The present disclosure generally relates to wellbore drilling and, more particularly, to sensing drill bit wear in drilling tools used in the oil and gas industry.
Drilling wellbores in some formations poses challenging conditions, such as a diminished rate of penetration (ROP), drill bit vibrations, drill bit damage, and high pressure and high temperature (HPHT) conditions. The drilling conditions are appraised at the surface by a drilling advisor to determine appropriate drilling parameters, such as revolutions per minute (RPM) of the drill, weight on bit (WOB), and gallons per minute (GPM) of drilling mud pumped during drilling, in light of the perceived drilling conditions.
This specification describes downhole drilling systems and methods that can be used to monitor and predict the condition of a drill bit in drilling tools during wellbore drilling. The drill bit is disposed at the end of the drilling system to drill the downhole formation. This drill bit includes a body, two or more blades, and a sensor module embedded in the drill bit. In some examples, the sensor module is embedded into the body of the drill bit. The sensor module includes sensors, instrumentation and signal processing circuits, batteries, insulated conductors, receivers, transmitters, and data storing and processing devices. During a drilling operation, the sensor module measures the electrical or field properties (e.g., acoustic and capacitive properties) that are used to monitor and evaluate the condition of the drill bit.
The drill bit with an onboard sensor module enables virtual drill bit grading (i.e., assessment of drill bit condition) and improved drilling automation. The data from the sensors can be transferred to the data processing system to improve and automate the drilling operation. The onboard sensor module can measure and predict condition of the drill bit. This allows the user to have more confidence when correlating damage reduction to specific drill bit features and enables continuous process improvement.
In some aspects, a method for drilling a wellbore includes: sensing electrical resistance of an insulated conductor extending from a surface of a drill bit to a sensor inside the drill bit; calculating drill bit dimensions based on the sensed electrical resistance; and transmitting sensed electrical resistance, calculated drill bit dimensions, or both uphole to a system for controlling drilling operations.
Embodiments of the method for drilling a wellbore can include one or more of the following features.
In some embodiments, the method includes correlating rate of penetration with drill bit dimensions. In some cases, the method includes calculating lost time associated with reductions in drill bit dimensions. In some cases, the method includes comparing the lost time associated with reductions in drill bit dimensions with non-productive time associated with replacing the drill bit. In some cases, the method includes calculating time until drill bit replacement is required based on a rate of reduction of drill bit dimensions.
In some embodiments, the method includes updating a drilling plan based on the calculated drill bit dimensions.
In some embodiments, the method includes providing calculated drill bit dimensions as input to a drilling automation algorithm.
In some aspects, a system for drilling wellbores includes: a drill bit including: an electrical resistance sensor disposed inside the drill bit; two insulated conductors extending from a surface of the drill bit to the sensor; and an onboard computer operable to calculate drill bit dimensions based on electrical resistance measured by the electrical resistance sensor.
Embodiments of the system for drilling wellbores can include one or more of the following features.
In some embodiments, the insulated conductors include copper with insulating materials disposed between the copper and a body of the drill bit. In some cases, the two insulated conductors have the same dimensions and extend in parallel from the surface of the drill bit to the sensor.
In some embodiments, the system includes a data processing system operable to control drilling operations, the data processing system in electronic communication with the onboard computer. In some cases, the data processing system is configured to receive sensed electrical resistance, calculated drill bit dimensions, or both from the onboard computer. In some cases, the data processing system includes algorithms to correlate drilling rate of penetration with drill bit dimensions. In some cases, the data processing system includes algorithms to calculate lost time associated with reductions in drill bit dimensions. In some cases, the data processing system includes algorithms to compare the lost time associated with reductions in drill bit dimensions with non-productive time associated with replacing the drill bit. In some cases, the data processing system includes algorithms to calculate time until drill bit replacement is required based on a rate of reduction of drill bit dimensions.
In some embodiments, the onboard computer is a printed circuit board.
In some embodiments, the system includes a battery electrically connected to the onboard computer and the sensor.
The prediction of the drill bit grade or condition is done during drilling while the drill bit is downhole. This approach can be used to adjust the drilling automation algorithms for improved drilling performance based on measured data in real-time and can improve the economics of drilling operations. Drill bit condition affects the invisible lost time (e.g., time lost associated with decreases in the rate of penetration due to increased wear on the drill bit). Wear of the drill bit eventually requires a replacement of the drill bit and causes non-productive time associated with tripping the drill string out of and back into the wellbore for the replacement of the drill bit. Understanding the exact drill bit conditions further reduces cost by reducing the invisible lost time and the non-productive time that constitute a significant portion of the overall drilling costs. For example, the ability to accurately predict the drill bit grade can guide decisions on when it is time to trip the drill bit and replace it instead of continuing to drill with a damaged tool. Knowing the exact bit conditions can improve the ROP, extend the drill bit life, guide drilling practices, improve trip plans, enhance drill bit design, and automate drilling operations.
The details of one or more embodiments of these systems and methods are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of these systems and methods will be apparent from the description and drawings, and from the claims.
This specification describes downhole drilling systems and methods that can be used to monitor and predict the condition of a drill bit in drilling tools during wellbore drilling. The drill bit is disposed at the end of the drilling system to drill the downhole formation. This drill bit includes a body, two or more blades, and a sensor module that is embedded into the drill bit blade. In some examples, the sensor module is embedded into the body of the drill bit. The sensor module includes sensors, instrumentation and signal processing circuits, batteries, insulated conductors, receivers, transmitters, and data storing and processing devices. During a drilling operation, the sensor module measures the electrical or field properties (e.g., acoustic and capacitive properties) that are used to monitor and evaluate the condition of the drill bit.
In the drill bit 108, the sensor module 112 is embedded in the drill bit 108. The sensor module 112 includes an electrical resistance sensor 210, two insulated conductors 204a, 204b, onboard computer 206 (for example, a printed circuit board) connected to the electrical resistance sensor 210, and a battery 208 to power the onboard computer 206 and the electrical resistance sensor 210. The electrical resistance sensor 210, the onboard computer 206, and the battery 208 are embedded within the body 214 of the drill bit 108. The insulated conductors extend from the electrical resistance sensor 210 through one of the blades 212 of the drill bit 108. For a steel drill bit bodies, the cavity receiving the electrical resistance sensor 210, the onboard computer 206, and the battery 208 can be formed during machining and these components subsequently installed. For matrix drill bit bodies, the electrical resistance sensor 210, the onboard computer 206, and the battery 208 can incorporated during 3D printing or additive manufacturing processes used to form the drill bit bodies.
The two insulated conductors 204a, 204b extend in parallel from the electrical resistance sensor 210 to a surface of the drill bit 108. The two insulated conductors 204a, 204b have equal dimensions. The body of the two insulated conductors 204a, 204b includes copper material or other conductive metal material. Insulating materials (e.g., fiberglass, cellulose, mineral wool, natural fibers, polystyrene, polyisocyanurate, polyurethane, perlite, and combinations thereof) encapsulate the body of the conductors. The insulating layer of the conductors 204a, 204b is placed between the conductive material of the insulated conductor and the blades 212 and body 214 of the drill bit 108.
The electrical resistance sensor 210 is a piezoresistive sensor. The electrical resistance sensor 210 measures the resistance of a circuit formed by (1) one of the insulated conductors 204a, 204b, (2) the portion of the blade 212 between the insulated conductors 204a, 204b, and (3) the other of the insulated conductors 204a, 204b. As the blades 212 of the drill bit 108 wear away during use, the insulated conductors 204a, 204b also wear away shortening their length. The shortening of the insulated conductors 204a, 204b reduces the electrical resistance measured by the electrical resistance sensor 210. Some drill bits use other types of sensors (e.g., an impedance sensor, a resistivity sensor, or a capacitance sensor) to measure the electrical resistance.
During a drilling operation (for example, while the drill bit 108 is drilling into a formation), the electrical resistance sensor 210 senses a change in electrical resistance across the conductors 204a, 204b, as the length of the conductors decreases. The electrical resistance sensor 210 then transmits the resistance data to the onboard computer 206. The onboard computer 206 includes a data processing system that calculates drill bit wear based the resistance data and transmits the sensed electrical resistance and the calculated drill bit dimensions uphole to a surface data processing system 202 controlling drilling operations. The connection between the onboard computer 206 and the surface data processing system 202 may be a wired connection, a wireless connection, or both. In some cases, the onboard computer 206 transmits the sensed electrical resistance or the calculated drill bit dimensions rather than both uphole to a surface data processing system controlling drilling operations.
The surface data processing system 202 uses the received sensor data and executes algorithms to determine and control the drilling operations. In some implementations, the surface data processing system is configured to receive sensor data from the onboard computer 206 and calculate drill bit dimensions. In some implementations, the surface data processing system is configured to correlate a drilling rate of penetration with the calculated drill bit dimensions. In these implementations, the surface data processing system can calculate lost time associated with reductions in drill bit dimensions and compare the lost time associated with reductions in drill bit dimensions with non-productive time associated with replacing the drill bit. This approach enables the surface data processing system 202 to predict the time until drill bit replacement is required based on a rate of reduction of the drill bit dimensions. Based on the received data and the calculated parameters, modifications to the drilling parameters can be implemented to increase the life of the drill bit or to improve the rate of penetration. Additionally, a determination can be made to trip out the drill bit and replace it with a new one can be based on the predicted end-of-life of the drill bit.
The computer 502 can serve in a role as a client, a network component, a server, a database, a persistency, or components of a computer system for performing the subject matter described in the present disclosure. The illustrated computer 502 is communicably coupled with a network 530. In some implementations, one or more components of the computer 502 can be configured to operate within different environments, including cloud-computing-based environments, local environments, global environments, and combinations of environments.
At a high level, the computer 502 is an electronic computing device operable to receive, transmit, process, store, and manage data and information associated with the described subject matter. According to some implementations, the computer 502 can also include, or be communicably coupled with, an application server, an email server, a web server, a caching server, a streaming data server, or a combination of servers.
The computer 502 can receive requests over network 530 from a client application (for example, executing on another computer 502). The computer 502 can respond to the received requests by processing the received requests using software applications. Requests can also be sent to the computer 502 from internal users (for example, from a command console), external (or third) parties, automated applications, entities, individuals, systems, and computers. Each of the components of the computer 502 can communicate using a system bus 503. In some implementations, any or all of the components of the computer 502, including hardware or software components, can interface with each other or the interface 504 (or a combination of both), over the system bus 503. Interfaces can use an application programming interface (API) 512, a service layer 513, or a combination of the API 512 and service layer 513. The API 512 can include specifications for routines, data structures, and object classes. The API 512 can be either computer-language independent or dependent. The API 512 can refer to a complete interface, a single function, or a set of APIs.
The service layer 513 can provide software services to the computer 502 and other components (whether illustrated or not) that are communicably coupled to the computer 502. The functionality of the computer 502 can be accessible for all service consumers using this service layer. Software services, such as those provided by the service layer 513, can provide reusable, defined functionalities through a defined interface. For example, the interface can be software written in JAVA, C++, or a language providing data in extensible markup language (XML) format. While illustrated as an integrated component of the computer 502, in alternative implementations, the API 512 or the service layer 513 can be stand-alone components in relation to other components of the computer 502 and other components communicably coupled to the computer 502. Moreover, any or all parts of the API 512 or the service layer 513 can be implemented as child or sub-modules of another software module, enterprise application, or hardware module without departing from the scope of the present disclosure.
The computer 502 includes an interface 504. Although illustrated as a single interface 504 in
The computer 502 includes a processor 505. Although illustrated as a single processor 505 in
The computer 502 also includes a database 506 that can hold data for the computer 502 and other components connected to the network 530 (whether illustrated or not). For example, database 506 can be an in-memory, conventional, or a database storing data consistent with the present disclosure. In some implementations, database 506 can be a combination of two or more different database types (for example, hybrid in-memory and conventional databases) according to particular needs, desires, or particular implementations of the computer 502 and the described functionality. Although illustrated as a single database 506 in
The computer 502 also includes a memory 507 that can hold data for the computer 502 or a combination of components connected to the network 530 (whether illustrated or not). Memory 507 can store any data consistent with the present disclosure. In some implementations, memory 507 can be a combination of two or more different types of memory (for example, a combination of semiconductor and magnetic storage) according to particular needs, desires, or particular implementations of the computer 502 and the described functionality. Although illustrated as a single memory 507 in
The application 508 can be an algorithmic software engine providing functionality according to particular needs, desires, or particular implementations of the computer 502 and the described functionality. For example, application 508 can serve as one or more components, modules, or applications. Further, although illustrated as a single application 508, the application 808 can be implemented as multiple applications 508 on the computer 502. In addition, although illustrated as internal to the computer 502, in alternative implementations, the application 508 can be external to the computer 502.
The computer 502 can also include a power supply 514. The power supply 514 can include a rechargeable or non-rechargeable battery that can be configured to be either user- or non-user-replaceable. In some implementations, the power supply 514 can include power-conversion and management circuits, including recharging, standby, and power management functionalities. In some implementations, the power-supply 514 can include a power plug to allow the computer 502 to be plugged into a wall socket or a power source to, for example, power the computer 502 or recharge a rechargeable battery.
There can be any number of computers 502 associated with, or external to, a computer system containing computer 502, with each computer 502 communicating over network 530. Further, the terms “client,” “user,” and other appropriate terminology can be used interchangeably, as appropriate, without departing from the scope of the present disclosure. Moreover, the present disclosure contemplates that many users can use one computer 502 and one user can use multiple computers 502.
Implementations of the subject matter and the functional operations described in this specification can be implemented in digital electronic circuitry, intangibly embodied computer software or firmware, in computer hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Software implementations of the described subject matter can be implemented as one or more computer programs. Each computer program can include one or more modules of computer program instructions encoded on a tangible, non-transitory, computer-readable computer-storage medium for execution by, or to control the operation of, data processing apparatus. Alternatively, or additionally, the program instructions can be encoded in/on an artificially-generated propagated signal. The example, the signal can be a machine-generated electrical, optical, or electromagnetic signal that is generated to encode information for transmission to suitable receiver apparatus for execution by a data processing apparatus. The computer-storage medium can be a machine-readable storage device, a machine-readable storage substrate, a random or serial access memory device, or a combination of computer-storage mediums.
The terms “data processing apparatus,” “computer,” and “electronic computer device” (or equivalent as understood by one of ordinary skill in the art) refer to data processing hardware. For example, a data processing apparatus can encompass all kinds of apparatus, devices, and machines for processing data, including by way of example, a programmable processor, a computer, or multiple processors or computers. The apparatus can also include special purpose logic circuitry including, for example, a central processing unit (CPU), a field programmable gate array (FPGA), or an application specific integrated circuit (ASIC). In some implementations, the data processing apparatus or special purpose logic circuitry (or a combination of the data processing apparatus or special purpose logic circuitry) can be hardware- or software-based (or a combination of both hardware- and software-based). The apparatus can optionally include code that creates an execution environment for computer programs, for example, code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of execution environments. The present disclosure contemplates the use of data processing apparatuses with or without conventional operating systems, for example LINUX, UNIX, WINDOWS, MAC OS, ANDROID, or IOS.
A computer program, which can also be referred to or described as a program, software, a software application, a module, a software module, a script, or code, can be written in any form of programming language. Programming languages can include, for example, compiled languages, interpreted languages, declarative languages, or procedural languages. Programs can be deployed in any form, including as stand-alone programs, modules, components, subroutines, or units for use in a computing environment. A computer program can, but need not, correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data, for example, one or more scripts stored in a markup language document, in a single file dedicated to the program in question, or in multiple coordinated files storing one or more modules, sub programs, or portions of code. A computer program can be deployed for execution on one computer or on multiple computers that are located, for example, at one site or distributed across multiple sites that are interconnected by a communication network. While portions of the programs illustrated in the various figures may be shown as individual modules that implement the various features and functionality through various objects, methods, or processes, the programs can instead include a number of sub-modules, third-party services, components, and libraries. Conversely, the features and functionality of various components can be combined into single components as appropriate. Thresholds used to make computational determinations can be statically, dynamically, or both statically and dynamically determined.
The methods, processes, or logic flows described in this specification can be performed by one or more programmable computers executing one or more computer programs to perform functions by operating on input data and generating output. The methods, processes, or logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, for example, a CPU, an FPGA, or an ASIC.
Computers suitable for the execution of a computer program can be based on one or more of general and special purpose microprocessors and other kinds of CPUs. The elements of a computer are a CPU for performing or executing instructions and one or more memory devices for storing instructions and data. Generally, a CPU can receive instructions and data from (and write data to) a memory. A computer can also include, or be operatively coupled to, one or more mass storage devices for storing data. In some implementations, a computer can receive data from, and transfer data to, the mass storage devices including, for example, magnetic, magneto optical disks, or optical disks. Moreover, a computer can be embedded in another device, for example, a mobile telephone, a personal digital assistant (PDA), a mobile audio or video player, a game console, a global positioning system (GPS) receiver, or a portable storage device such as a universal serial bus (USB) flash drive.
Computer readable media (transitory or non-transitory, as appropriate) suitable for storing computer program instructions and data can include all forms of permanent/non-permanent and volatile/non-volatile memory, media, and memory devices. Computer readable media can include, for example, semiconductor memory devices such as random access memory (RAM), read only memory (ROM), phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), and flash memory devices. Computer readable media can also include, for example, magnetic devices such as tape, cartridges, cassettes, and internal/removable disks. Computer readable media can also include magneto optical disks and optical memory devices and technologies including, for example, digital video disc (DVD), CD ROM, DVD+/−R, DVD-RAM, DVD-ROM, HD-DVD, and BLURAY. The memory can store various objects or data, including caches, classes, frameworks, applications, modules, backup data, jobs, web pages, web page templates, data structures, database tables, repositories, and dynamic information. Types of objects and data stored in memory can include parameters, variables, algorithms, instructions, rules, constraints, and references. Additionally, the memory can include logs, policies, security or access data, and reporting files. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
Implementations of the subject matter described in the present disclosure can be implemented on a computer having a display device for providing interaction with a user, including displaying information to (and receiving input from) the user. Types of display devices can include, for example, a cathode ray tube (CRT), a liquid crystal display (LCD), a light-emitting diode (LED), and a plasma monitor. Display devices can include a keyboard and pointing devices including, for example, a mouse, a trackball, or a trackpad. User input can also be provided to the computer through the use of a touchscreen, such as a tablet computer surface with pressure sensitivity or a multi-touch screen using capacitive or electric sensing. Other kinds of devices can be used to provide for interaction with a user, including to receive user feedback, for example, sensory feedback including visual feedback, auditory feedback, or tactile feedback. Input from the user can be received in the form of acoustic, speech, or tactile input. In addition, a computer can interact with a user by sending documents to, and receiving documents from, a device that is used by the user. For example, the computer can send web pages to a web browser on a user's client device in response to requests received from the web browser.
The term “graphical user interface,” or “GUI,” can be used in the singular or the plural to describe one or more graphical user interfaces and each of the displays of a particular graphical user interface. Therefore, a GUI can represent any graphical user interface, including, but not limited to, a web browser, a touch screen, or a command line interface (CLI) that processes information and efficiently presents the information results to the user. In general, a GUI can include a plurality of user interface (UI) elements, some or all associated with a web browser, such as interactive fields, pull-down lists, and buttons. These and other UI elements can be related to or represent the functions of the web browser.
Implementations of the subject matter described in this specification can be implemented in a computing system that includes a back end component, for example, as a data server, or that includes a middleware component, for example, an application server. Moreover, the computing system can include a front-end component, for example, a client computer having one or both of a graphical user interface or a Web browser through which a user can interact with the computer. The components of the system can be interconnected by any form or medium of wireline or wireless digital data communication (or a combination of data communication) in a communication network. Examples of communication networks include a local area network (LAN), a radio access network (RAN), a metropolitan area network (MAN), a wide area network (WAN), Worldwide Interoperability for Microwave Access (WIMAX), a wireless local area network (WLAN) (for example, using 802.11 a/b/g/n or 802.20 or a combination of protocols), all or a portion of the Internet, or any other communication system or systems at one or more locations (or a combination of communication networks). The network can communicate with, for example, Internet Protocol (IP) packets, frame relay frames, asynchronous transfer mode (ATM) cells, voice, video, data, or a combination of communication types between network addresses.
The computing system can include clients and servers. A client and server can generally be remote from each other and can typically interact through a communication network. The relationship of client and server can arise by virtue of computer programs running on the respective computers and having a client-server relationship.
Cluster file systems can be any file system type accessible from multiple servers for read and update. Locking or consistency tracking may not be necessary since the locking of exchange file system can be done at application layer. Furthermore, Unicode data files can be different from non-Unicode data files.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of what may be claimed, but rather as descriptions of features that may be specific to particular implementations. Certain features that are described in this specification in the context of separate implementations can also be implemented, in combination, in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations, separately, or in any suitable sub-combination. Moreover, although previously described features may be described as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can, in some cases, be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
Particular implementations of the subject matter have been described. Other implementations, alterations, and permutations of the described implementations are within the scope of the following claims as will be apparent to those skilled in the art. While operations are depicted in the drawings or claims in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed (some operations may be considered optional), to achieve desirable results. In certain circumstances, multitasking or parallel processing (or a combination of multitasking and parallel processing) may be advantageous and performed as deemed appropriate.
Moreover, the separation or integration of various system modules and components in the previously described implementations should not be understood as requiring such separation or integration in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.
Accordingly, the previously described example implementations do not define or constrain the present disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of the present disclosure.
Furthermore, any claimed implementation is considered to be applicable to at least a computer-implemented method; a non-transitory, computer-readable medium storing computer-readable instructions to perform the computer-implemented method; and a computer system comprising a computer memory interoperably coupled with a hardware processor configured to perform the computer-implemented method or the instructions stored on the non-transitory, computer-readable medium.
A number of embodiments of these systems and methods have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of this disclosure. Accordingly, other embodiments are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
891957 | Schubert | Jun 1908 | A |
2286673 | Douglas | Jun 1942 | A |
2305062 | Church et al. | Dec 1942 | A |
2344120 | Baker | Mar 1944 | A |
2757738 | Ritchey | Sep 1948 | A |
2509608 | Penfield | May 1950 | A |
2575173 | Johnson | Nov 1951 | A |
2688369 | Broyles | Sep 1954 | A |
2719363 | Richard et al. | Oct 1955 | A |
2795279 | Erich | Jun 1957 | A |
2799641 | Gordon | Jul 1957 | A |
2805045 | Goodwin | Sep 1957 | A |
2841226 | Conrad et al. | Jul 1958 | A |
2927775 | Hildebrandt | Mar 1960 | A |
3016244 | Friedrich et al. | Jan 1962 | A |
3028915 | Jennings | Apr 1962 | A |
3087552 | Graham | Apr 1963 | A |
3102599 | Hillbum | Sep 1963 | A |
3103975 | Hanson | Sep 1963 | A |
3104711 | Haagensen | Sep 1963 | A |
3114875 | Haagensen | Dec 1963 | A |
3133592 | Tomberlin | May 1964 | A |
3137347 | Parker | Jun 1964 | A |
3149672 | Joseph et al. | Sep 1964 | A |
3169577 | Erich | Feb 1965 | A |
3170519 | Haagensen | Feb 1965 | A |
3211220 | Erich | Oct 1965 | A |
3236307 | Brown | Feb 1966 | A |
3268003 | Essary | Aug 1966 | A |
3428125 | Parker | Feb 1969 | A |
3522848 | New | Aug 1970 | A |
3547192 | Claridge et al. | Dec 1970 | A |
3547193 | Gill | Dec 1970 | A |
3642066 | Gill | Feb 1972 | A |
3656564 | Brown | Apr 1972 | A |
3696866 | Dryden | Oct 1972 | A |
3862662 | Kern | Jan 1975 | A |
3874450 | Kern | Apr 1975 | A |
3931856 | Barnes | Jan 1976 | A |
3946809 | Hagedorn | Mar 1976 | A |
3948319 | Pritchett | Apr 1976 | A |
4008762 | Fisher et al. | Feb 1977 | A |
4010799 | Kern et al. | Mar 1977 | A |
4064211 | Wood | Dec 1977 | A |
4084637 | Todd | Apr 1978 | A |
4135579 | Rowland et al. | Jan 1979 | A |
4140179 | Kasevich et al. | Feb 1979 | A |
4140180 | Bridges et al. | Feb 1979 | A |
4144935 | Bridges et al. | Mar 1979 | A |
4191493 | Hansson et al. | Mar 1980 | A |
4193448 | Jearnbey | Mar 1980 | A |
4193451 | Dauphine | Mar 1980 | A |
4196329 | Rowland et al. | Apr 1980 | A |
4199025 | Carpenter | Apr 1980 | A |
4265307 | Elkins | May 1981 | A |
RE30738 | Bridges et al. | Sep 1981 | E |
4301865 | Kasevich et al. | Nov 1981 | A |
4320801 | Rowland et al. | Mar 1982 | A |
4334928 | Hara | Jun 1982 | A |
4343651 | Yazu et al. | Aug 1982 | A |
4354559 | Johnson | Oct 1982 | A |
4373581 | Toellner | Feb 1983 | A |
4394170 | Sawaoka et al. | Jul 1983 | A |
4396062 | Iskander | Aug 1983 | A |
4412585 | Bouck | Nov 1983 | A |
4449585 | Bridges et al. | May 1984 | A |
4457365 | Kasevich et al. | Jul 1984 | A |
4470459 | Copland | Sep 1984 | A |
4476926 | Bridges et al. | Oct 1984 | A |
4484627 | Perkins | Nov 1984 | A |
4485868 | Sresty et al. | Dec 1984 | A |
4485869 | Sresty et al. | Dec 1984 | A |
4487257 | Dauphine | Dec 1984 | A |
4495990 | Titus et al. | Jan 1985 | A |
4498535 | Bridges | Feb 1985 | A |
4499948 | Perkins | Feb 1985 | A |
4508168 | Heeren | Apr 1985 | A |
4513815 | Rundell et al. | Apr 1985 | A |
4524826 | Savage | Jun 1985 | A |
4524827 | Bridges et al. | Jun 1985 | A |
4545435 | Bridges et al. | Oct 1985 | A |
4553592 | Looney et al. | Nov 1985 | A |
4557327 | Kinley et al. | Dec 1985 | A |
4576231 | Dowling et al. | Mar 1986 | A |
4583589 | Kasevich | Apr 1986 | A |
4592423 | Savage et al. | Jun 1986 | A |
4612988 | Segalman | Sep 1986 | A |
4620593 | Haagensen | Nov 1986 | A |
4660636 | Rundell et al. | Apr 1987 | A |
4705108 | Little et al. | Nov 1987 | A |
4817711 | Jearnbey | Apr 1989 | A |
5037704 | Nakai et al. | Aug 1991 | A |
5055180 | Klaila | Oct 1991 | A |
5068819 | Misra et al. | Nov 1991 | A |
5082054 | Kiamanesh | Jan 1992 | A |
5092056 | Deaton | Mar 1992 | A |
5107705 | Wraight et al. | Apr 1992 | A |
5107931 | Valka et al. | Apr 1992 | A |
5228518 | Wilson et al. | Jul 1993 | A |
5236039 | Edelstein et al. | Aug 1993 | A |
5278550 | Rhein-Knudsen et al. | Jan 1994 | A |
5388648 | Jordan, Jr. | Feb 1995 | A |
5490598 | Adams | Feb 1996 | A |
5501248 | Kiest, Jr. | Mar 1996 | A |
5690826 | Cravello | Nov 1997 | A |
5720355 | Lamine | Feb 1998 | A |
5803666 | Keller | Sep 1998 | A |
5813480 | Zaleski, Jr. et al. | Sep 1998 | A |
5853049 | Keller | Dec 1998 | A |
5890540 | Pia et al. | Apr 1999 | A |
5899274 | Frauenfeld et al. | May 1999 | A |
5947213 | Angle | Sep 1999 | A |
5958236 | Bakula | Sep 1999 | A |
RE36362 | Jackson | Nov 1999 | E |
6012526 | Jennings et al. | Jan 2000 | A |
6041860 | Nazzal et al. | Mar 2000 | A |
6096436 | Inspektor | Aug 2000 | A |
6170531 | Jung et al. | Jan 2001 | B1 |
6173795 | McGarian et al. | Jan 2001 | B1 |
6189611 | Kasevich | Feb 2001 | B1 |
6254844 | Takeuchi et al. | Jul 2001 | B1 |
6268726 | Prammer | Jul 2001 | B1 |
6269953 | Seyffert et al. | Aug 2001 | B1 |
6290068 | Adams et al. | Sep 2001 | B1 |
6325216 | Seyffert et al. | Dec 2001 | B1 |
6328111 | Bearden et al. | Dec 2001 | B1 |
6354371 | O'Blanc | Mar 2002 | B1 |
6371302 | Adams et al. | Apr 2002 | B1 |
6413399 | Kasevich | Jul 2002 | B1 |
6443228 | Aronstam | Sep 2002 | B1 |
6454099 | Adams et al. | Sep 2002 | B1 |
6510947 | Schulte et al. | Jan 2003 | B1 |
6534980 | Toufaily et al. | Feb 2003 | B2 |
6544411 | Varandaraj | Apr 2003 | B2 |
6561269 | Brown et al. | May 2003 | B1 |
6571877 | Van Bilderbeek | Jun 2003 | B1 |
6607080 | Winkler et al. | Aug 2003 | B2 |
6612384 | Singh et al. | Sep 2003 | B1 |
6623850 | Kukino et al. | Sep 2003 | B2 |
6629610 | Adams et al. | Oct 2003 | B1 |
6637092 | Menzel | Oct 2003 | B1 |
6678616 | Winkler et al. | Jan 2004 | B1 |
6722504 | Schulte et al. | Apr 2004 | B2 |
6761230 | Cross et al. | Jul 2004 | B2 |
6814141 | Huh et al. | Nov 2004 | B2 |
6845818 | Tutuncu et al. | Jan 2005 | B2 |
6850068 | Chemali et al. | Feb 2005 | B2 |
6895678 | Ash et al. | May 2005 | B2 |
6912177 | Smith | Jun 2005 | B2 |
6971265 | Sheppard et al. | Dec 2005 | B1 |
6993432 | Jenkins et al. | Jan 2006 | B2 |
7000777 | Adams et al. | Feb 2006 | B2 |
7013992 | Tessari et al. | Mar 2006 | B2 |
7048051 | McQueen | May 2006 | B2 |
7091460 | Kinzer | Aug 2006 | B2 |
7109457 | Kinzer | Sep 2006 | B2 |
7115847 | Kinzer | Oct 2006 | B2 |
7131498 | Campo et al. | Nov 2006 | B2 |
7216767 | Schulte et al. | May 2007 | B2 |
7312428 | Kinzer | Dec 2007 | B2 |
7322776 | Webb et al. | Jan 2008 | B2 |
7331385 | Symington | Feb 2008 | B2 |
7376514 | Habashy et al. | May 2008 | B2 |
7387174 | Lurie | Jun 2008 | B2 |
7445041 | O'Brien | Nov 2008 | B2 |
7455117 | Hall et al. | Nov 2008 | B1 |
7461693 | Considine et al. | Dec 2008 | B2 |
7484561 | Bridges | Feb 2009 | B2 |
7562708 | Cogliandro et al. | Jul 2009 | B2 |
7629497 | Pringle | Dec 2009 | B2 |
7631691 | Symington et al. | Dec 2009 | B2 |
7650269 | Rodney | Jan 2010 | B2 |
7677673 | Tranquilla et al. | Mar 2010 | B2 |
7730625 | Blake | Jun 2010 | B2 |
7828057 | Kearl et al. | Nov 2010 | B2 |
7909096 | Clark et al. | Mar 2011 | B2 |
7951482 | Ichinose et al. | May 2011 | B2 |
7980392 | Varco | Jul 2011 | B2 |
8096349 | Considine et al. | Jan 2012 | B2 |
8210256 | Bridges et al. | Jul 2012 | B2 |
8237444 | Simon | Aug 2012 | B2 |
8245792 | Trinh et al. | Aug 2012 | B2 |
8275549 | Sabag et al. | Sep 2012 | B2 |
8484858 | Brannigan et al. | Jul 2013 | B2 |
8511404 | Rasheed | Aug 2013 | B2 |
8526171 | Wu et al. | Sep 2013 | B2 |
8528668 | Rasheed | Sep 2013 | B2 |
8567491 | Lurie | Oct 2013 | B2 |
8678087 | Schultz et al. | Mar 2014 | B2 |
8794062 | DiFoggio et al. | Aug 2014 | B2 |
8884624 | Homan et al. | Nov 2014 | B2 |
8925213 | Sallwasser | Jan 2015 | B2 |
8960215 | Cui et al. | Feb 2015 | B2 |
9109429 | Xu et al. | Aug 2015 | B2 |
9217291 | Batarseh | Dec 2015 | B2 |
9217323 | Clark | Dec 2015 | B2 |
9222350 | Vaughn et al. | Dec 2015 | B2 |
9250339 | Ramirez | Feb 2016 | B2 |
9394782 | DiGiovanni et al. | Jul 2016 | B2 |
9435159 | Scott | Sep 2016 | B2 |
9464487 | Zum | Oct 2016 | B1 |
9470059 | Zhou | Oct 2016 | B2 |
9494032 | Roberson et al. | Nov 2016 | B2 |
9528366 | Selman et al. | Dec 2016 | B2 |
9562987 | Guner et al. | Feb 2017 | B2 |
9567819 | Cavender et al. | Feb 2017 | B2 |
9664011 | Kruspe et al. | May 2017 | B2 |
9702211 | Tinnen | Jul 2017 | B2 |
9731471 | Schaedler et al. | Aug 2017 | B2 |
9739141 | Zeng et al. | Aug 2017 | B2 |
9765609 | Chemali et al. | Sep 2017 | B2 |
10000983 | Jackson et al. | Jun 2018 | B2 |
10174577 | Leuchtenberg et al. | Jan 2019 | B2 |
10233372 | Ramasamy et al. | Mar 2019 | B2 |
10394193 | Li et al. | Aug 2019 | B2 |
20030159776 | Graham | Aug 2003 | A1 |
20030230526 | Okabayshi et al. | Dec 2003 | A1 |
20040182574 | Sarmad et al. | Sep 2004 | A1 |
20040256103 | Batarseh | Dec 2004 | A1 |
20050199386 | Kinzer | Sep 2005 | A1 |
20050259512 | Mandal | Nov 2005 | A1 |
20060016592 | Wu | Jan 2006 | A1 |
20060076347 | Kinzer | Apr 2006 | A1 |
20060102625 | Kinzer | May 2006 | A1 |
20060106541 | Hassan et al. | May 2006 | A1 |
20060144620 | Cooper | Jul 2006 | A1 |
20060185843 | Smith | Aug 2006 | A1 |
20060249307 | Ritter | Nov 2006 | A1 |
20070000662 | Symington et al. | Jan 2007 | A1 |
20070108202 | Kinzer | May 2007 | A1 |
20070131591 | Pringle | Jun 2007 | A1 |
20070137852 | Considine et al. | Jun 2007 | A1 |
20070137858 | Considine et al. | Jun 2007 | A1 |
20070181301 | O'Brien | Aug 2007 | A1 |
20070187089 | Bridges | Aug 2007 | A1 |
20070193744 | Bridges | Aug 2007 | A1 |
20070204994 | Wimmersperg | Sep 2007 | A1 |
20070261844 | Cogliandro et al. | Nov 2007 | A1 |
20070289736 | Kearl et al. | Dec 2007 | A1 |
20080007421 | Liu et al. | Jan 2008 | A1 |
20080047337 | Chemali et al. | Feb 2008 | A1 |
20080073079 | Tranquilla et al. | Mar 2008 | A1 |
20080173443 | Symington et al. | Jul 2008 | A1 |
20080173480 | Annaiyappa et al. | Jul 2008 | A1 |
20080190822 | Young | Aug 2008 | A1 |
20080308282 | Standridge et al. | Dec 2008 | A1 |
20090164125 | Bordakov et al. | Jun 2009 | A1 |
20090178809 | Jeffryes et al. | Jul 2009 | A1 |
20090259446 | Zhang et al. | Oct 2009 | A1 |
20090288820 | Barron et al. | Nov 2009 | A1 |
20100089583 | Xu et al. | Apr 2010 | A1 |
20100186955 | Saasen et al. | Jul 2010 | A1 |
20100276209 | Yong et al. | Nov 2010 | A1 |
20100282511 | Maranuk | Nov 2010 | A1 |
20110011576 | Cavender et al. | Jan 2011 | A1 |
20110120732 | Lurie | May 2011 | A1 |
20120012319 | Dennis | Jan 2012 | A1 |
20120075615 | Niclass et al. | Mar 2012 | A1 |
20120111578 | Tverlid | May 2012 | A1 |
20120132418 | McClung | May 2012 | A1 |
20120169841 | Chemali et al. | Jun 2012 | A1 |
20120173196 | Miszewski | Jul 2012 | A1 |
20120181020 | Barron et al. | Jul 2012 | A1 |
20120222854 | McClung, III | Sep 2012 | A1 |
20120273187 | Hall | Nov 2012 | A1 |
20130008653 | Schultz et al. | Jan 2013 | A1 |
20130008671 | Booth | Jan 2013 | A1 |
20130025943 | Kumar | Jan 2013 | A1 |
20130076525 | Vu et al. | Mar 2013 | A1 |
20130125642 | Parfitt | May 2013 | A1 |
20130126164 | Sweatman et al. | May 2013 | A1 |
20130213637 | Kearl | Aug 2013 | A1 |
20130255936 | Statoilydro et al. | Oct 2013 | A1 |
20130270007 | Scott | Oct 2013 | A1 |
20140034144 | Cui et al. | Feb 2014 | A1 |
20140083771 | Clark | Mar 2014 | A1 |
20140183143 | Cady et al. | Jul 2014 | A1 |
20140231147 | Bozso et al. | Aug 2014 | A1 |
20140246235 | Yao | Sep 2014 | A1 |
20140251894 | Larson et al. | Sep 2014 | A1 |
20140278111 | Gertie et al. | Sep 2014 | A1 |
20140291023 | Edbury | Oct 2014 | A1 |
20140333754 | Graves et al. | Nov 2014 | A1 |
20140360778 | Batarseh | Dec 2014 | A1 |
20140375468 | Wilkinson et al. | Dec 2014 | A1 |
20150020908 | Warren | Jan 2015 | A1 |
20150021240 | Wardell et al. | Jan 2015 | A1 |
20150083422 | Pritchard | Mar 2015 | A1 |
20150091737 | Richardson et al. | Apr 2015 | A1 |
20150101864 | May | Apr 2015 | A1 |
20150159467 | Hartman et al. | Jun 2015 | A1 |
20150211362 | Rogers | Jul 2015 | A1 |
20150267500 | Van Dongen | Sep 2015 | A1 |
20150290878 | Houben et al. | Oct 2015 | A1 |
20160053572 | Snoswell | Feb 2016 | A1 |
20160076357 | Hbaieb | Mar 2016 | A1 |
20160115783 | Zeng et al. | Apr 2016 | A1 |
20160153240 | Braga et al. | Jun 2016 | A1 |
20160160106 | Jamison et al. | Jun 2016 | A1 |
20160237810 | Beaman et al. | Aug 2016 | A1 |
20160247316 | Whalley et al. | Aug 2016 | A1 |
20160356125 | Bello et al. | Dec 2016 | A1 |
20170161885 | Parmeshwar et al. | Jun 2017 | A1 |
20170175520 | Scott et al. | Jun 2017 | A1 |
20170234104 | James | Aug 2017 | A1 |
20170292376 | Kumar et al. | Oct 2017 | A1 |
20170314335 | Kosonde et al. | Nov 2017 | A1 |
20170328196 | Shi et al. | Nov 2017 | A1 |
20170328197 | Shi et al. | Nov 2017 | A1 |
20170342776 | Bullock et al. | Nov 2017 | A1 |
20170350201 | Shi et al. | Dec 2017 | A1 |
20170350241 | Shi | Dec 2017 | A1 |
20180010030 | Ramasamy et al. | Jan 2018 | A1 |
20180010419 | Livescu et al. | Jan 2018 | A1 |
20180106922 | Leuenberger et al. | Apr 2018 | A1 |
20180171772 | Rodney | Jun 2018 | A1 |
20180187498 | Soto et al. | Jul 2018 | A1 |
20180265416 | Ishida et al. | Sep 2018 | A1 |
20180266226 | Batarseh et al. | Sep 2018 | A1 |
20180326679 | Weisenberg et al. | Nov 2018 | A1 |
20190049054 | Gunnarsson et al. | Feb 2019 | A1 |
20190101872 | Li | Apr 2019 | A1 |
20190227499 | Li et al. | Jul 2019 | A1 |
20190257180 | Kriesels et al. | Aug 2019 | A1 |
20190352973 | Sehsah et al. | Nov 2019 | A1 |
20200032638 | Ezzeddine | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
2669721 | Jul 2011 | CA |
204627586 | Sep 2015 | CN |
107462222 | Dec 2017 | CN |
110571475 | Dec 2019 | CN |
2317068 | May 2011 | EP |
2574722 | Apr 2013 | EP |
2737173 | Jun 2014 | EP |
2357305 | Jun 2001 | GB |
2399515 | Sep 2004 | GB |
2422125 | Jul 2006 | GB |
2532967 | Jun 2016 | GB |
2009067609 | Apr 2009 | JP |
4275896 | Jun 2009 | JP |
5013156 | Aug 2012 | JP |
343139 | Nov 2018 | NO |
20161842 | May 2019 | NO |
2282708 | Aug 2006 | RU |
WO 2000025942 | May 2000 | WO |
WO 2001042622 | Jun 2001 | WO |
WO 2002068793 | Sep 2002 | WO |
WO 2008146017 | Dec 2008 | WO |
WO 2009020889 | Feb 2009 | WO |
WO 2009113895 | Sep 2009 | WO |
WO 2010105177 | Sep 2010 | WO |
WO 2011038170 | Mar 2011 | WO |
WO 2011042622 | Jun 2011 | WO |
WO 2013016095 | Jan 2013 | WO |
WO 2013148510 | Oct 2013 | WO |
WO 2015011643 | Jan 2015 | WO |
WO 2015095155 | Jun 2015 | WO |
WO 2016178005 | Nov 2016 | WO |
WO 2017011078 | Jan 2017 | WO |
WO 2017132297 | Aug 2017 | WO |
WO 2018169991 | Sep 2018 | WO |
WO 2019040091 | Feb 2019 | WO |
WO 2019055240 | Mar 2019 | WO |
WO 2019089926 | May 2019 | WO |
WO 2019108931 | Jun 2019 | WO |
WO 2019169067 | Sep 2019 | WO |
WO 2019236288 | Dec 2019 | WO |
WO 2019246263 | Dec 2019 | WO |
Entry |
---|
“IADC Dull Grading for PDC Drill Bits,” Beste Bit, SPE/IADC 23939, 1992, 52 pages. |
Akersolutions, Aker MH CCTC Improving Safety, Jan. 2008. |
Anwar et al.,“Fog computing: an overview of big IoT data analytics,” Wireless communications and mobile computing, May 2018, 2018: 1-22. |
Artymiuk et al., “The new drilling control and monitoring system,” Acta Montanistica Slovaca, Sep. 2004, 9(3): 145-151. |
Ashby et al., “Coiled Tubing Conveyed Video Camera and Multi-Arm Caliper Liner Damage Diagnostics Post Plug and Perf Frac,” Society of Petroleum Engineers, SPE-172622-MS, Mar. 2015, pp. 12. |
Bilal et al., “Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data centers,” Computer Networks, Elsevier, Oct. 2017, 130: 94-120. |
Carpenter, “Advancing Deepwater Kick Detection”, JPT, vol. 68, Issue 5, May 2016, 2 pages. |
Commer et al., “New advances in three-dimensional controlled-source electromagnetic inversion,” Geophys. J. Int., 2008, 172: 513-535. |
Dickens et al., “An LED array-based light induced fluorescence sensor for real-time process and field monitoring,” Sensors and Actuators B: Chemical, Elsevier, Apr. 2011, 158(1): 35-42. |
Dong et al., “Dual Substitution and Spark Plasma Sintering to Improve Ionic Conductivity of Garnet Li7La3Zr2O12,” Nanomaterials, 9, 721, 2019, 10 pages. |
downholediagnostic.com [online] “Acoustic Fluid Level Surveys,” retrieved from URL <https://www.downholediagnostic.com/fluid-level> retrieved on Mar. 27, 2020, available on or before 2018, 13 pages. |
edition.cnn.com [online], “Revolutionary gel is five times stronger than steel,” retrieved from URL <https://edition.cnn.com/style/article/hydrogel-steel-japan/index.html>, retrieved on Apr. 2, 2020, available on or before Jul. 16, 2017, 6 pages. |
Gemmeke and Ruiter, “3D ultrasound computer tomography for medical imagining,” Nuclear Instruments and Methods in Physics Research A 580, Oct. 1, 2007, 9 pages. |
Halliburton, “Drill Bits and Services Solutions Catalogs,” retrieved from URL: <https://www.halliburton.com/content/dam/ps/public/sdbs/sdbs_contents/Books_and_Catalogs/web/DBS-Solution.pdI> on Sep. 26, 2019, Copyright 2014, 64 pages. |
Ji et al., “Submicron Sized Nb Doped Lithium Garnet for High Ionic Conductivity Solid Electrolyte and Performance of All Solid-State Lithium Battery,” doi:10.20944/preprints201912.0307.v1, Dec. 2019, 10 pages. |
Johnson et al., “Advanced Deepwater Kick Detection,” IADC/SPE 167990, presented at the 2014 IADC/SPE Drilling Conference and Exhibition, Mar. 4-6, 2014, 10 pages. |
Johnson, “Design and Testing of a Laboratory Ultrasonic Data Acquisition System for Tomography” Thesis for the degree of Master of Science in Mining and Minerals Engineering, Virginia Polytechnic Institute and State University, Dec. 2, 2004, 108 pages. |
King et al., “Atomic layer deposition of TiO2 films on particles in a fluidized bed reactor,” Power Technology, vol. 183, Issue 3, Apr. 2008, 8 pages. |
Li et al., 3D Printed Hybrid Electrodes for Lithium-ion Batteries, Missouri University of Science and Technology, Washington State University; ECS Transactions, 77 (11) 1209-1218 (2017), 11 pages. |
Liu et al., “Flow visualization and measurement in flow field of a torque converter,” Mechanic automation and control Engineering, Second International Conference on IEEE, Jul. 15, 2011, 1329-1331. |
Liu et al., “Superstrong micro-grained poly crystalline diamond compact through work hardening under high pressure,” Appl. Phys. Lett. Feb. 2018, 112: 6 pages. |
nature.com [online], “Mechanical Behavior of a Soft Hydrogel Reinforced with Three-Dimensional Printed Microfibre Scaffolds,” retrieved from URL <https://www.nature.com/articles/s41598-018-19502-y>, retrieved on Apr. 2, 2020, available on or before Jan. 19, 2018, 47 pages. |
Nuth, “Smart oil field distributed computing,” The Industrial Ethernet Book, Nov. 2014, 85(14): 1-3. |
Olver, “Compact Antenna Test Ranges,” Seventh International Conference on Antennas and Propagation IEEE , Apr. 15-18, 1991, 10 pages. |
Parini et al., “Chapter 3: Antenna measurements,” in Theory and Practice of Modem Antenna Range Measurements, IET editorial, 2014, 30 pages. |
petrowiki.org [online], “Kicks,” Petrowiki, available on or before Jun. 26, 2015, retrieved on Jan. 24, 2018, retrieved from URL <https://petrowiki.org/Kicks>, 6 pages. |
Rigzone.com [online], “How does Well Control Work?” Rigzone, available on or before 1999, retrieved on Jan. 24, 2019, retrieved from URL <https://www.rigzone.com/training/insight.asp?insight_id=304&c_id>, 5 pages. |
Ruiter et al., “3D ultrasound computer tomography of the breast: A new era?” European Journal of Radiology 81S1, Sep. 2012, 2 pages. |
Sageoiltools.com [online] “Fluid Level & Dynamometer Instrumens for Analysis due Optimization of Oil and Gas Wells,” retrieved from URL <http://www.sageoiltools.com/>, retrieved on Mar. 27, 2020, available on or before 2019, 3 pages. |
Schlumberger, “First Rigless ESP Retrieval and Replacement with Slickline, Offshore Congo: Zeitecs Shuttle System Eliminates Need to Mobilize a Workover Rig,” slb.com/zeitecs, 2016, 1 page. |
Schlumberger, “The Lifting Business,” Offshore Engineer, Mar. 2017, 1 page. |
Schlumberger, “Zeitecs Shuttle System Decreases ESP Replacement Time by 87%: Customer ESP riglessly retrieved in less than 2 days on coiled tubing,” slb.com/zeitecs, 2015, 1 page. |
Schlumberger, “Zeitecs Shuttle System Reduces Deferred Production Even Before ESP is Commissioned, Offshore Africa: Third Party ESP developed fault during installation and was retrieved on rods, enabling operator to continue running tubing without waiting on replacement,” slb.com/zeitecs, 2016, 2 pages. |
Schlumberger, “Zeitecs Shuttle: Rigless ESP replacement system,” Brochure, 8 pages. |
Schlumberger, “Zeitecs Shuttle: Rigless ESP replacement system,” Schlumberger, 2017, 2 pages. |
Slb.com' [online] “Technical Paper: ESP Retrievable Technology: A Solution to Enhance ESP Production While Minimizing Costs,” SPE 156189 presented in 2012, retrieved from URL <http://www.slb.com/resources/technical_papers/artificial_lift/156189.aspx>, retreived on Nov. 2, 2018, 1 pages. |
Slb.com' [online], “Zeitecs Shuttle Rigless ESP Replacement System,” retrieved from URL <http://www.slb.com/services/production/artificial_lift/submersible/zeitecs-shuttle.aspx?t=3>, available on or before May 31, 2017, retrieved on Nov. 2, 2018, 3 pages. |
Sulzer Metco, “An Introduction to Thermal Spray,” Issue 4, 2013, 24 pages. |
Wei et al., “The Fabrication of All-Solid-State Lithium-Ion Batteries via Spark Plasma Sintering,” Metals, 7, 372, 2017, 9 pages. |
Wikipedia.org [online] “Optical Flowmeters,” retireved from URL <https://en.wikipedia.org/wiki/Flow_measurement#Optical_flowmeters>, retrieved on Mar. 27, 2020, available on or before Jan. 2020, 1 page. |
Wikipedia.org [online] “Ultrasonic Flow Meter,” retrieved from URL <https://en.wikipedia.org/wiki/Ultrasonic_flow_meter> retrieved on Mar. 27, 2020, available on or before Sep. 2019, 3 pages. |
Wikipedia.org [online], “Surface roughness,” retrieved from URL <https://en.wikipedia.org/wiki/Surface_roughness> retrieved on Apr. 2, 2020, available on or before Oct. 2017, 6 pages. |
Xue et al., “Spark plasma sintering plus heat-treatment of Ta-doped Li7La3Zr2O12 solid electrolyte and its ionic conductivity,” Mater. Res. Express 7 (2020) 025518, 8 pages. |
Zhan et al. “Effect of β-to-α Phase Transformation on the Microstructural Development and Mechanical Properties of Fine-Grained Silicon Carbide Ceramics.” Journal of the American Ceramic Society 84.5, May 2001, 6 pages. |
Zhan et al. “Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites.” Nature Materials 2.1, Jan. 2003, 6 pages. |
Zhan et al., “Atomic Layer Deposition on Bulk Quantities of Surfactant Modified Single-Walled Carbon Nanotubes,” Journal of American Ceramic Society, vol. 91, Issue 3, Mar. 2008, 5 pages. |
Zhang et al, “Increasing Polypropylene High Temperature Stability by Blending Polypropylene-Bonded Hindered Phenol Antioxidant,” Macromolecules, 51(5), pp. 1927-1936, 2018, 10 pages. |
Zhu et al., “Spark Plasma Sintering of Lithium Aluminum Germanium Phosphate Solid Electrolyte and its Electrochemical Properties,” University of British Columbia; Nanomaterials, 9, 1086, 2019, 10 pages. |
PCT International Search Report and Written Opinion in International Appln. No. PCT/US2021/042792, dated Nov. 15, 2021, 16 pages. |
Number | Date | Country | |
---|---|---|---|
20220025714 A1 | Jan 2022 | US |