The present invention relates to a capacitive touch screen, and more particularly to a sensing method of a capacitive touch screen, and also to a driving method of a capacitive touch screen.
Touch screens have been widely applied to a variety of portable electronic devices due to the features of easy manipulation and matured development. Among the commercially available touch screens, resistive touch sensors and capacitive touch sensors are currently the most popular to be used in touch screens for manipulation detection. Capacitive touch sensors are particularly popular and commercially talent in the art for being capable of supporting multi-touch techniques.
A capacitive touch sensor principally detects a change in capacitance resulting from electrostatic interaction between an electrode and a part of a human body approaching or touching the electrode, e.g. a finger. For implementing such detection means, a variety of capacitive touch sensor solutions are developed to acquire precise capacitive changes.
Please refer to
The above mentioned prior art has a number of disadvantages. For example, charging of the integrating capacitor Cint involves many charge/discharge cycles of the sensing capacitor which consumes power and time. In addition, one integrating capacitor Cint is required for each sensing circuit. A parallel architecture using such a technique would therefore require many integrating capacitors which either requires a great deal of area in the chip or many external components. If a sequential architecture is adopted for measuring the capacitance of many sensors, noise would be an issue and sufficient filtering and shielding needs to be implemented.
Therefore, the present invention provides a sensing method of a capacitive touch screen with reduced noise.
The present invention also provides a driving circuit of a capacitive touch screen, capable of implementing a sensing method of a capacitive touch screen to reduce noise.
In an aspect of the present invention, a sensing method of a capacitive touch screen, which includes a plurality of sensing capacitors, comprises steps of: selecting at least one of the plurality of sensing capacitors into a reference capacitor unit; calculating capacitance differences between the reference capacitor unit and other sensing capacitors; and locating a touched position on the capacitive touch screen according to the capacitance differences.
In another aspect of the present invention, a driving circuit of a capacitive touch screen for implementing differential capacitance measurement, which includes a reference capacitor unit with a reference capacitance and a plurality of sensing capacitors, comprises: a reference signal generator coupled to the reference capacitor unit and generating a pair of complementary reference voltage signals according to the reference capacitance; a plurality of sensing circuits coupled to the plurality of sensing capacitors and the reference signal generator, and receiving the pair of complementary reference voltage signals for measuring capacitance differences between the reference capacitor unit and the plurality of sensing capacitors; and a positioning circuit coupled to the sensing circuits for locating a touched position on the capacitive touch screen according to the measured capacitance differences.
The above contents of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
Please refer to
Principally, any of the sensing capacitors can be used as the reference. In an embodiment of the present invention, the central one 20n is selected as the reference sensor and subjected to a subtracting operation with the other sensing capacitors 201˜290. Alternatively, different reference sensors can be chosen in rotation for an averaging effect.
In another embodiment, an external capacitor 200 can be selected into a reference capacitor unit as a reference sensor, as illustrated in
In a further embodiment, differential measurements are confined to a smaller area, and multiple sensing capacitors are selected into a reference capacitor unit. The sensing capacitances 201˜290 are divided into groups and multiple references Refl˜Refm are used in different groups for respective subtracting operations, as illustrated in
In still another embodiment, all the sensing capacitors are selected into a reference capacitor unit, and the average capacitance of all sensing capacitors 201˜290 are used as the reference capacitance to be compared with the sensing capacitances 201˜290. Differences between the reference capacitance and each of the sensing capacitances 201˜290 are calculated. By comparing the differences, the touched position by the user can be identified.
By the differential method according to the present invention, changes in capacitance of one sensor relative to another are detected. The differential method of touch sensing may lend itself to parallel measurement of all sensors. This reduces the problem of noise because the noise is correlated. Speed of touch detection can be increased because potentially less filtering will be required. Also, because a measurement can be done with a single charge/discharge cycle of each sensor compared with multiple cycles as used by other techniques power consumption can be reduced. Furthermore, in conventional touch screens the detection circuit(s) of the sensors often need to be calibrated to allow for varying measurement conditions. Due to the present method using differential techniques the problem of calibration is simplified because many changes in measurement conditions are the same for all sensors.
Hereinafter, a driving circuit of a capacitive touch screen for implementing the above-described differential capacitance measurements according to an embodiment of the present invention is illustrated with reference
The capacitance differences between the reference sensing capacitor 20n and each of the sensing capacitors 201˜290 are thus realized as analog output voltages V01˜V90 excluding Vn corresponding to the reference signal generator 30n. With the operational timing control by a control logic unit 60 coupled to the reference signal generator 30n and the sensing circuits 301˜390, the output voltages V01˜V90 are converted into digital data by corresponding analog-to-digital converters 401˜490 which serve as a positioning circuit. The digital data are then inputted to a decode and interface logic unit 50, to be processed, thereby realizing the touched position.
It is to be noted that the embodiment illustrated with reference to
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not to be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
This patent application is based on a U.S. provisional patent application No. 61/166,700 filed Apr. 3, 2009.
Number | Date | Country | |
---|---|---|---|
61166700 | Apr 2009 | US |