The present application relates generally to sensing and adjusting features of an environment and specifically to utilizing a computing device to determine features of a first environment for utilization in a second environment.
Often a user will enter a first environment, such as a house, room, restaurant, hotel, office, etc. and an ambiance of that environment is found to be desirable. The features of the ambiance may include the lighting, sound, temperature, humidity, air quality, scent, etc. The user may then enter a second environment and desire to replicate ambiance from the first environment in that second environment. However, in order to replicate the ambiance of the first environment, the user may be forced to manually adjust one or more different settings in the second environment. Additionally, when the user is adjusting the settings he/she may be forced to refer only to his or her memory to implement the setting from the first environment. Further, as the second environment may include different light sources, heating systems, air conditioning systems, audio systems, etc., a user's attempt to manually replicate the ambiance from the first environment is often difficult if not futile.
Included are embodiments of a method for sensing and adjusting features of an environment. Some embodiments of the method are configured for receiving an ambiance feature of a source environment, determining from the ambiance feature, a source output provided by a source device in the source environment, and determining an ambiance capability for a target environment. Some embodiments include determining, based on the ambiance capability, a target output for a target device in the target environment and communicating with the target device to model the ambiance feature from the source environment into the target environment by altering the target output provided by the target device.
Also included are embodiments of a system. Some embodiments of the system include an image capture device for receiving an illumination signal for a source environment and a memory component that stores logic that causes the system to receive the illumination signal from the image capture device and determine, from the illumination signal, an illumination ambiance in the source environment. In some embodiments, the logic further causes the system to determine a characteristic of the source environment, and determine an illumination capability for a target environment. In still some embodiments, the logic causes the system to determine, based on the illumination capability, a target output for a light source in the target environment and communicate with the light source to model the illumination ambiance from the source environment into the target environment by altering the target output provided by the light source.
Also included are embodiments of a non-transitory computer-readable medium. Some embodiments of the non-transitory computer-readable medium include logic that causes a computing device to receive an illumination signal, determine, from the illumination signal, an illumination ambiance in a source environment, and determine a characteristic of the source environment. In some embodiments, the logic further causes the computing device to determine an illumination capability for a target environment, determine, based on the illumination capability, a target output for a light source in the target environment, and communicate with the light source to model the illumination ambiance from the source environment into the target environment by altering the target output provided by the light source. In still some embodiments, the logic causes the computing device to receive an updated lighting characteristic of the target environment, determine whether the updated lighting characteristic substantially models the illumination ambiance from the source environment, and in response to determining that the updated lighting characteristic does not substantially model the illumination ambiance from the source environment, altering the target output provided by the light source.
It is to be understood that both the foregoing general description and the following detailed description describe various embodiments and are intended to provide an overview or framework for understanding the nature and character of the claimed subject matter. The accompanying drawings are included to provide a further understanding of the various embodiments, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments described herein, and together with the description serve to explain the principles and operations of the claimed subject matter.
Embodiments disclosed herein include systems and methods for sensing and adjusting features in an environment. More specifically, in some embodiments, a user may enter a source environment, such as a house, room, office, hotel, restaurant, etc. and realize that the ambiance is pleasing. The ambiance may include the lighting, the sound, the scent, the climate, and/or other features of the source environment. Accordingly, the user may utilize a user computing device, such as a mobile phone, personal digital assistant (PDA), laptop computer, tablet computer, etc. to capture an ambiance feature of the source environment. More specifically, the user computing device may include (or be coupled to a device that includes) an image capture device, a microphone, a gyroscope, an accelerometer, a positioning system, a thermometer, a humidity sensor, an air quality sensor, and/or other sensors for determining the ambiance features of the source environment. As an example, if the user determines that the lighting in the source environment is appealing, the user may select an option on the user computing device that activates the image capture device. The image capture device may capture lighting characteristics of the source environment. The lighting characteristics may include a light intensity, a light frequency, a light distribution, etc., as well as dynamic changes over time thereof. With this information, the user computing device can determine a source output, which (for lighting) may include a number of light sources, a light output of sources; whether the light is diffuse light, columnar light, direct light, reflected light, color temperature of the light, overall brightness, etc. The user computing device may also determine a characteristic of the source environment, such as size, coloring, acoustics, and/or other characteristics. Once the user computing device has determined the source output, this data may be stored locally and/or sent to a remote computing device for storage.
Once a source output is determined, the user device may implement the ambiance from the source environment into a target environment. In the lighting context, the user may utilize the image capture device (and/or other components, such as the positioning system, gyroscope, accelerometer, etc.) to determine an ambiance capability (such as an illumination capability in the lighting context or an audio capability, a scent capability, a climate capability, etc. in other contexts) of the target environment. Again, in the lighting context, the ambiance capability may be determined from a number and position of target devices (such as light sources or other output devices), windows, furniture, and/or other components. Other features of the target environment may also be determined, such as size, global position, coloring, etc.
Additionally, the user computing device can determine alterations to make to the light sources in the target environment to substantially model the ambiance feature from the source environment. This determination may be made by comparing the location and position of the output sources in the source environment, as well as the light actually realized from those output sources with the determined ambiance capability of the target environment. As an example, if the source environment is substantially similar to the target environment, the user computing device can determine that the output (such as lighting effects) provided by the light sources should be approximately the same. If there are differences between the source environment and the target environment, those differences may be factored into the analysis. More specifically, when the source environment and target environment are different, the combination of light output and room dynamics adds up to the visual feeling of the environment. For example, because the source environment and the target environment are different, the light outputs could be substantially different. However, due to room size, reflective characteristics, wall color etc., of the source environment and the target environment, embodiments disclosed herein may shape the light output such that the ambiance “felt” by the image capture device would be similar. As such, some embodiments may utilize a feedback loop configuration to dynamically assess the source environment and/or target environment and dynamically adjust the settings and ensure accuracy.
Once the alterations are determined, the user computing device can communicate with the output sources directly and/or with a network component that controls the output sources. The user computing device may additionally reexamine the target environment to determine whether the adjustments made substantially model the ambiance feature from the source environment. If not, further alterations may be made. If the alterations are acceptable, the settings for this ambiance may be stored.
It should be understood that in some embodiments where the source output data (which includes data about the ambiance characteristics in the source environment) is sent to a remote computing device, the remote computing device may receive the source output data and create an application to send to the user computing device for implementing the ambiance into a target environment. This may be accomplished such that the ambiance may be implemented in any environment (with user input on parameters of the target environment). Similarly, in some embodiments, the user computing device may additionally send environmental characteristics data (such as size, shape, position, etc. of an environment), such that the remote computing device can create an application to implement the ambiance in the particular target environment.
Additionally, some embodiments may be configured with a feedback loop for continuous and/or repeated monitoring and adjustment of settings in the target environment. More specifically, the user computing device may be configured to take a plurality of measurements of the source environment to determine a current ambiance. Similarly, when modeling the current ambiance into the target environment, the user computing device can send data related to the current ambiance to a target device. Additionally, once the adjustments to the target environment are implemented, the user computing device can monitor the ambiance, calculate adjustments, and send those adjustments to achieve a desired target ambiance. This may continue a predetermined number of iterations or until accuracy is achieved within a predetermined threshold.
It should also be understood that, as described herein, embodiments of a light source may include any component that provides a visible form of light, including a lamp, an overhead light, a television, a component light, sunlight, a fire, an external light source, and a candle, etc. Thus, a light source may take many shapes, sizes, and forms and, since the inception of electric lighting, have matured to include many types of emission sources. Incandescence, electroluminescence, and gas discharge have each been used in various lighting apparatus and, among each the primary emitting element (e.g., incandescent filaments, light-emitting diodes, gas, plasma, etc.) may be configured in any number of ways according to the intended application. Many embodiments of light sources described herein are susceptible to use with almost any type of emission source, as will be understood by a person of ordinary skill in the art upon reading the following described embodiments.
For example, certain embodiments may include light-emitting diodes (LEDs), LED light sources, lighted sheets, and the like. In these embodiments, a person of ordinary skill in the art will readily appreciate the nature of the limitation (e.g., that the embodiment contemplates a planar illuminating element) and the scope of the described embodiment (e.g., that any type of planar illuminating element may be employed). LED lighting arrays come in many forms including, for instance, arrays of individually packaged LEDs arranged to form generally planar shapes (i.e., shapes having a thickness small relative to their width and length). Arrays of LEDs may also be formed on a single substrate or on multiple substrates, and may include one or more circuits (i.e., to illuminate different LEDs), various colors of LEDs, etc. Additionally, LED arrays may be formed by any suitable semiconductor technology including, by way of example and not limitation, metallic semiconductor material and organic semiconductor material. In any event, embodiments utilizing an LED material or the use of a planar illuminated sheet, any suitable technology known presently or later invented may be employed in cooperation with other elements without departing from the spirit of the disclosure.
Referring now to the drawings,
Similarly, the target environment 110b may also include one or more output devices 114a-114c. While the output devices 112 and 114 are illustrated as light sources in
Additionally, the user computing device 102 may include a memory component 140 that stores source environment logic 144a for functionality related to determining characteristics of the source environment 110a. The memory component 140 also stores target environment logic 144b for modeling the ambiance features from the source environment 110a and applying those ambiance features into the target environment 110b.
It should be understood that while the user computing device 102 and the remote computing device 104 are depicted as a mobile computing device and server respectively, these are merely examples. More specifically, in some embodiments any type of computing device (e.g. mobile computing device, personal computer, server, etc.) may be utilized for either of these components. Additionally, while each of these computing devices 102, 104 is illustrated in
It should also be understood that while the source environment logic 144a and the target environment logic 144b are depicted in the user computing device 102, this is also just an example. In some embodiments, the user computing device 102 and/or the remote computing device 104 may include this and/or similar logical components.
Further, while
Additionally, the memory component 140 may be configured to store operating logic 242, the source environment logic 144a, and the target environment logic 144b. The operating logic 242 may include an operating system, basic input output system (BIOS), and/or other hardware, software, and/or firmware for operating the user computing device 102. The source environment logic 144a and the target environment logic 144b may each include a plurality of different pieces of logic, each of which may be embodied as a computer program, firmware, and/or hardware, as an example. A local interface 246 is also included in
The processor 230 may include any processing component operable to receive and execute instructions (such as from the data storage component 236 and/or memory component 140). The input/output hardware 232 may include and/or be configured to interface with a monitor, positioning system, keyboard, mouse, printer, image capture device, microphone, speaker, gyroscope, accelerometer, compass, thermometer, humidity sensor, air quality sensor and/or other device for receiving, sending, and/or presenting data. The network interface hardware 234 may include and/or be configured for communicating with any wired or wireless networking hardware, including an antenna, a modem, LAN port, wireless fidelity (Wi-Fi) card, WiMax card, mobile communications hardware, and/or other hardware for communicating with other networks and/or devices. From this connection, communication may be facilitated between the user computing device 102 and other computing devices. The processor 230 may also include and/or be coupled to a graphical processing unit (GPU).
It should be understood that the components illustrated in
Similarly, the user interface 300 may include a model environment option 320 and an apply stored model option 322. As described in more detail below, the model environment option 320 may be selected to facilitate capture of ambiance data from a source environment 110a. The apply stored model option 322 may be selected to apply ambiance data from the source environment 110a and apply that data to the target environment 110b.
It should be understood that while the user interface 500 of
In response to selection of the scent option 424 (
It should also be understood that other mechanisms for receiving the ambiance characteristics of the source environment 110a. In some embodiments, the user may scan a 1-dimensional or 2-dimensional bar code to receive information pertaining to the source environment 110a. In some embodiments, the information may be sent to the user computing device 102 via a text message, email message, and/or other messaging. Similarly, in some embodiments, a theme store may be accessible over a wide area network and/or local area network for receiving any number of different themes. In the theme store, users may be provided with options to purchase, upload, and/or download themes for use in a target environment.
Additionally, some embodiments may be configured to upload and/or download ambiance characteristics to and/or from a website, such as a social media website, a mapping website, etc. As an example in the social media context, restaurant or other source environment controller may provide the ambiance characteristics on a page dedicated to that restaurant. Thus, when users visit that page, they may download the ambiance. Additionally, when a user mentions the restaurant on a public or private posting, the social media website may provide a link to that restaurant that may also include a link to download the ambiance characteristics. Similarly, in the mapping website context, a user can upload ambiance characteristics to the mapping website, such that when a map, satellite image, or other image of that environment is provided, a link to download the ambiance may also be provided.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be understood to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Date | Country | Kind |
---|---|---|---|
US2011/033904 | Apr 2011 | WO | international |
US2011/033907 | Apr 2011 | WO | international |
US2011/033910 | Apr 2011 | WO | international |
US2011/033918 | Apr 2011 | WO | international |
US2011/033924 | Apr 2011 | WO | international |
Number | Date | Country | |
---|---|---|---|
Parent | 29390527 | Apr 2011 | US |
Child | 14063030 | US | |
Parent | 29390535 | Apr 2011 | US |
Child | 29390527 | US |