motor performance and/or infuser status may be deduced without requiring direct measurements of physical outcomes (for example pressures, force, torque, speed etc.).


Proper motor control and status detection may optionally increase the shelf life a device, allow the use of cheaper and/or smaller components, increase convenience, decrease need for supervision and/or increase reliability.


Infuser Status


An aspect of some embodiments of the instant invention relates to determining a status of an infuser, in accordance with an exemplary embodiment of the invention. For example a portable infuser may include a patch injector and/or a home treatment device and/or a battery operated device. For example, an infuser may include SmartDose® Electronic Patch Injector System being developed by Medimop Medical Projects Ltd., a subsidiary of West Pharmaceutical Services, Inc.


For example statuses that may be detected may include one or more of: stages of normal operating for example, overcoming a transport lock, priming the system (for example puncturing a septum and/or disengagement while overcoming a preliminary gap), beginning of medicine discharge, changes of a drive element and/or reaching the end of the cartridge and/or reaching the end of the extension mechanism; a malfunction causing disengagement for example an open access door, a screw thread disengaged, a gear disengaged; and/or a malfunction causing increased resistance, for example an occlusion, a jam; and/or a malfunction of a component for example a battery failure, a motor failure and/or a motor driver failure.


Determining Factors


In some embodiments status determination may be deduced based on one or more factors of performance including, for example—rotational speed, number of rotations, motor input current, motor input voltage, pulse density, energy input, and/or time dependence of the above.


An aspect of some embodiments of the current invention relates to determining the status of an infuser and/or performance factors without direct measurement. For example temperature and/or flow rate and/or pressure and or speed may be deduced from a surrogate measurement. Optionally a surrogate measurement may include current, voltage and/or changes over time.


In some embodiments, performance of an infuser is controlled. Control may optionally include a feedback loop. Control may be based on a course assessment of performance. For example, infuser discharge may be controlled based on a coarse rotational counter. The status of the infuser may be from measurements of a controlled input parameter (for example the input current over time). Ascertaining the status may account for performance factors based on the relationship between the measured input and the control scheme of the infuser. In some embodiments, the rate of injection is controlled by turning on or off the motor. Optionally the motor speed may not be regulated and/or measured (and/or may only be known imprecisely, for example based on the counted number of revolutions in a time period). The motor speed may be an unregulated result of the load and/or voltage input and/or motor properties (which may not be known and/or measured precisely).


Confounding Factors


In some embodiments, calculations of infuser status may account for various confounding factors including for example a feedback loop that that achieves an injection volume, a regulation scheme preserving voltage input to a CPU, variability in component performance (for example battery performance and/or motor performance) variations in flow resistance of components (for example of a hypodermic needle and/or of tubing), variation in friction (for example of extension rods and/or a plunger), variations in temperature, variations in viscosity.


For example a patch injector may pump a medicine with dynamic viscosity ranging between for example 2 cp to 15 cp. The temperature of infuser components (for example a battery and/or the medicine) may range between −5° C. to 45° C. Performance of a motor may vary as much as 30% or even as much as 40% from a rated value (for example of output power, torque and/or speed). The injector may be used to inject a dose of for example between 1 ml to 5 ml of medicine. The injection may continue over a period of for example between 5 minutes to 24 hours. Optionally, power may be supplied by batteries, for example standard Silver Oxide (Ag2O) batteries and/or lithium batteries.


In some embodiments, medicine may be administered by repeated small pulses. For example, a controller may drive a the motor for a 300 msec dosage period, measure the number of rotations, compute the quantity injected and determine a waiting time for next dosage in order to meet a stored injection rate and then wait and afterwards inject again for 300 msec. For some delivery rates, the waiting period between doses may for example range between 500 msec to 5 sec. For lower delivery rates the waiting period may range between 3 sec and 5 minutes. In some embodiments the number of revolution in a pulse period may be fixed and the time of the pulse may vary, for example between 100 and 900 msec. In the waiting period, the injector may be in a sleep mode. For example, in the sleep mode the controller may remain active, measuring time until the next dosage and remembering the delivery parameters, but the motor and/or sensors may be inactive. In some embodiments, the pulse density modulation motor control may have a duty cycle ranging between 2% and 20%. In some embodiments a component of an infuser may be driven beyond a rated capacity. For example a component may be driven from 150% to 3000% or optionally from 30000% to 5000% of its rated capacity. For example a battery rated at 5 mA may be driven between 100 and 200 mA. Under such conditions, battery performance may degrade over time and/or depend on the pulse width modulation duty cycle. Changes in battery performance may, for example, cause changes in input voltage and/or current. Such changes may further complicate detection of the infuser mode, for example, based on current measurements.


Exemplary Detailed Embodiments

Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth in the following description and/or illustrated in the drawings and/or the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.


Referring now to the drawings, FIG. 1 illustrates some of the various statuses that may be distinguished in a medical infuser. A logic device may be supplied to determine the current status of the injector based on limited input data. The logic device may track status of the infuser, consider likely changes of status and consider alternative explanations of motor inputs and/or motor performance and/or changes thereof. Optionally, detected status can include a normal stage of injection (an embodiment may include one, some or all of the following statuses) for example transport locked 102, priming 104, pumping medicine 109, engaged 106, and/or changing a driving element 108. Optionally, detected status can include a malfunction for example a jam, an occlusion, rotational slippage, access door open etc.


In some embodiments, the controller may have an internal state machine including for example a state indicator. Optionally, interpretation of measured parameters may depend on the current state of the state machine. For example a sharp reduction of resistance before the beginning of medicine discharge may be interpreted as a normal priming state. For example a sharp reduction of resistance during medicine discharge may be interpreted as a disengagement malfunction. For example, a sharp increase in resistance during medicine discharge may be interpreted as a malfunction due to an occlusion. For example, a sharp increase in resistance at the end of medicine discharge may be interpreted as a plunger reaching the end of the cartridge. The controller may be programmed to issue a malfunction warning, take corrective action (for example wait and resume and/or change a discharge mode [for example higher or lower pulse density and/or discharge rate]) based on the detected status.


For example, when an infuser is activated 101, it may be in a transport locked 102 status. In the transport locked 102 status there may optionally be a medium resistance to motor movement due to a transport lock to prevent unintentional movement of the infuser drive train during transport and handling prior to use. In some embodiments, the infuser may leave the transport locked 102 status after a small movement of the drive train. Alternatively or additionally, the infuser may not have a transport lock and/or the drive train may have moved out of transport locked 102 status before activation of the infuser. For example, an infuser may start immediately in a priming 104 status and/or an engaged 106 status.


In some embodiments, in priming 104 status there may be a minimal resistance to movement of the drive train. Optionally, the infuser will remain in the priming 104 status only for a small range of movement of the drive chain. For example, there may be a small empty space between a medicine cartridge drive train and a support and/or an actuator and priming 104 may occur while the drive train covers that space. Alternatively or additionally, the priming 104 steps may include, for example puncturing a septum. Alternatively or additionally, in some embodiments the priming 104 stage may be lacking. For example an infuser may go straight from the transport locked 102 status to an engaged 106 status and/or may start in the engaged 106 status.


Once past optional preliminary statuses (for example transport locked 102 and/or priming 106) an infuser may begin pumping 109 a medicine. During pumping 109 the drive train may be engaged 106 to an actuator (for example a syringe plunger). For example, movement of the drive train may drive the actuator to pump 109 the drug into the patient.


In some embodiments, a drive train may include multiple drive elements. For example, the drive train may include a telescoping assembly pushing a plunger. The telescoping assembly may include one or more threaded rods as drive elements. During pumping the drive chain may switch between active rods. The threading of rods may be adjusted such that the relationship between discharge and rotations remains the same for more than one rod and/or different drive rods may have a different rotation to discharge relationship. Alternatively or additionally a drive train may include other elements such as gears and/or a piston.


In some embodiments, during pumping 109 a drive train may switch 108 driving elements. Switching may optionally be associated with a transient and/or continuous change in a. For example, a rod with a higher discharge to revolution ratio may produce a larger resistance to movement. Alternatively or additionally, even when two rods have the same revolutions to discharge ratio, there may be a different resistance to driving. For example a larger diameter rod may require more torque to move due to friction resistance and/or rods of different materials and/or geometries may have different resistances.


A detected state may include a malfunction 110. A malfunction may include for example an occlusion and/or a jammed part and/or a plunger reaching and end of its movement which may sometimes cause an increase 112 in resistance to movement. Alternatively or additionally a malfunction may include a disengagement of the drive train and/or a drive train failure (for example due to an open door and/or not inserting a cartridge and/or rotational slippage) which may result in a decrease 114 in resistance to movement. For example, if the door of an infuser is left open and/or a cartridge not inserted and/or a screw becomes disengaged, the drive train may move without engaging the actuator and/or if there is rotation slippage of a plunger and/or cartridge then a screw may spin without causing pumping of the medicine for example as referenced in U.S. Patent Publication No. 2009/0093792 which is incorporated herein by reference. In some cases, a malfunction may include other components 116 such a battery failure and/or motor failure and/or a motor driver failure. In fusion may finish 111 for example when a prescribed quantity of medicine has been discharged.


Exemplary Changes in Input Current for a Simple Infuser


In some embodiments, there may be a simple relationship between input current and infuser status. For example, for a system with an optional steady voltage power source and an optional direct connection motor driver, resistance on the drive train may be directly related to the input current to the motor. FIG. 2 illustrates a schematic relationship between current and time (and changing infuser status) for an exemplary simple infuser system.


For example, when there is a small resistance to movement, for example while overcoming a transport lock 102, the input current to the motor may be low 202.


When the resistance to drive train movement is very low, for example when the infuser is in a priming 104 status, the input current may, for example, be very low 204.


When the resistance to drive train movement is high, for example, when the infuser is engaged 106 and/or pumping 109 medicine, the input current may be high 206.


When the resistance to drive train movement increases, for example when the drive train switches 108 to an increased friction drive element, the current may, for example, become higher 208.


Certain input currents may optionally be associated with malfunction 110 statuses. Interpretation of infuser status from current level may depend on the current state of the infuser. For example very high 212 current may be a sign of an occlusion or jam. The level of current that is defined as very high 212 may depend on the previous current level. For example, very high 212 current may be defined according to a relative change from a previous base line. For example very low 214 current may be a sign of disengagement of the drive train. Optionally, interpretation of very low 214 current levels may depend upon the status of the infuser. For example, during a priming 104 period, short drop in current levels may be interpreted as a normal part of priming 104. For example, during a pumping 109 period a drop in voltage may be interpreted as a malfunction 110. Continued high 209 input current after priming 104 may indicate proper functioning of an infuser during medicine pumping 109.


In some embodiments definitions of current levels may be adjusted, for example due to variability of components. For example variability in the voltage and/or internal resistance of a battery and/or of motor performance may change baseline behavior. Optionally, interpretation of very high, high, normal, low and/or very low current levels may be adjusted to account for baseline values. These values may change during operation (for example a battery voltage may and/or internal resistance may change over the infusion time).


A Method of Determining a Status of an Infuser


Referring now to the drawings, FIG. 3 illustrates a method of determining a status of an infuser from motor input and performance. The methodology can be understood with reference to the simple case of FIG. 2 with the input current being the indicator of power to the motor. In more complicated cases described herein below power to the motor may optionally include a more complex function that accounts for changes of input current over time and/or motor performance.


In some embodiments when an infuser is started 320, the input energy level is optionally compared 324 to a maximum and/or a minimum threshold. The input energy level may include, for example, the average input current measured in three samples over a for example between 100 and 500 mili-seconds (ms). If the input energy is above a maximum threshold, the infuser may be determined to be in a fault mode (for example, the maximum power level may be very high 212 input current level). Optionally, alarm may be set off 334 warning of a possible occlusion 312 status. If the energy input is below a minimum threshold (for example, very low 214 input current level), then the system may test 334 how long the low energy state continues. If the very low energy state continues only a short while (for example ranging between 100 ms to 60 sec.) the system may assume that the system was priming 204 and that there is no fault. If the low input energy level continues for a long time, a fault (for example that the system is improperly disengaged 314) may be determined and/or an alarm set off 332, for example warning of a possible disengagement of the power train.


In some embodiments, if the input energy is above a minimal threshold and below a maximum threshold, then it may be determined to be OK and established 325 as a baseline power level. If no fault has developed, the system may optionally continue to monitor 328 the input energy. If a high steady energy state develops, then the pump is determined to be engaged 306. A new baseline input energy may optionally be set 325′. From the beginning of the engaged status the system may count the number of revolutions of the motor. The medicine dosage applied may optionally be determined from the number of motor revolutions after engagement. For example each revolution of the motor may represent an injection volume of between 5×10-4 to 5×10-5 ml. The total discharge may for example range between 0.5 and 5 ml and/or the injection time may for example range for example between 5 minutes to 5 hours or in some cases to between 5 hours and 24 hours. For example the motor may revolve between 103 and 5×104 revolutions during an injection (after it establishing engagement and/or discharge started until the end of injection.


If during the engaged status, the input energy drops or rises too much 330, the system may detect a fault in the injection and set off 332,334 a warning alarm for disengagement 314 and/or occlusion 312.


A More Complex Method of Motor Control



FIGS. 4 and 5 are a circuit diagram and a flow chart illustration of an exemplary embodiment of a control method of a more complex disposable portable medical infusion pump. The exemplary infusion system may be designed to be cheap, disposable, small and/or reliable. Optionally, the system may include an actuator, for example a DC motor 438. DC motor may optionally draw a relatively high current. DC motor 438 may optionally drive a pump.


In some embodiments, the system may include a controller 432 including a processor 443. In some embodiments, controller may require a stable input voltage. In some embodiments, a cheap, small, and/or disposable power supply 436 (for example three Ag2O batteries) may supply 562 a current limited power. For example the batteries may not be able to simultaneously directly supply both the power requirement of the motor and the voltage requirements of the CPU. Optionally the infuser may include an electrical sensor (for example current sensor 454 and/or a voltage sensor 441) and or a motor performance sensor, (for example a rotation counter 452) to detect such changes in input energy and/or output performance of motor 438 and/or controller 432. Controller 432 may include, for example, a real time clock (RTC) 455. RTC 455 may be used, for example, to track time periods for motor pulses.


In some embodiments an energy reservoir 439 may supplied for controller 432. Optionally, the reservoir may supply a dependable voltage to the controller even when high current drawn by motor 438 causes the output voltage of power supply 436 to drop.


In the example of FIG. 4, optionally motor 438 drives a pump injecting a medication. The rate of injection is optionally controlled by controller 432. Exemplary embodiments of a control system for an infusion pump can be found in application U.S. provisional Ser. No. 61/592,978, on Jan. 31, 2012. A PCT application, PCT/US12/50696, claiming priority to this US provisional was filed on Aug. 14, 2012. Both applications are incorporated herein by reference.


In some embodiments, the length of injection and number of doses may be set and an adjustable pulse of power may be applied to the motor in each of a number of time periods to inject a determined dosage. For example, there may be a pulse every second that continues driving 568 motor 438. The pulse may continue until the motor has revolved a predetermined number of revolutions.


In some embodiments, controller 432 may include parameters for driving the motor in a non-volatile memory 447. Controller 432 may optionally direct motor driver 442 to apply pulses of power to the motor over predetermined time periods. For example in a given time period, controller 432 may determine 566 if motor 438 has completed the predetermined number of revolutions for the period. When the requisite number of revolutions has been completed power may be cut off 562 to motor 438. While power is cut off 562 to motor 438, energy reservoir 439 may be charged 564. Optionally, current in the pulses may be unregulated. Optionally, the precise rotational rate of the motor may be unmeasured.


In some embodiments, a motor may be connected to a pump such that each revolution of the motor injects a fixed quantity of medicine (for example 10-5 ml). For example, it may be desired to inject 3.5 ml over ten minutes. In the example, the desired injection rate may optionally be achieved by driving 568 motor 438 to revolve between 10 to 100 revolutions in a one second time period. For an injection that lasts five hours the motor time periods may be longer than one second (for example between 10 sec and 5 minutes and/or the number of revolutions in a time period may range between 3 and 30. For a 24 hour injection the length of a time period may range between 1 minute to 1 hour.


Optionally, the status indicators and/or the delivery parameters may be stored in a volatile memory 449. In some embodiments, it may be important that the controller not reset. For example, resetting may cause loss of parameter values stored in a volatile memory. For example, resetting of the controller may indicate a malfunction of the injector or cause a fault in the tracking of the injection, in some cases such a malfunction may for the patient to rush to the hospital or even endanger the patient's life.


In some embodiments, during the dosage period, the high current drawn by motor 432 may cause the voltage output of batteries 426 to drop below the reset threshold of controller 432. Optionally, upon detecting 567 a drop in voltage, reset of controller 432 may be avoided by cutting 570 power to motor 432 for a short period (for example less than the pulse time period and/or less than an inertial period of motor 432) during which time energy reservoir 439 may recharge 564′.


Optionally the infuser may include a communication module 448. Communication module 448 may include for example a communication cradle. Communication module 448 optionally be used, to program a delivery rate for a drug and/or to retrieve data on dosage and/or delivery conditions after the drug has been delivered. Optionally communication module 448 may also be used to adjust control parameters such as the length of a dosage period, the rate of current distribution. Communication module 448 may be used, for example, to warn a patient (for example via a warning light and/or a buzzer) of a malfunction and/or to warn a caretaker (for example a doctor and/or an emergency switchboard) of a malfunction, for example via a wireless network.


In some embodiments the infuser may include dynamic adjustment of operating parameters. For example, the infuser may be able to adjust itself to adapt to conditions or performance parts that may not be known a-priori. For example, if the infuser is stored for a long time batteries may not perform according to specifications. For example, if the infuser is used under cold conditions, the viscosity of the medicine may increase and the performance of batteries may be poor. In such a case, during a dosage period, motor 438 may draw higher than expected current. In such a case, during a dosage period, the drop of voltage output of battery may be more than expected. Dynamically adjusting operating parameters may include for example shortening pulse period and/or shortening the pulse length of the current distribution.


In some embodiments, the performance characteristics of the infuser may be adjusted for secondary reasons. For example the rate of pulses may be adjusted to achieve a desired vibration (patients may feel more confident that the device is working if they hear a reassuring humming sound).


In some embodiments, the voltage distribution cut off period may have a length of, for example, be between 2 and 50 msec. In some embodiments, the voltage distribution pulse to motor 438 may have a length of, for example, between 2 and 150 msec. In some embodiments, the duty cycle of the power distribution (pulses and cut offs) may range between 50% and 95%. In some embodiments, the pulse density modulation motor control may have a motor-on time ranging between 50 and 500 msec. In some embodiments, the pulse density modulation motor control may have a motor-off time ranging between 500 and 5000 msec. In some embodiments, the pulse density modulation motor control may have a duty cycle ranging between 2% and 20%.


In some embodiments, processor 443 may use outputs from rotation counter 452 and/or current sensor 454 and/or voltage sensor 441 to determine the status of the infuser. In some embodiments, rotation counter 452 may have a coarse resolution. For example the resolution of counter 452 may include full revolutions and/or half revolutions and/or quarter revolutions. For example the resolution of counter 452 may be too coarse to allow determination of changes motor speed on a time scale of sampling motor input measurements (for example the sample time scale of current sensor 454 and voltage sensor 441).


Exemplary Current Vs. Time for a More Complex Infuser



FIG. 6 illustrates an experimental current vs. time graph 670 for an exemplary infuser wherein injection rate is being controlled by pulse width modulation (PWM). In exemplary graph 670 normal engaged pumping behavior is illustrated by times from 0 to 45 seconds. A baseline current level 672 of 125 mA is illustrated by the horizontal line. At 45 seconds a resistance was placed against the drive to simulate an occlusion. Starting at the occlusion time, 45 sec, the current value in graph 670 rises toward 280 mA.


The complex shape of graph 670 may make it difficult to reliably determine the baseline current value and/or deviations therefrom. For example, during normal operation (for example from 0 to 45 sec) each energy pulse jumps to a high current at the beginning of an energy pulse and then drops toward the baseline value. Slight changes in sampling time with respect to the pulse timing may make the current appear to be changing even when the infuser status has not changed. This behavior may be further complicated if short term pulse cut offs are added (for example as described above to preserve controller voltage).


Exemplary Indicator Integrating Changes in Pulse Width and Current



FIG. 7A, B, C illustrate close up views of experimental current vs. time data, in accordance with an exemplary embodiment of the invention. More specifically, in FIG. 7A graph 770 illustrates current vs. time behavior of the exemplary infuser during the disengagement period (from 12 to 17 sec on graph 670). In FIG. 7B, graph 770′ illustrates current vs. time behavior of the exemplary infuser during normal operation while pumping medicine. In FIG. 7C, graph 770″ illustrates current vs. time behavior of the exemplary infuser with an occlusion (from 72 to 77 sec on graph 670).


In FIG. 7A the transient current is strongly variable and dependent on sample timing. The peak current may rise to and/or above the 280 mA occlusion value.


Comparing graphs 770 and 770″ it seen that the occlusion along with causing higher current also produces longer pulses of energy over time. A measure that includes for example both pulse width and current magnitude may be more sensitive to changes in injector status and/or more reliable than using just the current value as an indicator. For example the integral of current over time during a pulse may be used to account for changes both of the control parameter (pulse width) and the measured input (current magnitude).


For example, during disengaged (minimal load) conditions the pulse width is approximately 0.1 sec and the majority of the pulse is near the lower voltage baseline value of 125 mA. Therefore for each pulse the in the disengagement graph 770 the area under the curve is approximately 13 second×mA. For example, during normal pumping (engaged) conditions (as illustrated for example in graph 770′) the pulse width is approximately 0.25 sec and the majority of the pulse is approximately of 180 mA. Therefore for each pulse the in the normal working graph 770′ the area under the curve is approximately 45 second×mA. For example, during the occluded behavior (for example past 75 sec in graph 770″), exemplary pulse width is approximately 0.7 sec and the current is approximately 280 mA giving an area under the curve of approximately 200 second×mA.


For an infuser that includes short power cut offs to preserve controller voltage (for example as described herein above), power may be cut off to the motor when current is high. This may cause transient and/or an overall decrease the current when there is an occlusion. This may make changes in current a less reliable indicator of occlusions. The short term power cut offs may slow the motor. This may lead to a higher pulse width (for example when the controller extends the pulse to achieve the same rotation count). In that case, the integral of current over time indicator of occlusion would remain reliable (for example the reduced current due to short power cut offs may be offset by the increased pulse length and the integral under the pulse during occlusion would remain high).


Method of Ascertaining a Status of an Infuser



FIG. 8 is a flow chart illustration of a method of ascertaining a status of an infuser.


In some embodiments performance an infuser may be assessed 885. Optionally assessing 885 may include coarse measurement of a performance parameter. For example a revolution counter may count revolutions of a motor. In some embodiments, a motor may revolve for example between 5 to 50 times during a power pulse period which may range from example 0.05 sec to 0.7 sec. For example the rotation frequency may range between 1/100 msec to 1/1 msec.


In some embodiments power input to an infuser may optionally be controlled 882. For example control may be via a negative feedback loop. For example a pumping rate of the infuser may be controlled by cutting off power to an actuator when the discharge in a period reaches a desired target. For example, input power may be reduced when a target discharge (which may be estimated, for example, from the number of motor rotations) is reached during designated in a time period. For example, when the infuser reaches the target discharge before the end of the time period, a power pulse may be shut off to a motor driving a pump. Alternatively or additionally, a negative feedback loop may regulate voltage input to a controller. When voltage falls to a controller, pulses of power may be diverted from a motor to the controller.


In some embodiments, the status of the infuser may be ascertained 886 by integrating motor power input with information on the motor control parameter. For example, the measured current magnitude (the measured parameter) may be integrated over the pulse time (the control parameter).


In some embodiments, power input to an actuator may be measured 884. For example the input current to the motor may be measured. For example measurements 884 may be made at a sample frequency. For example, a sample frequency may range between 1/1 msec and 1/100 msec.


In some embodiments, measured 884 power input and/or an ascertained parameter (for example the result of integration of current over time) may be adjusted 888 using statistical methods, for example a moving average and/or data smoothing.


In some embodiments, the sensitivity of the detection of statuses may be increased using 890 a differential measure. For example, due to variability of battery state and/or quality and/or variability in temperature and/or drug viscosity and/or internal resistance of components, absolute measures may not be robust. Nevertheless, a baseline measure may be calculated and changes may be interpreted to determine infuser status. For example, once a pumping status has been reached and a baseline determined, a large drop in the integral of current over pulse time may indicate a disengagement of the drive mechanism. For example, once a pumping status has been reached and a baseline determined, a large increase in the integral of current over pulse time may indicate an occlusion.


It is expected that during the life of a patent maturing from this application many relevant technologies will be developed and the scope of the terms used herein are intended to include all such new technologies a priori.


As used herein the term “about” refers to ±5%.


The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.


The term “consisting of” means “including and limited to”.


The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.


As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.


Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.


Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.


It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.


Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.


All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.

Claims
  • 1. A method of determining a status of a battery operated drug infusing device having an actuator, the method comprising: measuring an initial input energy level;determining whether the initial energy level is below a minimum threshold, above a maximum threshold, or represents a steady input energy state between the minimum and maximum thresholds;when the initial energy level is above the maximum threshold, triggering an alarm;when the initial energy level is below the minimum threshold, determining whether the initial energy level remains below the minimum threshold for a predetermined period of time, and if so, triggering an alarm;when the initial energy level is determined to be at the steady input energy state: establishing the steady input energy state as a baseline input energy; andcontrolling the actuator based on a performance of the actuator as determined by: (1) measuring an input parameter to the actuator, the input parameter including at least a magnitude of a current input to the actuator, and(2) ascertaining a status of the device by integrating a magnitude of said current input over a time corresponding to said current input to the actuator and comparing the integrated current input over time with the baseline input energy-inserted therein.
  • 2. The method of claim 1, wherein said performance of the actuator includes a cumulative movement of the actuator, andsaid controlling includes limiting a time of current input to the actuator.
  • 3. The method of claim 2, wherein said cumulative movement includes a number of revolutions by the actuator during a time period.
  • 4. The method of claim 3, wherein said limiting includes limiting a pulse density of said current input in said time period.
  • 5. The method of claim 1, wherein said controlling affects said input parameter.
  • 6. The method of claim 5, wherein a result of said measuring serves as a proxy for a parameter of said controlling.
  • 7. The method of claim 6, wherein a time dependence of said measured input parameter serves as said proxy for said parameter of said controlling.
  • 8. The method of claim 1, wherein said controlling includes pulse density modulation and said ascertaining depends on said pulse density.
  • 9. The method of claim 1, wherein said status includes at least one element selected from the group consisting of, a blockage, a disengagement, changing of an active mechanical part, discharging medicine, and not discharging.
  • 10. The method of claim 1, wherein said controlling includes: counting a number of rotations by the actuator wherein said number of rotations is proportional to a cumulative discharge of the device, andcutting off said current when said number reaches a threshold.
  • 11. The method of claim 10, wherein a rate of said counting is less than four times a sampling rate of said measuring.
  • 12. The method of claim 1, wherein said input parameter is unregulated.
  • 13. The method of claim 1, wherein said controlling includes temporarily cutting off said input parameter.
US Referenced Citations (429)
Number Name Date Kind
3946732 Hurscham Mar 1976 A
3994295 Wulff Nov 1976 A
4167663 Granzow, Jr. et al. Sep 1979 A
4273122 Whitney et al. Jun 1981 A
4396385 Kelly et al. Aug 1983 A
4601702 Hudson Jul 1986 A
4634426 Kamen Jan 1987 A
4886499 Cirelli et al. Dec 1989 A
4908014 Kroyer Mar 1990 A
4919596 Slate et al. Apr 1990 A
4950235 Slate Aug 1990 A
4950246 Muller Aug 1990 A
5109850 Blanco et al. May 1992 A
5131816 Brown et al. Jul 1992 A
5254096 Rondelet et al. Oct 1993 A
5342313 Campbell et al. Aug 1994 A
5354287 Wacks Oct 1994 A
5383865 Michel Jan 1995 A
5411482 Campbell May 1995 A
5501665 Jhuboo et al. Mar 1996 A
5558639 Gangemi Sep 1996 A
5593390 Castellano et al. Jan 1997 A
5616132 Newman Apr 1997 A
5643218 Lynn et al. Jul 1997 A
5647853 Feldmann et al. Jul 1997 A
5658133 Anderson et al. Aug 1997 A
5690618 Smith et al. Nov 1997 A
D393314 Meisner et al. Apr 1998 S
5800420 Gross et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5814020 Gross Sep 1998 A
5851197 Marano et al. Dec 1998 A
5858001 Tsals et al. Jan 1999 A
5858008 Capaccio Jan 1999 A
5931814 Alex et al. Aug 1999 A
5957895 Sage et al. Sep 1999 A
5993423 Choi Nov 1999 A
5997501 Gross et al. Dec 1999 A
6004297 Steenfeldt-Jensen et al. Dec 1999 A
6064797 Crittendon et al. May 2000 A
6074369 Sage et al. Jun 2000 A
6175688 Cassidy et al. Jan 2001 B1
6186982 Gross et al. Feb 2001 B1
6200289 Hochman et al. Mar 2001 B1
6248093 Moberg Jun 2001 B1
6277095 Kriesel et al. Aug 2001 B1
6277098 Klitmose et al. Aug 2001 B1
6277099 Strowe et al. Aug 2001 B1
6287283 Ljunggreen et al. Sep 2001 B1
6362591 Moberg Mar 2002 B1
6391005 Lum et al. May 2002 B1
6423029 Elsberry Jul 2002 B1
6423035 Das et al. Jul 2002 B1
D465026 May et al. Oct 2002 S
6458102 Mann et al. Oct 2002 B1
6485461 Mason et al. Nov 2002 B1
6485465 Moberg et al. Nov 2002 B2
6500150 Gross et al. Dec 2002 B1
6517517 Farrugia et al. Feb 2003 B1
D471274 Diaz et al. Mar 2003 S
D471983 Hippolyte et al. Mar 2003 S
6530901 Tsukada et al. Mar 2003 B1
6555986 Moberg Apr 2003 B2
6558351 Steil et al. May 2003 B1
6589229 Connelly et al. Jul 2003 B1
6595956 Gross et al. Jul 2003 B1
6595960 West et al. Jul 2003 B2
6645181 Lavi et al. Nov 2003 B1
6652482 Hochman Nov 2003 B2
6656158 Mahoney et al. Dec 2003 B2
6656159 Flaherty Dec 2003 B2
6659980 Moberg et al. Dec 2003 B2
6673033 Sciulli et al. Jan 2004 B1
6679862 Diaz et al. Jan 2004 B2
6699218 Flaherty et al. Mar 2004 B2
6749587 Flaherty Jun 2004 B2
6768425 Flaherty et al. Jul 2004 B2
6786890 Preuthun et al. Sep 2004 B2
6800071 McConnell et al. Oct 2004 B1
6805687 Dextradeur et al. Oct 2004 B2
6824529 Gross et al. Nov 2004 B2
6843782 Gross et al. Jan 2005 B2
6854620 Ramey Feb 2005 B2
6905298 Haring Jun 2005 B1
6908452 Diaz et al. Jun 2005 B2
6933693 Schuchmann Aug 2005 B2
6950028 Zweig Sep 2005 B2
6960192 Flaherty et al. Nov 2005 B1
7001360 Veasey et al. Feb 2006 B2
7048715 Diaz et al. May 2006 B2
7060059 Keith et al. Jun 2006 B2
7128727 Flaherty et al. Oct 2006 B2
7144384 Gorman et al. Dec 2006 B2
7193521 Moberg et al. Mar 2007 B2
D544092 Lewis Jun 2007 S
7247149 Beyerlein Jul 2007 B2
7250037 Shermer et al. Jul 2007 B2
7267669 Staunton et al. Sep 2007 B2
7303549 Flaherty et al. Dec 2007 B2
7390314 Stutz, Jr. et al. Jun 2008 B2
7407493 Cane′ Aug 2008 B2
7455663 Bikovsky Nov 2008 B2
7459571 Schlitter et al. Dec 2008 B2
7465290 Reilly Dec 2008 B2
7497842 Diaz et al. Mar 2009 B2
7524304 Genosar Apr 2009 B2
7530964 Lavi et al. May 2009 B2
7547281 Hayes et al. Jun 2009 B2
7563253 Tanner et al. Jul 2009 B2
7565208 Harris et al. Jul 2009 B2
7569050 Moberg et al. Aug 2009 B2
D600341 Loerwald Sep 2009 S
7585287 Bresina et al. Sep 2009 B2
7588559 Aravena et al. Sep 2009 B2
D602155 Foley et al. Oct 2009 S
D602586 Foley et al. Oct 2009 S
D604835 Conley Nov 2009 S
7621893 Moberg et al. Nov 2009 B2
7628770 Ethelfeld Dec 2009 B2
7628772 McConnell et al. Dec 2009 B2
7628782 Adair et al. Dec 2009 B2
7637891 Wall Dec 2009 B2
7641649 Moberg et al. Jan 2010 B2
7660627 McNichols et al. Feb 2010 B2
7678079 Shermer et al. Mar 2010 B2
7682338 Griffin Mar 2010 B2
7686787 Moberg et al. Mar 2010 B2
7699829 Harris et al. Apr 2010 B2
7699833 Moberg et al. Apr 2010 B2
7704227 Moberg et al. Apr 2010 B2
7704231 Pongpairochana et al. Apr 2010 B2
7708717 Estes et al. May 2010 B2
7713238 Mernoe May 2010 B2
7713240 Istoc et al. May 2010 B2
7717913 Novak et al. May 2010 B2
7722574 Toman et al. May 2010 B2
7736344 Moberg et al. Jun 2010 B2
7744589 Mounce et al. Jun 2010 B2
7749194 Edwards et al. Jul 2010 B2
7753879 Mernoe Jul 2010 B2
7766873 Moberg et al. Aug 2010 B2
7776030 Estes et al. Aug 2010 B2
7780636 Radmer et al. Aug 2010 B2
7780637 Jerde et al. Aug 2010 B2
7789857 Moberg et al. Sep 2010 B2
7789862 Thorne, Jr. Sep 2010 B2
7801599 Young et al. Sep 2010 B2
7806868 De Polo et al. Oct 2010 B2
7815622 Istoc et al. Oct 2010 B2
7828528 Estes et al. Nov 2010 B2
7837659 Bush, Jr. et al. Nov 2010 B2
7846132 Gravesen et al. Dec 2010 B2
7857131 Vedrine Dec 2010 B2
7879025 Jacobson et al. Feb 2011 B2
7879026 Estes et al. Feb 2011 B2
7892206 Moberg et al. Feb 2011 B2
7918825 O'Connor et al. Apr 2011 B2
7918843 Genosar et al. Apr 2011 B2
7935104 Yodfat et al. May 2011 B2
7935105 Miller et al. May 2011 B2
7938803 Mernoe et al. May 2011 B2
7955305 Moberg et al. Jun 2011 B2
7967784 Pongpairochana et al. Jun 2011 B2
7981105 Adair et al. Jul 2011 B2
7988683 Adair et al. Aug 2011 B2
7993300 Nyholm et al. Aug 2011 B2
7998111 Moberg et al. Aug 2011 B2
8021357 Tanaka et al. Sep 2011 B2
8025658 Chong et al. Sep 2011 B2
8029469 Ethelfeld Oct 2011 B2
8034019 Nair et al. Oct 2011 B2
8038666 Triplett et al. Oct 2011 B2
8057436 Causey et al. Nov 2011 B2
8062253 Nielsen et al. Nov 2011 B2
8062257 Moberg et al. Nov 2011 B2
8065096 Moberg et al. Nov 2011 B2
8066694 Wagener Nov 2011 B2
D650079 Presta et al. Dec 2011 S
D652503 Cameron et al. Jan 2012 S
8105279 Mernoe et al. Jan 2012 B2
8114046 Covino et al. Feb 2012 B2
8114064 Alferness et al. Feb 2012 B2
8114066 Naef et al. Feb 2012 B2
8147446 Yodfat et al. Apr 2012 B2
8152764 Istoc et al. Apr 2012 B2
8152770 Reid Apr 2012 B2
8152779 Cabiri Apr 2012 B2
8152793 Keinanen et al. Apr 2012 B2
8157693 Waksmundzki Apr 2012 B2
8157769 Cabiri Apr 2012 B2
8162923 Adams et al. Apr 2012 B2
8167841 Teisen-Simony et al. May 2012 B2
8172804 Bikovsky May 2012 B2
8182447 Moberg et al. May 2012 B2
8182462 Istoc et al. May 2012 B2
8197444 Bazargan et al. Jun 2012 B1
8206351 Sugimoto et al. Jun 2012 B2
8267893 Moberg et al. Sep 2012 B2
8267921 Yodfat et al. Sep 2012 B2
8287520 Drew et al. Oct 2012 B2
8308679 Hanson et al. Nov 2012 B2
8348898 Cabiri Jan 2013 B2
8372039 Mernoe et al. Feb 2013 B2
8373421 Lindegger et al. Feb 2013 B2
8409142 Causey et al. Apr 2013 B2
8414557 Istoc et al. Apr 2013 B2
8430847 Mernoe et al. Apr 2013 B2
8469942 Kow et al. Jun 2013 B2
8474332 Bente, IV et al. Jul 2013 B2
8475408 Mernoe et al. Jul 2013 B2
8479595 Vazquez et al. Jul 2013 B2
8483980 Moberg et al. Jul 2013 B2
8495918 Bazargan et al. Jul 2013 B2
8512287 Cindrich et al. Aug 2013 B2
8517987 Istoc et al. Aug 2013 B2
8523803 Favreau Sep 2013 B1
8556856 Bazargan et al. Oct 2013 B2
8574216 Istoc et al. Nov 2013 B2
8603026 Favreau Dec 2013 B2
8603027 Favreau Dec 2013 B2
8617110 Moberg et al. Dec 2013 B2
8628510 Bazargan et al. Jan 2014 B2
8647074 Moberg et al. Feb 2014 B2
8647296 Moberg et al. Feb 2014 B2
8668672 Moberg et al. Mar 2014 B2
8674288 Hanson et al. Mar 2014 B2
8679060 Mernoe et al. Mar 2014 B2
8681010 Moberg et al. Mar 2014 B2
8690855 Alderete, Jr. et al. Apr 2014 B2
8708961 Field et al. Apr 2014 B2
8751237 Kubota Jun 2014 B2
8753326 Chong et al. Jun 2014 B2
8753331 Murphy Jun 2014 B2
8764707 Moberg et al. Jul 2014 B2
8764723 Chong et al. Jul 2014 B2
8771222 Kanderian, Jr. et al. Jul 2014 B2
8777896 Starkweather et al. Jul 2014 B2
8777924 Kanderian, Jr. et al. Jul 2014 B2
8777925 Patton Jul 2014 B2
8784369 Starkweather et al. Jul 2014 B2
8784370 Lebel et al. Jul 2014 B2
8790295 Sigg et al. Jul 2014 B1
8795224 Starkweather et al. Aug 2014 B2
8795231 Chong et al. Aug 2014 B2
8795260 Drew Aug 2014 B2
8801668 Ali et al. Aug 2014 B2
8810394 Kalpin Aug 2014 B2
9463280 Cabiri Oct 2016 B2
20020040208 Flaherty et al. Apr 2002 A1
20020043951 Moberg Apr 2002 A1
20020055711 Lavi et al. May 2002 A1
20030135159 Daily et al. Jul 2003 A1
20030160683 Blomquist Aug 2003 A1
20030171717 Farrugia et al. Sep 2003 A1
20030199825 Flaherty Oct 2003 A1
20040085215 Moberg et al. May 2004 A1
20040092873 Moberg May 2004 A1
20040116866 Gorman et al. Jun 2004 A1
20040260233 Garibotto et al. Dec 2004 A1
20050065472 Cindrich et al. Mar 2005 A1
20050070845 Faries et al. Mar 2005 A1
20050071487 Lu et al. Mar 2005 A1
20050171512 Flaherty Aug 2005 A1
20050177136 Miller Aug 2005 A1
20050197650 Sugimoto et al. Sep 2005 A1
20050238507 Dilanni et al. Oct 2005 A1
20050258714 Henderson et al. Nov 2005 A1
20060095014 Ethelfeld May 2006 A1
20060122577 Poulsen et al. Jun 2006 A1
20060173408 Wyrick Aug 2006 A1
20060173439 Thorne et al. Aug 2006 A1
20060184154 Moberg et al. Aug 2006 A1
20060229569 Lavi et al. Oct 2006 A1
20060264890 Moberg et al. Nov 2006 A1
20060283465 Nickel et al. Dec 2006 A1
20070021733 Hansen et al. Jan 2007 A1
20070049865 Radmer et al. Mar 2007 A1
20070118405 Campbell et al. May 2007 A1
20070149926 Moberg et al. Jun 2007 A1
20070167912 Causey et al. Jul 2007 A1
20070191770 Moberg et al. Aug 2007 A1
20070219480 Kamen et al. Sep 2007 A1
20070282269 Carter et al. Dec 2007 A1
20080033369 Kohlbrenner et al. Feb 2008 A1
20080051710 Moberg et al. Feb 2008 A1
20080051711 Mounce et al. Feb 2008 A1
20080051727 Moberg et al. Feb 2008 A1
20080059133 Edwards et al. Mar 2008 A1
20080125700 Moberg et al. May 2008 A1
20080140006 Eskuri et al. Jun 2008 A1
20080140018 Enggaard et al. Jun 2008 A1
20080147004 Mann et al. Jun 2008 A1
20080156476 Smisson Jul 2008 A1
20080167641 Hansen et al. Jul 2008 A1
20080188813 Miller et al. Aug 2008 A1
20080215006 Thorkild Sep 2008 A1
20080221522 Moberg et al. Sep 2008 A1
20080221523 Moberg et al. Sep 2008 A1
20080269723 Mastrototaro et al. Oct 2008 A1
20080294143 Tanaka et al. Nov 2008 A1
20080306449 Kristensen et al. Dec 2008 A1
20080312601 Cane Dec 2008 A1
20080319416 Yodfat et al. Dec 2008 A1
20090054750 Jennewine Feb 2009 A1
20090076453 Mejlhede et al. Mar 2009 A1
20090088694 Carter et al. Apr 2009 A1
20090088731 Campbell et al. Apr 2009 A1
20090093792 Gross et al. Apr 2009 A1
20090093793 Gross et al. Apr 2009 A1
20090124977 Jensen May 2009 A1
20090149830 Spector Jun 2009 A1
20090182277 Carter Jul 2009 A1
20090234319 Marksteiner Sep 2009 A1
20090240240 Hines et al. Sep 2009 A1
20090253973 Bashan et al. Oct 2009 A1
20090259176 Yairi Oct 2009 A1
20090299397 Ruan et al. Dec 2009 A1
20090326509 Muse et al. Dec 2009 A1
20100030156 Beebe et al. Feb 2010 A1
20100030198 Beebe et al. Feb 2010 A1
20100037680 Moberg et al. Feb 2010 A1
20100049144 McConnell et al. Feb 2010 A1
20100057057 Hayter et al. Mar 2010 A1
20100076412 Rush et al. Mar 2010 A1
20100094255 Nycz et al. Apr 2010 A1
20100100076 Rush et al. Apr 2010 A1
20100100077 Rush et al. Apr 2010 A1
20100106098 Atterbury et al. Apr 2010 A1
20100121314 Iobbi May 2010 A1
20100137790 Yodfat Jun 2010 A1
20100145303 Yodfat et al. Jun 2010 A1
20100162548 Leidig Jul 2010 A1
20100168607 Miesel Jul 2010 A1
20100168683 Cabiri Jul 2010 A1
20100198157 Gyrn et al. Aug 2010 A1
20100204657 Yodfat et al. Aug 2010 A1
20100217192 Moberg et al. Aug 2010 A1
20100217193 Moberg et al. Aug 2010 A1
20100234830 Straessler et al. Sep 2010 A1
20100241065 Moberg et al. Sep 2010 A1
20100264931 Lindegger et al. Oct 2010 A1
20100274112 Hoss et al. Oct 2010 A1
20100274192 Mernoe Oct 2010 A1
20100276411 Hansen et al. Nov 2010 A1
20100280499 Yodfat et al. Nov 2010 A1
20100331826 Field et al. Dec 2010 A1
20110034900 Yodfat et al. Feb 2011 A1
20110054399 Chong et al. Mar 2011 A1
20110054400 Chong et al. Mar 2011 A1
20110060284 Harr Mar 2011 A1
20110119033 Moberg et al. May 2011 A1
20110160654 Hanson et al. Jun 2011 A1
20110160666 Hanson et al. Jun 2011 A1
20110160669 Gyrn et al. Jun 2011 A1
20110172645 Moga et al. Jul 2011 A1
20110178472 Cabiri Jul 2011 A1
20110184342 Pesach et al. Jul 2011 A1
20110201998 Pongpairochana et al. Aug 2011 A1
20110224614 Moberg et al. Sep 2011 A1
20110233393 Hanson et al. Sep 2011 A1
20110238031 Adair et al. Sep 2011 A1
20110245773 Estes et al. Oct 2011 A1
20110264383 Moberg et al. Oct 2011 A1
20110270160 Mernoe Nov 2011 A1
20110282282 Lorenzen et al. Nov 2011 A1
20110295205 Kaufmann et al. Dec 2011 A1
20110313238 Reichenbach et al. Dec 2011 A1
20110313351 Kamen et al. Dec 2011 A1
20110319861 Wilk Dec 2011 A1
20110319919 Curry et al. Dec 2011 A1
20120004602 Hanson et al. Jan 2012 A1
20120010594 Holt et al. Jan 2012 A1
20120022499 Anderson et al. Jan 2012 A1
20120025995 Moberg et al. Feb 2012 A1
20120029431 Hwang et al. Feb 2012 A1
20120035546 Cabiri Feb 2012 A1
20120041364 Smith Feb 2012 A1
20120041370 Moberg et al. Feb 2012 A1
20120041414 Estes et al. Feb 2012 A1
20120071828 Tojo et al. Mar 2012 A1
20120096953 Bente, IV et al. Apr 2012 A1
20120096954 Vazquez et al. Apr 2012 A1
20120101436 Bazargan et al. Apr 2012 A1
20120108933 Liang et al. May 2012 A1
20120160033 Kow et al. Jun 2012 A1
20120165733 Bazargan et al. Jun 2012 A1
20120165780 Bazargan et al. Jun 2012 A1
20120215169 Moberg et al. Aug 2012 A1
20120215199 Moberg et al. Aug 2012 A1
20120226234 Bazargan et al. Sep 2012 A1
20120259282 Alderete, Jr. et al. Oct 2012 A1
20120310153 Moberg et al. Dec 2012 A1
20130068319 Plumptre et al. Mar 2013 A1
20130096509 Avery et al. Apr 2013 A1
20130133438 Kow et al. May 2013 A1
20130175192 Iio et al. Jul 2013 A1
20130218089 Davies et al. Aug 2013 A1
20130218092 Davies et al. Aug 2013 A1
20130237953 Kow et al. Sep 2013 A1
20130245595 Kow et al. Sep 2013 A1
20130253419 Favreau Sep 2013 A1
20130253420 Favreau Sep 2013 A1
20130253421 Favreau Sep 2013 A1
20130331791 Gross et al. Dec 2013 A1
20140055073 Favreau Feb 2014 A1
20140055076 Favreau Feb 2014 A1
20140058349 Bazargan et al. Feb 2014 A1
20140083517 Moia et al. Mar 2014 A1
20140094755 Bazargan et al. Apr 2014 A1
20140128807 Moberg et al. May 2014 A1
20140128835 Moberg et al. May 2014 A1
20140135692 Alderete, Jr. et al. May 2014 A1
20140135694 Moberg et al. May 2014 A1
20140142499 Moberg et al. May 2014 A1
20140148784 Anderson et al. May 2014 A1
20140148785 Moberg et al. May 2014 A1
20140163522 Alderete, Jr. et al. Jun 2014 A1
20140171881 Cabiri Jun 2014 A1
20140194819 Maule et al. Jul 2014 A1
20140207064 Yavorsky Jul 2014 A1
20140207065 Yavorsky Jul 2014 A1
20140207066 Yavorsky Jul 2014 A1
20140210631 Zavis Jul 2014 A1
20140213975 Clemente et al. Jul 2014 A1
20140236087 Alderete, Jr. et al. Aug 2014 A1
20140261758 Wlodarczyk et al. Sep 2014 A1
20140288511 Tan-Malecki et al. Sep 2014 A1
20150011976 Vouillamoz et al. Jan 2015 A1
20160015910 Mukai et al. Jan 2016 A1
Foreign Referenced Citations (22)
Number Date Country
101868273 Oct 2010 CN
0401179 Dec 1990 EP
0744975 Dec 1996 EP
1666080 Jun 2006 EP
2060606 May 2009 EP
2345441 Jul 2011 EP
2454483 Aug 2015 EP
8911302 Nov 1989 WO
9009202 Aug 1990 WO
9521645 Aug 1995 WO
9632975 Oct 1996 WO
9721457 Jun 1997 WO
9733638 Sep 1997 WO
2007092618 Aug 2007 WO
2007130868 Nov 2007 WO
2008024810 Feb 2008 WO
2008024814 Feb 2008 WO
2008129549 Oct 2008 WO
2009081262 Jul 2009 WO
2011090955 Jul 2011 WO
2011113806 Sep 2011 WO
2012032411 Mar 2012 WO
Non-Patent Literature Citations (22)
Entry
Office Action dated Nov. 25, 2015 in U.S. Appl. No. 14/372,384 by Cabiri.
Office Action dated Oct. 28, 2015 in U.S. Appl. No. 13/429,942 by Cabiri.
Office Action dated Jan. 5, 2016 in U.S. Appl. No. 14/696,644 by Cabiri.
Office Action dated Dec. 3, 2015 in CN Application No. 201280068544.0.
U.S. Appl. No. 14/683,253 by Cabiri, filed Apr. 10, 2015.
Office Action dated May 18, 2015 in U.S. Appl. No. 13/429,942 by Cabiri.
Office Action dated Jan. 28, 2015 in U.S. Appl. No. 13/429,942 by Cabiri.
U.S. Appl. No. 14/593,041 by Cabiri, filed Jan. 9, 2015.
Int'l Search Report and Written Opinion dated Aug. 28, 2014 in Int'l Application No. PCT/US2014/035662.
Int'l Preliminary Report on Patentability dated Aug. 14, 2014 in Int'l Application No. PCT/US2012/050696.
U.S. Appl. No. 14/372,384 by Cabiri, filed Jul. 15, 2014.
Office Action dated Aug. 15, 2013 in U.S. Appl. No. 13/429,942 by Cabiri.
Int'l Search Report and Written Opinion dated Jun. 30, 2014 in Int'l Application No. PCT/US2013/031598.
U.S. Appl. No. 13/429,942 by Cabiri, filed Mar. 26, 2012.
Int'l Search Report and Written Opinion dated Apr. 5, 2013 in Int'l Application No. PCT/US2012/050696.
Office Action dated Feb. 24, 2016 in U.S. Appl. No. 13/429,942 by Cabiri.
Office Action dated Jan. 16, 2014 in U.S. Appl. No. 13/429,942 by Cabiri.
Office Action dated Apr. 19, 2016 in U.S. Appl. No. 14/372,384, by Cabiri.
Office Action dated Jun. 1, 2016 in CN Application No. 2013800274556.
Office Action dated Jun. 17, 2016 in CN Application No. 201280068544.0.
Office Action dated Jul. 29, 2016 in U.S. Appl. No. 14/696,644, by Cabiri.
Office Action dated Nov. 9, 2016 in U.S. Appl. No. 14/683,253, by Cabiri.
Related Publications (1)
Number Date Country
20140330240 A1 Nov 2014 US