The present invention generally relates to the field of image forming apparatus and devices, and in particular, to sensors operable for determining the width of a media sheet or web as it moves along a media path within a print station of the image forming apparatus or device.
Printing systems such as copiers, printers, facsimile devices or other systems having a print engine for creating visual images, graphics, texts, etc. on a page or other printable medium typically include various media feeding systems for introducing original image media or printable media into the system. Examples include thermal transfer printers. Typically, a thermal transfer printer is a printer which prints on media by melting a coating of ribbon so that it stays glued to the media on which the print is applied. It contrasts with direct thermal printing where no ribbon is present in the process. Typically, thermal transfer printers comprise a supply spindle operable for supplying a media web and ribbon, a print station, and a take up spindle. New ribbon and media is fed from the supply spindle to the print station for printing and then the ribbon is wound up by the take up spindle while the media is exited from the print station. The media feed path typically includes media guide structures provided at predetermined locations operable for registering inserted media by moving one or both of the guides to engage opposite sides of the media, thereby fixing the location of the media relative to the path within the print system.
Conventional approaches for media width registration and identification include manual identification with no sensing means, wherein a user is prompted to input the media size and orientation. Heretofore, conventional approaches yield undesirable results. For instance, conventional approaches fail to provide for automatic adjustments in printhead pressure, ribbon supply and take up tension and rewinder tension due to variances in the media width. Further, conventional approaches fail to provide the printer with an ability to compare the width of the image to be printed with the actual media width. Such failures oftentimes lead to off center image printing, printing defects or printer failure. Indeed, should the media width not be accommodated for, wax (ink) may be undesirably deposited on the platen roller or firing elements on the printhead in free space may occur. One skilled in the art will appreciate that firing elements in free space may cause the elements to overheat and burn out.
Thus, there remains a need for improved media width sensing techniques and apparatus by which an automatic or semi-automatic determination of media width is provided and by which the need for width sensing system calibration can be managed. It would, therefore, be desirable to provide a sensing apparatus or device operable for detecting and determining the media width along a feed path of a printer. By detecting and determining the media width in the printer, automatic adjustments can be made to the printhead pressure, ribbon supply tension, ribbon supply take up, and rewind tension, thereby ensure a higher quality printed image and prolonger printer operation. Further, by detecting and determining the media width in the printer, associated software can compare the width of the image to be printed to the media width and notify the operator that they may be printing off the media.
The present invention is designed to overcome the deficiencies and shortcomings of the devices conventionally known and described above. The present invention is designed to reduce the manufacturing costs and the complexity of assembly. In all exemplary embodiments, the present invention is directed to sensing apparatus or sensors and methods of use to determine a width of a media sheet or web moving along a defined media path within a printing system. In an exemplary embodiment, a carriage or base is provided which is mountable within a printing system. A pair of adjustable media guides is provided and connected to the carriage via channels or slots which are located within a portion of the carriage. The media guides are configured to receive and maintain media or a web for printing and preferably axially spaced apart along the length of the carriage. Further, the media guides are configured and adapted such that they can be manipulated or moved along a horizontal axis of the carriage in a sliding manner. In exemplary embodiments, the sliding movement of the guides along the horizontal axis occurs in a synchronized manner. In still other exemplary embodiments, the guides are configured such that the center line of media which is passing along a media feed path is maintained along the centerline of the print station.
In all exemplary embodiments, a sensor is provided, affixed to the carriage and in signal communication with control circuitry of the printing system. The sensor is configured and operable for emitting at least one optical signal or light beam through at least one aperture located in the carriage. At least one of the media guides are provided with a tab or other obstruction which is configured and operable for protruding into at least a portion of the path of the at least one optical signal or light beam emitted from the sensor at defined locations, the defined locations corresponding to the widths of various media types used within the printing system. As the media guides move about the horizontal axis of the carriage, the tab may block or otherwise interrupt or obstruct the at least one optical signal or light beam, thereby reflecting the at least one optical signal or light beam back to the sensor and thuds signaling the sensor and the printer of the media's detection and width. By detecting and determining the media width in the printing station, automatic adjustments can be made to the printhead pressure, ribbon supply tension, ribbon supply take up, and rewind tension, thereby ensuring a higher quality printed image and prolonged printer operation. Further, by detecting and determining the media width in the printer station, associated software can compare the width of the image to be printed to the media width and notify the operator that they may be printing off the media.
Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present exemplary embodiments of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the invention, and together with the detailed description, serve to explain the principles and operations thereof.
The present subject matter may take form in various components and arrangements of components, and in various steps and arrangements of steps. The appended drawings are only for purposes of illustrating exemplary embodiments and are not to be construed as limiting the subject matter.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings in which exemplary embodiments of the invention are shown. However, this invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. These exemplary embodiments are provided so that this disclosure will be both thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Further, as used in the description herein and throughout the claims that follow, the meaning of “a”, “an”, and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
Methods, apparatus and systems are presented herein for feeding original image media web and/or printable media into a printing system and for detecting the presence and determining the width of the inserted media at a print station location. In exemplary embodiments and as shown in
In exemplary embodiments, both guides 106 and 108 are slidable along a horizontal axis (A-A) of the base 100 in synchronism via a rack and pinion system 110 and when pushed together, the guides 106, 108 centrally register the inserted media and help ascertain the width thereof. More specifically, the guides 106 and 108 are mounted to first and second racks 112, 114 and coupled by a pinion gear 116 on the top surface 102 of the base 100 that cooperatively provide for synchronous translation of the guides 106, 108 in a rack and pinion arrangement by which the guides 106, 108 can be pushed together to centrally register the media. In exemplary embodiments, the rack and pinion system 110 is located about the top surface 102 of the base 100 and is connected to the guides 106, 108 via screws 118, 120 that extend through the base 100 at predefined channels or slots 122, 124.
The printing system 10 further includes a media sensing apparatus or sensor 126 configured for emitting signals used to ascertain the presence and width of registered media between the media guides 106 and 108. It will be understood by those skilled in the art that the signals emitted by the sensor 126 may be either optical or electrical signals. In exemplary embodiments, the sensor 126 is mounted in a fixed position relative to the top surface 102 of the base 100 and the guides 106 and 108. The sensor 126 is adapted to detect the presence and/or absence of an obstruction and is in signal communication with control circuitry (not shown) of the printing system 10. In exemplary embodiments, the control circuitry determines the width of the media based on signals received from the sensor 126. In one example embodiment, the control circuitry includes a microcontroller with associated memory. The control circuitry may oversee movement of the media sheet along the entire media feed path of the printer, or may just determine the width of the media as it moves through the print station and about the sensor 126.
In exemplary embodiments, the sensor 126 may be an optical sensor, a photosensor, a mechanical sensor, or another suitable sensor as known in the art. In exemplary embodiments shown herein, the sensor 126 is an optical sensor. The sensor 126 is provided with at least one light emitting device which is operable for emitting at least one light beam along a first light path through at least one aperture 128 of the base 100. The sensor 126 is also operable for detecting a reflected light beam along a second light path that is generated by an obstruction and includes a transmitter (not shown) and a receiver (not shown). In example embodiments, the transmitter emits a signal that is detectable by receiver. In one exemplary embodiment, the signal is electromagnetic energy. Thus, the transmitter emits optical energy with a frequency spectrum that is detectable by the receiver. It will be appreciated by those skilled in the art that the transmitter may be embodied as an light emitting diode (LED), laser, bulb or other source. In exemplary embodiments, the receiver changes operating characteristics based on the presence and quantity of optical energy received. It will be appreciated by those skilled in the art that the receiver may be a phototransistor, photodarlington, or other detector. The optical energy may consist of visible light or near-visible energy (e.g., infrared or ultraviolet).
In exemplary embodiments, the sensor 126 may include an optical emitter or laser module communicably linked to a microcontroller or the control circuitry of the printer. The sensor 126 may be configured to emit an optical signal or beam along a first optical path and receive a reflected optical signal reflected from an obstruction along a second optical path. The sensor 126 may also include a transceiver (not shown). In exemplary embodiments, the transceiver may include an integrated avalanche photodiode (APD) receiver, as APD receivers are particularly well suited for detecting small amounts of light. The transceiver may be configured to receive reflected optical signals and convert them, into electrical signals which may then be transmitted to the control circuitry for a determination of the media's width and subsequent adjustments to the printing operation.
In other exemplary embodiments, the sensor 126 is a photo-sensor constituted by a light emitting element that emits light using a light emitting diode (LED) and a light receiving element that receives reflection light reflected from an obstruction and which outputs a voltage on the basis of intensity of the received light. In exemplary embodiments, the sensor 126 is a reflection-type photo interrupter that receives light, which has been emitted from the light emitting element, reflected from an obstruction using the light receiving element and changes its output voltage level in correspondence with the intensity of the received. The output voltage level of the sensor 126 for a case where light reflected from the obstruction at one location is received is higher than that for a case where light reflected from the obstruction at a different location is received. Accordingly, when an approximate center output voltage level is set as a reference voltage, the width of the media may be determined based upon the output voltage level.
The presence or absence of an obstruction, as determined by the sensor 126, influences functions of the printing system 10 according to programming within the control circuitry. By detecting and determining the media width in the printing station, automatic adjustments can be made to the printhead pressure, ribbon supply tension, ribbon supply take up, and rewind tension, thereby ensuring a higher quality printed image and prolonged printer operation. Further, by detecting and determining the media width in the printer station, associated software can compare the width of the image to be printed to the media width and notify the operator that they may be printing off the media. The sensor 126 may be used with roll media, although use of the sensor in conjunction with media of other types is also contemplated. Also, in exemplary embodiments, the media width resolution of the sensor 126 is determined by:
Res=(Max. media width−Min. media width)/(2*N−1),
where N is the number light beams emitted by the sensor.
In all exemplary embodiments, at least one of the media guides 106, 108 include an optical obstruction structure (a tab) 130 that is operatively coupled to the movable media guide so as to move relative to the at least one light beam emitted by the sensor 126 when the guide is moved relative to the base 100 with the tab 130 moving within a sensing gap (over the emitted light beam coming through the aperture) to block or otherwise interrupt the signal path.
Further exemplary embodiments provide a method for detecting and determining a media width in a printing system. The method comprises providing a base or carriage 100 with first and second media guides 106, 108, mounting a sensor 126 in a fixed position relative to the print station. The base 100 within the print station being provided with at least one aperture for permitting emitted optical signals or light beams from the sensor to pass through. At least one media guide is provided with an optical obstruction structure such as a tab or fin which is located in a fixed position relative to the media guide to move relative to the emitted light beam when the media guide is moved relative to the print station. The media guide is then moved to register the media and reflected optical signals are read from the sensor, with the media width being determined based at least partially on the reflected optical signals. In certain implementations, the width determination may include determining two or more possible media widths based on the electrical output signals from the sensor, rendering a selection of the plurality of possible media widths to a user, and determining the media width based on a user selection from a user interface of the printing system.
The above described examples, moreover, may be employed in calibrated or non-calibrated systems for determining media widths and for registering media being fed into a printing system. Furthermore, while the illustrated examples are described in connection with media feeding systems employing two oppositely adjustable synchronously translating rack and pinion type guide assemblies, other embodiments are possible in which one guide is stationary while the other is translatable.
The embodiments described above provide advantages over conventional devices and associated methods of manufacture. It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. Furthermore, the foregoing description of the preferred embodiment of the invention and best mode for practicing the invention are provided for the purpose of illustration only and not for the purpose of limitation—the invention being defined by the claims.
This application claims priority to provisional patent application 61/488,890, filed May 23, 2011, and entitled “Media Width Sensor”, the contents of which are incorporated in full by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4143977 | Kurihara et al. | Mar 1979 | A |
4177731 | Kleist et al. | Dec 1979 | A |
4788558 | Caldwell et al. | Nov 1988 | A |
4788559 | Ende | Nov 1988 | A |
4872659 | Kato et al. | Oct 1989 | A |
4924240 | Herbert et al. | May 1990 | A |
4949134 | Iwaki et al. | Aug 1990 | A |
4991846 | Sondej | Feb 1991 | A |
5028155 | Sugiura et al. | Jul 1991 | A |
5087137 | Burnard et al. | Feb 1992 | A |
5126580 | Hiraoka et al. | Jun 1992 | A |
5206662 | Fox et al. | Apr 1993 | A |
5326182 | Hagstrom | Jul 1994 | A |
5397192 | Khormaee | Mar 1995 | A |
5468076 | Hirano et al. | Nov 1995 | A |
5490638 | Driftmyer et al. | Feb 1996 | A |
5564841 | Austin et al. | Oct 1996 | A |
5573236 | Petocchi et al. | Nov 1996 | A |
5574551 | Kazakoff | Nov 1996 | A |
5600350 | Cobbs et al. | Feb 1997 | A |
5650730 | Herbst, Jr. | Jul 1997 | A |
5684516 | Cseledy et al. | Nov 1997 | A |
5710634 | Kuriyama et al. | Jan 1998 | A |
5790162 | Adams et al. | Aug 1998 | A |
5820280 | Fox | Oct 1998 | A |
5836704 | Lau et al. | Nov 1998 | A |
5870114 | Numata et al. | Feb 1999 | A |
5872585 | Donato et al. | Feb 1999 | A |
5874980 | West | Feb 1999 | A |
5909233 | Hamman et al. | Jun 1999 | A |
5927875 | Lau et al. | Jul 1999 | A |
5978004 | Ehrhardt | Nov 1999 | A |
5995128 | Adams et al. | Nov 1999 | A |
6014229 | Yun | Jan 2000 | A |
6020906 | Adams et al. | Feb 2000 | A |
6034708 | Adams et al. | Mar 2000 | A |
6057870 | Monnier et al. | May 2000 | A |
6070048 | Nonaka et al. | May 2000 | A |
6073925 | Sato | Jun 2000 | A |
6082914 | Barrus et al. | Jul 2000 | A |
6095704 | Jaeger et al. | Aug 2000 | A |
6099178 | Spurr et al. | Aug 2000 | A |
6129463 | Lau et al. | Oct 2000 | A |
6201255 | Torchalski et al. | Mar 2001 | B1 |
6246859 | Takemura | Jun 2001 | B1 |
6283024 | George | Sep 2001 | B1 |
6289730 | Elgee | Sep 2001 | B1 |
6302604 | Bryant et al. | Oct 2001 | B1 |
6389241 | Cernusak et al. | May 2002 | B1 |
6396070 | Christensen et al. | May 2002 | B1 |
6520614 | Kaneko | Feb 2003 | B2 |
6609844 | Petteruti et al. | Aug 2003 | B1 |
6616362 | Bouverie et al. | Sep 2003 | B2 |
6695500 | Kim et al. | Feb 2004 | B2 |
6825864 | Botten et al. | Nov 2004 | B2 |
6840689 | Barrus et al. | Jan 2005 | B2 |
6846121 | Bouverie et al. | Jan 2005 | B2 |
6857714 | Hohberger et al. | Feb 2005 | B2 |
6900449 | Bolash et al. | May 2005 | B2 |
6942403 | Hohberger et al. | Sep 2005 | B2 |
7042478 | Bouverie et al. | May 2006 | B2 |
7071961 | Ullenius et al. | Jul 2006 | B2 |
7079168 | Ullenius et al. | Jul 2006 | B2 |
7150572 | McNestry et al. | Dec 2006 | B2 |
7162460 | Cleckler et al. | Jan 2007 | B2 |
7205561 | Chelvayohan et al. | Apr 2007 | B2 |
7255343 | So | Aug 2007 | B2 |
7375832 | Bouverie et al. | May 2008 | B2 |
7456995 | Stephens | Nov 2008 | B2 |
7502042 | Hitz et al. | Mar 2009 | B2 |
7537404 | Bouverie et al. | May 2009 | B2 |
7600684 | Tobin et al. | Oct 2009 | B2 |
7667874 | MacDonald et al. | Feb 2010 | B2 |
7699550 | Bouverie et al. | Apr 2010 | B2 |
7824116 | Lyman | Nov 2010 | B2 |
7845632 | Windsor et al. | Dec 2010 | B2 |
7857414 | Eun et al. | Dec 2010 | B2 |
7876223 | Yamaguchi et al. | Jan 2011 | B2 |
7891892 | Chiu | Feb 2011 | B2 |
7907159 | Matsuo et al. | Mar 2011 | B2 |
7918452 | Fuchi | Apr 2011 | B2 |
7934881 | Lodwig et al. | May 2011 | B2 |
7938501 | Takamiya et al. | May 2011 | B2 |
8142087 | Kugimachi | Mar 2012 | B2 |
20010008612 | Liljestrand et al. | Jul 2001 | A1 |
20030081024 | Vives et al. | May 2003 | A1 |
20030141655 | Bryer | Jul 2003 | A1 |
20040008365 | Hobbs | Jan 2004 | A1 |
20040114024 | Bouverie et al. | Jun 2004 | A1 |
20040165927 | Fisher et al. | Aug 2004 | A1 |
20050002715 | Fries et al. | Jan 2005 | A1 |
20050189693 | Ko | Sep 2005 | A1 |
20050190368 | Ehrhardt, Jr. et al. | Sep 2005 | A1 |
20050204940 | Elliott et al. | Sep 2005 | A1 |
20050271449 | Hirte et al. | Dec 2005 | A1 |
20060007295 | Ueda | Jan 2006 | A1 |
20060045601 | Endo | Mar 2006 | A1 |
20060055721 | Burdette et al. | Mar 2006 | A1 |
20060071393 | Mizubata et al. | Apr 2006 | A1 |
20060157911 | Learmonth et al. | Jul 2006 | A1 |
20060159504 | Blanchard, Jr. et al. | Jul 2006 | A1 |
20060180737 | Consiglio | Aug 2006 | A1 |
20060216098 | Lyman | Sep 2006 | A1 |
20070022233 | Bridges et al. | Jan 2007 | A1 |
20070040326 | Noda et al. | Feb 2007 | A1 |
20070058220 | Sakakibara | Mar 2007 | A1 |
20070059078 | Silverbrook et al. | Mar 2007 | A1 |
20070063425 | Tsujinishi | Mar 2007 | A1 |
20070138738 | Motohashi et al. | Jun 2007 | A1 |
20090008860 | Chen | Jan 2009 | A1 |
20090038495 | Butzen et al. | Feb 2009 | A1 |
20090103806 | Nakami | Apr 2009 | A1 |
20090244584 | McGarry et al. | Oct 2009 | A1 |
20100066782 | Yamamoto et al. | Mar 2010 | A1 |
20100080590 | Takahashi | Apr 2010 | A1 |
20100169513 | Levin | Jul 2010 | A1 |
20100247222 | Bouverie et al. | Sep 2010 | A1 |
20100319561 | Colquitt et al. | Dec 2010 | A1 |
20110042883 | Wang et al. | Feb 2011 | A1 |
20110132643 | Hattori et al. | Jun 2011 | A1 |
20110169215 | Oh et al. | Jul 2011 | A1 |
20110298174 | Wang | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
58130832 | Aug 1983 | JP |
58158074 | Sep 1983 | JP |
61203032 | Sep 1986 | JP |
61203033 | Sep 1986 | JP |
2001322723 | Nov 2001 | JP |
2002370412 | Dec 2002 | JP |
2005231887 | Sep 2005 | JP |
2005320101 | Nov 2005 | JP |
2007130933 | May 2007 | JP |
2008132613 | Jun 2008 | JP |
04552558 | Sep 2010 | JP |
Entry |
---|
Written Opinion of the International Searching Authority, PCT/US2012/036297, Jul. 17, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/039043, Aug. 3, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/041093, Aug. 7, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/043734, Sep. 21, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/043709, Sep. 21, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/043772, Sep. 14, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/046712, Oct. 5, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/049417, Nov. 2, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/050938, Nov. 6, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/060956, Jan. 11, 2013. |
Written Opinion of the International Searching Authority, PCT/US2012/066291, Feb. 5, 2013. |
Supplementary European Search Report corresponding to European Application No. EP 12 78 9528, dated Nov. 14, 2014, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20120301202 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61488890 | May 2011 | US |