Sensor adapter cable

Information

  • Patent Grant
  • 9138180
  • Patent Number
    9,138,180
  • Date Filed
    Tuesday, May 3, 2011
    14 years ago
  • Date Issued
    Tuesday, September 22, 2015
    9 years ago
Abstract
A sensor adapter cable provides medical personnel with the convenience of utilizing otherwise incompatible optical sensors with multiple blood parameter plug-ins to a physiological monitor, where the plug-ins each have keyed connectors that mechanically lock-out incompatible sensors in addition readers that poll sensor identification components in each sensor so as to electrically lock-out incompatible sensors.
Description
BACKGROUND OF THE INVENTION

Pulse oximetry systems for measuring constituents of circulating blood have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care and neonatal units, general wards, home care, physical training, and virtually all types of monitoring scenarios. A pulse oximetry system generally includes an optical sensor applied to a patient, a monitor for processing sensor signals and displaying results and a patient cable electrically interconnecting the sensor and the monitor. The monitor may be specific to pulse oximetry or may be a multi-parameter monitor that has a pulse oximetry plug-in. A pulse oximetry sensor has light emitting diodes (LEDs), typically one emitting a red wavelength and one emitting an infrared (IR) wavelength, and a photodiode detector. The emitters and detector are typically attached to a finger, and the patient cable transmits drive signals to these emitters from the monitor. The emitters respond to the drive signals to transmit light into the fleshy fingertip tissue. The detector generates a signal responsive to the emitted light after attenuation by pulsatile blood flow within the fingertip. The patient cable transmits the detector signal to the monitor, which processes the signal to provide a numerical readout of pulse oximetry parameters such as oxygen saturation (SpO2) and pulse rate.


SUMMARY OF THE INVENTION

A sensor adapter cable provides medical personnel with the convenience of utilizing otherwise incompatible sensors with multiple SpO2 monitors or monitor plug-ins. For example, each monitor plug-in may have a keyed connector that mechanically locks-out incompatible sensors. Further, each sensor may have sensor identification (ID) components that can be read by a pulse oximetry monitor or monitor plug-in so as to electrically lock-out incompatible sensors. The sensor adapter cable advantageously allows the interconnection of these otherwise incompatible devices. In an embodiment, a sensor adapter cable allows the use of any of a Masimo sensor with a ProCal ID, a Masimo sensor with an EEPROM ID and a Nellcor/Philips sensor with an R-cal ID with either of a Masimo SET plug-in or a Philips FAST-SpO2 plug-in to a Philips IntelliVue™ monitor, all available from Philips Medical Systems, Andover, Mass.


A sensor adapter cable has both a mechanical and an electrical interface to a monitor plug-in so as to provide multiple sensor compatibility. In an embodiment, a dual key 8-pin D-shape connector (D8) at one end of an adapter cable provides mechanical compatibility with two-types of plug-in input connectors, as described in U.S. patent application Ser. No. 11/238,634 (Pub No. US2006/0073719 A1) titled Multiple Key Position Plug filed Sep. 29, 2005 and incorporated by reference herein. Further, a family of sensor adapter cables has sensor connector configurations that include MC8, M15 and DB9 connectors, as shown and described below.


The limited pins available on a D8 connector require sharing of pins to accommodate various sensor ID components. For example, an EEPROM sensor ID and a R-cal resistor sensor ID may need to share the same D8 pin. Such an approach, however, creates the potential for the EEPROM to effect the R-cal measurement in Philips FAST equipped devices and for the R-cal voltage drop to effect the ability of Masimo SET equipped devices to read the EEPROM.


An 8-pin dual-key cable which is capable of working correctly with any combination of Philips or Masimo SET equipped SpO2 plug-ins requires the connection of the proper ID component(s) to the SpO2 plug-ins while at the same time electrically disconnecting components that are not used or that could potentially interfere with the connected SpO2 technology. Further, this solution cannot impact the ability of each of the SpO2 technologies to operate correctly across its entire range of sensors and accessories.


One aspect of a sensor adapter cable provides medical personnel with the convenience of utilizing otherwise incompatible optical sensors with multiple blood parameter plug-ins to a physiological monitor. The plug-ins each have keyed connectors that mechanically lock-out incompatible sensors in addition to readers that poll sensor identification components in each sensor so as to electrically lock-out incompatible sensors. The sensor adapter cable has a sensor connector, a plug-in connector, an interconnection cable and a pod. The sensor connector mechanically connects to a predetermined sensor and electrically communicates with sensor electrical elements within the predetermined sensor. The plug-in connector mechanically connects to a predetermined plug-in and electrically communicates with lug-in electrical elements within the predetermined plug-in. An interconnection cable mechanically attaches between and provides electrical communications between the sensor connector and the plug-in connector. A pod is incorporated within the interconnecting cable that electrically interfaces the sensor connector to the plug-in connector.


In various embodiments, the pod has a cut in the interconnection cable that exposes cable wire ends. A circuit board is spliced to the cable wires end. A pre-mold encapsulates the cut, the circuit board, and the cable wire end, and an over-mold envelopes the pre-mode so as to define the pod. The circuit board comprises a first switch that, when closed, connects a resistor ID on the circuit board to the plug-in connector so as to enable a first plug-in attached to the plug-in connector to communicate with a sensor attached to the sensor connector. The circuit board also comprises a second switch that, when closed, connects an EEPROM ID on the circuit board to the plug-in connector so as to enable a second plug-in attached to the plug-in connector to communicate with a sensor attached to the sensor connector. The sensor adapter cable disconnects the resistor ID and the EEPROM ID when the first switch and the second switch are both open. The first switch may incorporate an n-channel MOSFET that turns on in response to a positive control signal from the first plug-in so as to switch in the resistor ID. The second switch may incorporate a p-channel MOSFET that turns on in response to a negative control signal from the second plug-in so as to switch in the EEPROM ID.


Another aspect of a sensor adapter cable is a method of interfacing any of multiple physiological monitor plug-ins to any of multiple optical sensors. An interface cable has a sensor connector on a first end and a plug-in connector on a second end. Resistive and memory IDs are incorporated within the cable. A sensor ID read signal is asserted at the plug-in connector. A particular one of the IDs is presented to the plug-in connector in response to the read signal. In various embodiments, unselected IDs are isolated from the plug-in connector and the selected ID. Switches are integrated with the IDs and are responsive to the read signal so as to connect the selected ID and disconnect the remaining IDs. A first switch is closed and a second switch is opened so as to select either a resistive ID or a memory ID. Both the first switch and the second switch are opened so that the sensor adapter cable functions as a patient cable. A circuit board with the switches and IDs is spliced between a portion of the interface cable conductors. The circuit board is encapsulated into a calibration pod portion of the interface cable.


A further aspect of a sensor adapter cable is a plug-in connector means for connecting to a plug-in module for a physiological monitor. A sensor connector means connects to an optical sensor. An interface cable mechanically and electrically interconnects the plug-in connector means and the sensor connector means. A pod means is integrated with the interface cable for allowing sensors to connected to and be recognized by the plug-in module. In various embodiments, the pod means comprises a circuit board means for splicing sensor IDs into the interface cable. A switching means selectively activates and isolates the sensor IDs so that only a single sensor ID is presented to the plug-in connector. A control means is in communications with the plug-in connector means for making the switching means responsive to a ID read signal from the plug-in module. The pod means further comprises an encapsulation means for enclosing the circuit board means within the pod means, where an encapsulations means embodiment comprises a premold of at least one of an epoxy, HDPE and PVC and an overmold of medical grade PVC.





DESCRIPTION OF THE DRAWINGS


FIG. 1 is a general block diagram of a physiological parameter monitoring system that incorporates a sensor adapter cable;



FIGS. 2A-B are top, side and end views of a sensor adapter cable embodiment employing a M15 sensor connector and a D8 plug-in connector;



FIGS. 3A-C are a M15 connector end view; a cable schematic and a D8 connector end view, respectively;



FIG. 4 is a detailed schematic of a sensor adapter circuit;



FIGS. 5A-B are top, side and end views of a sensor adapter cable embodiment employing a MC8 sensor connector and a D8 plug-in connector;



FIGS. 6A-C are a MC8 connector end view; a cable schematic and a D8 connector end view, respectively;



FIGS. 7A-B are top, side and end views of a sensor adapter cable embodiment employing a DB9 sensor connector and a D8 plug-in connector;



FIGS. 8A-C are a DB9 connector end view; a cable schematic and a D8 connector end view, respectively;



FIGS. 9A-B are a perspective view and an exploded perspective view, respectively, of a sensor adapter cable pod;



FIGS. 10A-B are a perspective views of a sensor adapter circuit board and cable assembly;



FIG. 10C is a cable-side view of a sensor adapter circuit board;



FIG. 10D are cable prep top and side views; and



FIGS. 11A-C are transparent top, end and front views, respectively, of the pod.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 illustrates a physiological parameter monitoring system 100 that incorporates a sensor adapter cable 120 or a family of sensor adapter cables so as to interconnect various sensors 110 with parameter processing plug-ins 130 to a physiological monitor 140. The sensors 110 include various types and configurations of optical devices as described above. Sensors typically have ID components that identify the sensor to a plug-in 130 so as to insure compatibility. Examples of ID components include an active component ID 114, such as a memory, or a passive component ID 112, such as one or more resistors having a specified range of values. In a particular embodiment, an active component ID 114 includes an EEPROM and a passive component ID 112 includes a ProCal resistor (Masimo) or an R-cal resistor (Philips/Nellcor).


Also shown in FIG. 1, a sensor adapter cable 120 has a sensor connector 122, a plug-in connector 124, a pod 900 and an interconnecting cable 128. The sensor connector 122 mechanically and electrically interfaces to one or more sensors 112, 114. The plug-in connector 124 interfaces to one or more plug-ins 130. The plug-ins 130, in turn, mechanically and electrically connect with a physiological monitor 140. The sensors 110 provide sensor signals to the plug-ins, which are used to calculate oxygen saturation (SpO2) and pulse rate among other parameters. The monitor 140 controls the plug-in operating modes and displays the parameter calculations accordingly. In an embodiment, the plug-ins are any of Masimo® SET® modules (Masimo Corporation, Irvine, Calif.) or Philips FAST-SpO2 modules, all available from Philips Medical Systems, Andover, Mass. In an embodiment, the physiological monitor is any of various IntelliVue™ monitors also available from Philips. The sensor connector and/or the plug-in connector can be any of various D8, M15, MC8 and DB9 connectors to name a few.



FIGS. 2A-B illustrate a sensor adapter cable embodiment 200 employing a M15 sensor connector 210 and a D8 plug-in connector 10. A cable 20 interconnects the sensor connector 210 and the plug-in connector 10. A pod 900 integrated with the cable 20 contains a sensor adapter circuit 400 (FIG. 4) that insures electrical compatibility between a passive and an active ID 110 (FIG. 1) and a particular plug-in 130 (FIG. 1).



FIGS. 3A-C further illustrate a sensor adapter cable embodiment 200, showing the respective pinouts of the M15 connector 210 and the D8 connector 10. Also shown are the corresponding cable 20 color-coded wires, inner shield and outer shield. Further shown is a sensor adapter circuit 400 and its connections relative to the connectors 10, 210 and cable 20 wires.



FIG. 4 illustrates the sensor adapter circuit 400 having plug-in connections 410 and sensor connections 420. The plug-in connections 410 (J1, J2, J3) connect to the plug-in connector 10 (FIGS. 2-3, 5-6, 7-8). The sensor connections 420 (J4, J5) connect to the sensor connector 210 (FIGS. 2-3); 510 (FIG. 5-6) or 710 (FIGS. 7-8). Table 1 below defines the signal names and associated connections to the plug-in connector pins.









TABLE 1







Adapter Circuit and Plug-in Connector Pinouts












Reference




Signal Name
Designation
Plug-in Connector Pin #







R-TYPE/EEPROM
J2
3



RCAL/CONTROL
J1
4



OUTER SHIELD
J3
7










The switch components 430, 440 used in this design (Si2312 and Si2351 or equivalents) are high impedance MOSFET devices that have no impact on R-cal and R-TYPE resistor measurements due to the fact that the MOSFET gates do not require current to activate. When the cable is connected to a Philips FAST equipped device, the RCAL/CONTROL signal will be a positive voltage. The RCAL/CONTROL voltage is 2.9V without a sensor connected and can be as low as 1.1V with the minimum value RCAL resistor of 6.04 KΩ. This is understood to represent the entire range for the RCAL/CONTROL voltage. When the cable is connected to a Masimo XCaI capable SpO2 module, a negative voltage will be applied to RCAL/CONTROL signal. This will turn on Q2 and turn off Q1 which will allow the Masimo system to read the EEPROM contents. Table 2, below, describes how the switches (Q1, Q2) operate.









TABLE 2







Adapter Circuit Switch Truth Table












RCAL/





SpO2
Control





Module
Signal
Switch Q1
Switch Q2
Comments





Philips
Positive
Closed
Open
Philips FAST


FAST
voltage


module can






measure RCAL and






R-TYPE resistors


Masimo
Open (No
Open
Open
Same as patient


ProCal
driving
(Don't
(Don't
cable


Technology
voltage)
care)
care)



Masimo
Negative
Open
Closed
Masimo board will


XCal
voltage


read EEPROM;


Technology



negative voltage will






be supplied by the






Masimo board









The n-channel transistor (Q1) 430 was chosen with a very low turn-on threshold (0.85V max) so that it is guaranteed to turn on and switch in the R-TYPE resistor even at the lowest RCAL/CONTROL voltage of 1.1V. The on-resistance of the FET is so low (less than 100 mΩ) that it will not affect the measured R-TYPE resistor value. At the same time, the p-channel FET (Q2) 440 will be turned off since the gate-to-source voltage (Vgs) will be positive. Even in the worst possible case, the Vgs will be −0.3V which is not low enough to turn-on the p-channel device. The minimum turn-on threshold for the p-channel is −0.6V. The purpose of resistors R1 and R2 and ESD protection diodes D1 and D2 are to protect the MOSFET devices. This sensor adapter embodiment ensures proper operation and ample margin in all possible combinations of sensor and device types and therefore meets the design requirements necessary to allow Masimo SET or Philips FAST systems to work correctly with a dual key D8 connector capable of plugging into either type of system.


Resistor R3 of FIG. 4 is a passive ID element on the sensor adapter circuit 400. U1 450 is an EEPROM and is an active ID element on the sensor adapter circuit 400.



FIGS. 5A-B illustrate a sensor adapter cable embodiment 500 employing a MC8 sensor connector 510 and a D8 plug-in connector 10. A cable 20 interconnects the sensor connector 510 and the plug-in connector 10. A pod 900 integrated with the cable 20 contains a sensor adapter circuit 400 (FIG. 4) that insures electrical compatibility between a passive and an active ID 110 (FIG. 1) and a particular plug-in 130 (FIG. 1).



FIGS. 6A-C further illustrate a sensor adapter cable embodiment 500, showing the respective pinouts of the MC8 connector 510 and the D8 connector 10. Also shown are the corresponding cable 20 color-coded wires, inner shield and outer shield. Further shown are the sensor adapter circuit 400 connections relative to the connectors 10, 510 and cable 20 wires.



FIGS. 7A-B illustrate a sensor adapter cable embodiment 700 employing a DB9 sensor connector 710 and a D8 plug-in connector 10. A cable 20 interconnects the sensor connector 710 and the plug-in connector 10. A pod 900 integrated with the cable 20 contains a sensor adapter circuit 400 (FIG. 4) that insures electrical compatibility between a passive and an active ID 110 (FIG. 1) and a particular plug-in 130 (FIG. 1).



FIGS. 8A-C further illustrate a sensor adapter cable embodiment 700, showing the respective pinouts of the DB9 connector 710 and the D8 connector 10. Also shown are the corresponding cable 20 color-coded wires, inner shield and outer shield. Further shown are the sensor adapter circuit 400 connections relative to the connectors 10, 710 and cable 20 wires.



FIGS. 9A-B illustrate a pod 900 that splices the sensor adapter circuit 400 (FIG. 4) into the sensor adapter cable 20. The pod 900 has a overmold 910, a premold 920, a copper foil shield 930, a circuit board 940 and heat-shrink tubing 950. The circuit board 940 provides the sensor adapter circuit 400 (FIG. 4) described above. The board 940 is mounted to the cable 20 and electrically interconnected to the cable wires and outer shield, as described with respect to FIG. 4, above. The premold 920 is manufactured to envelop the circuit board 940 and spliced cable portion. The copper foil shield 930, if used, envelops the premold 920, and the overmold 910 envelops all of the pod 900 components.



FIGS. 10A-D illustrate attachment of the circuit board 940 to the adapter cable 20. Shown is cable preparation (FIG. 10D) for splicing with the circuit board 940 (FIG. 10C). Also shown are preparation of the cable wires (FIG. 10B) and mounting of the circuit board 940 to the cable wires. FIGS. 11A-C further illustrates the assembled pod 900.


A sensor adapter cable has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to be construed as limiting the scope of this disclosure. One of ordinary skill in the art will appreciate many variations and modifications.

Claims
  • 1. A sensor adapter cable provides medical personnel with the convenience of utilizing otherwise incompatible optical sensors with multiple blood parameter plug-ins to a physiological monitor, where the plug-ins each have keyed connectors that mechanically lock-out incompatible sensors in addition to readers that poll sensor identification components in each sensor so as to electrically lockout incompatible sensors, the sensor adapter cable comprising: a sensor connector that mechanically connects to a predetermined sensor and electrically communicates with a plurality of sensor electrical elements within the predetermined sensor;a plug-in connector that mechanically connects to a predetermined plug-in and electrically communicates with a plurality of plug-in electrical elements within the predetermined plug-in;an interconnection cable that mechanically attaches between and provides electrical communications between the sensor connector and the plug-in connector; anda pod, including a circuit board, incorporated within the interconnecting cable that electrically interfaces the sensor connector to the plug-in connector; wherein the pod includes both active and passive identification elements;wherein the circuit board comprises a first switch that, when closed, connects a resistor ID on the circuit board to the plug-in connector so as to enable a first plug-in attached to the plug-in connector to communicate with a sensor attached to the sensor connector, wherein the first switch is one of an n-channel or p-channel MOSFET;wherein the circuit board comprises a second switch that, when closed, connects an EEPROM ID on the circuit board to the plug-in connector so as to enable a second plug-in attached to the plug-in connector to communicate with a sensor attached to the sensor connector, wherein the second switch is the other of an n-channel or p-channel MOSFET.
  • 2. The sensor adapter cable according to claim 1 wherein the pod comprises: a cut in the interconnection cable that exposes a plurality of cable wire ends;the circuit board spliced to the cable wires ends;a pre-mold that encapsulates the cut, the circuit board, and the cable wire end; andan over-mold that envelopes the pre-mode so as to define the pod.
  • 3. The sensor adapter cable according to claim 1 wherein the sensor adapter cable disconnects the resistor ID and the EEPROM ID when the first switch and the second switch are both open.
  • 4. The sensor adapter cable according to claim 1 wherein the first switch turns on in response to a positive control signal from the first plug-in so as to switch in the resistor ID.
  • 5. The sensor adapter cable according to claim 1 wherein the second switch turns on in response to a negative control signal from the second plug-in so as to switch in the EEPROM ID.
  • 6. A method of using a sensor adapter cable for interfacing any of multiple physiological monitor plug-ins to any of multiple optical sensors comprising: providing an interface cable having a sensor connector on a first end and a plug-in connector on a second end, and incorporating a plurality of passive and active memory identifications (IDs) within the cable, wherein the passive ID is at least one resistive ID and the active ID is a memory ID;asserting a sensor ID read signal at the plug-in connector; andselecting a particular one of the IDs to present to the plug-in connector in response to the read signal using one of an n-type MOSFET or a p-type MOSFET for the resistive ID and using the other of an n-type MOSFET or a p-type MOSFET for the memory ID.
  • 7. The method according to claim 6 further comprising isolating unselected IDs from the plug-in connector and the selected ID.
  • 8. The method according to claim 7 wherein the n-type MOSFET and p-type MOSFET are responsive to the read signal so as to connect the selected ID and disconnect the remaining IDs.
  • 9. The method according to claim 8 further comprising closing a first one of the n-type MOSFET or p-type MOSFET and opening a the other of the n-type MOSFET or p-type MOSFET so as to select either a resistive ID or a memory ID.
  • 10. The method according to claim 8 further comprising opening both the n-type MOSFET and p-type MOSFET so that the sensor adapter cable functions as a patient cable.
  • 11. The method according to claim 10 wherein the providing further comprises a circuit board with the n-type MOSFET and p-type MOSFET and IDs spliced between a portion of the interface cable conductors.
  • 12. The method according to claim 11 the circuit board is encapsulated into a calibration pod portion of the interface cable.
  • 13. A sensor adapter cable comprising: a plug-in connector means for connecting to a plug-in module for a physiological monitor;a sensor connector means for connecting to an optical sensor;an interface cable that mechanically and electrically interconnects the plug-in connector means and the sensor connector means; anda pod means integrated with the interface cable for allowing a plurality of sensors to connect to and be recognized by the plug-in module, the pod means including at least passive and active memory identifications (IDs);a switching means for selectively activating and isolating the IDs so that only a single ID is presented to the plug-in connector, wherein the switching means comprises one of an n-type MOSFET or a p-type MOSFET for the at least one of the IDs and the other of an n-type MOSFET or a p-type MOSFET for the at least another of the IDs.
  • 14. The sensor adapter cable according to claim 13 further comprising a control means in communications with the plug-in connector means for making the switching means responsive to a ID read signal from the plug-in module.
  • 15. The sensor adapter cable according to claim 14 wherein the pod means further comprises an encapsulation means for enclosing a circuit board within the pod means.
  • 16. The sensor adapter cable according to claim 15 wherein the encapsulations means comprises: a premold of at least one of an epoxy, HDPE and PVC; andan overmold of medical grade PVC.
PRIORITY CLAIM TO RELATED PROVISIONAL APPLICATIONS

The present application claims priority benefit under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/330,586 filed May 3, 2010, titled Sensor Adapter Cable; the above-cited provisional patent application is hereby incorporated by reference herein.

US Referenced Citations (615)
Number Name Date Kind
4822997 Fuller et al. Apr 1989 A
4868476 Respaut Sep 1989 A
4890306 Noda Dec 1989 A
4942877 Sakai et al. Jul 1990 A
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4975647 Downer et al. Dec 1990 A
4996975 Nakamura Mar 1991 A
5041187 Hink et al. Aug 1991 A
5058588 Kaestle Oct 1991 A
5069213 Polczynski Dec 1991 A
5155697 Bunsen Oct 1992 A
5162725 Hodson et al. Nov 1992 A
5163438 Gordon et al. Nov 1992 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
5355129 Baumann Oct 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5400267 Denen et al. Mar 1995 A
D359546 Savage et al. Jun 1995 S
5425362 Siker et al. Jun 1995 A
5425375 Chin et al. Jun 1995 A
5431170 Mathews Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5487386 Wakabayashi et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5528519 Ohkura et al. Jun 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5603323 Pflugrath et al. Feb 1997 A
5615672 Braig et al. Apr 1997 A
5617857 Chader et al. Apr 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5658248 Klein et al. Aug 1997 A
5685299 Diab et al. Nov 1997 A
5720293 Quinn et al. Feb 1998 A
D393830 Tobler et al. Apr 1998 S
5742718 Harman et al. Apr 1998 A
5743262 Lepper, Jr. et al. Apr 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5779630 Fein et al. Jul 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830121 Enomoto et al. Nov 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5850443 Van Oorschot et al. Dec 1998 A
5860099 Milios et al. Jan 1999 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5900632 Sterling et al. May 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5939609 Knapp et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5987343 Kinast Nov 1999 A
5991355 Dahlke Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6124597 Shehada Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6132363 Freed et al. Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6163715 Larsen et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6165173 Kamdar et al. Dec 2000 A
6175752 Say et al. Jan 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6266551 Osadchy et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6295330 Skog et al. Sep 2001 B1
6298255 Cordero et al. Oct 2001 B1
6301493 Marro et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6336900 Alleckson et al. Jan 2002 B1
6339715 Bahr et al. Jan 2002 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6351658 Middleman et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6490684 Fenstemaker et al. Dec 2002 B1
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6645142 Braig et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kianl et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali et al. Dec 2003 B2
6676600 Conero et al. Jan 2004 B1
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6708049 Berson et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6760607 Al-All Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7067893 Mills et al. Jun 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7132641 Schulz et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7215984 Diab May 2007 B2
7215986 Diab May 2007 B2
7221971 Diab May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al-Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7526328 Diab et al. Apr 2009 B2
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7606861 Killcommons et al. Oct 2009 B2
7618375 Flaherty Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
RE41317 Parker May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-Ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellott et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8965471 Lamego Feb 2015 B2
20020068858 Braig et al. Jun 2002 A1
20020095077 Swedlow et al. Jul 2002 A1
20020095078 Mannheimer et al. Jul 2002 A1
20090247984 Lamego et al. Oct 2009 A1
20090275844 Al-Ali Nov 2009 A1
20090299157 Telfort et al. Dec 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100261979 Kiani Oct 2010 A1
20100317936 Al-Ali et al. Dec 2010 A1
20110001605 Kiani et al. Jan 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110105854 Kiani et al. May 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110209915 Telfort et al. Sep 2011 A1
20110213212 Al-Ali Sep 2011 A1
20110230733 Al-Ali Sep 2011 A1
20110237911 Lamego et al. Sep 2011 A1
20120059267 Lamego et al. Mar 2012 A1
20120116175 Al-Ali et al. May 2012 A1
20120179006 Jansen et al. Jul 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120227739 Kiani Sep 2012 A1
20120265039 Kiani Oct 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120286955 Welch et al. Nov 2012 A1
20120296178 Lamego et al. Nov 2012 A1
20120319816 Al-Ali Dec 2012 A1
20120330112 Lamego et al. Dec 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130045685 Kiani Feb 2013 A1
20130046204 Lamego et al. Feb 2013 A1
20130060108 Schurman et al. Mar 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130079610 Al-Ali Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130109935 Al-Ali et al. May 2013 A1
20130162433 Muhsin et al. Jun 2013 A1
20130190581 Al-Ali et al. Jul 2013 A1
20130197328 Diab et al. Aug 2013 A1
20130211214 Olsen Aug 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130274571 Diab et al. Oct 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130317370 Dalvi et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331670 Kiani Dec 2013 A1
20130338461 Lamego et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140025306 Weber et al. Jan 2014 A1
20140034353 Al-Ali et al. Feb 2014 A1
20140051952 Reichgott et al. Feb 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140051954 Al-Ali et al. Feb 2014 A1
20140058230 Abdul-Hafiz et al. Feb 2014 A1
20140066783 Kiani et al. Mar 2014 A1
20140077956 Sampath et al. Mar 2014 A1
20140081100 Muhsin et al. Mar 2014 A1
20140081175 Telfort Mar 2014 A1
20140094667 Schurman et al. Apr 2014 A1
20140100434 Diab et al. Apr 2014 A1
20140114199 Lamego et al. Apr 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140121483 Kiani May 2014 A1
20140125495 Al-Ali May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140128696 Al-Ali May 2014 A1
20140128699 Al-Ali et al. May 2014 A1
20140129702 Lamego et al. May 2014 A1
20140135588 Al-Ali et al. May 2014 A1
20140142401 Al-Ali et al. May 2014 A1
20140142402 Al-Ali et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140163402 Lamego et al. Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140194709 Al-Ali et al. Jul 2014 A1
20140194711 Al-Ali Jul 2014 A1
20140194766 Al-Ali et al. Jul 2014 A1
20140200420 Al-Ali Jul 2014 A1
20140200422 Weber et al. Jul 2014 A1
20140206963 Al-Ali Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140243627 Diab et al. Aug 2014 A1
20140266790 Al-Ali et al. Sep 2014 A1
20140275808 Poeze et al. Sep 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140275881 Lamego et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140296664 Bruinsma et al. Oct 2014 A1
20140303520 Telfort et al. Oct 2014 A1
20140309506 Lamego et al. Oct 2014 A1
20140309559 Telfort et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140330099 Al-Ali et al. Nov 2014 A1
20140333440 Kiani Nov 2014 A1
20140336481 Shakespeare et al. Nov 2014 A1
20140343436 Kiani Nov 2014 A1
20150018650 Al-Ali et al. Jan 2015 A1
Foreign Referenced Citations (13)
Number Date Country
3244695 Oct 1985 DE
0469395 Feb 1996 EP
0417447 Oct 1997 EP
0606356 Jun 1998 EP
0734221 Jul 1998 EP
H06-178776 Jun 1994 JP
H07-391 Jan 1995 JP
H07-171089 Jul 1995 JP
H07-171090 Jul 1995 JP
2001-504256 Mar 2001 JP
WO 9306776 Apr 1993 WO
WO 9729678 Aug 1997 WO
WO 97029710 Aug 1997 WO
Non-Patent Literature Citations (7)
Entry
US 8,845,543, 09/2014, Diab et al. (withdrawn)
“Application Note 84 Use of Add-Only Memory for Secure Storage of Monetary Equivalent Data,” Dallas Semiconductor, Jun. 22, 1999, in 5 pages.
Dallas Semiconductor Corp: DS2430A Announcement, retrieved Jun. 10, 1998, in 2 pages. <https://web.archive.org/web/19980610045525/http://dalsemi.com/News—Center/New—Products/1996/2430a.html>.
Favennec, J.M. “Smart sensors in industry.” J. Phys. E: Sci. Instrum. 20(9): Sep. 1987, pp. 1087-1090.
Jones, K.L., et al. “A Protocol for Automatic Sensor Detection and Identification in a Wireless Biodevice Network,” IEEE, Jun. 1998, 6 pages.
“Medical.” 50 Ways to Touch Memory. 3rd ed. Dallas: Dallas Semiconductor Corporation, Aug. 1994: pp. 24-25. Print.
Subramanian, S., et al. “Design for Constraint Violation Detection in Safety-Critical Systems,” IEEE, Nov. 1998: pp. 1-8.
Provisional Applications (1)
Number Date Country
61330586 May 2010 US