Information
-
Patent Grant
-
6247347
-
Patent Number
6,247,347
-
Date Filed
Monday, November 29, 199925 years ago
-
Date Issued
Tuesday, June 19, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 073 179
- 073 181
- 340 686
- 340 540
- 340 501
- 340 514
- 340 517
- 340 531
- 340 533
- 340 538
- 029 4079
-
International Classifications
-
Abstract
A multi-sensor alignment testing device for aligning or testing a sensor in a paper processing apparatus. The device comprises a housing, a power supply section, and a signal selector section connected to the housing. The signal selector section is connectable to a power supply section and the sensor. The indicator section is connected to the signal selector section and the sensor.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a document processing apparatus and, more particularly, to the alignment and test of sensors within the document processing apparatus.
2. Prior Art
Referring to
FIG. 1
, there is shown a perspective view of a document processing apparatus
10
. The apparatus
10
could be any suitable type of document processing apparatus, such as a copier, a facsimile machine, a scanner, a computer printer, or a multifunction device having two or more functions. Referring also to
FIG. 2
, in this embodiment the apparatus
10
is a copier which includes an original document feed system
11
and a copy document feed system
13
. A scanner or image obtainer
12
is provided under a transparent glass platen
15
. The scanned information from the scanner
12
of information on an original document fed through the original document feed system
11
is imaged onto paper selected from paper trays
14
or
16
. Paper selected from either of the paper trays
14
,
16
is moved by the copy document feed system
13
through the apparatus
10
by means of various belts
18
and rollers
19
schematically depicted in FIG.
2
. The original document feed system
11
also comprises suitable belts and rollers. Throughout the paper paths of the two feed systems
11
,
13
there are mechanical sensors
30
,
50
and optical sensors
20
,
40
to indicate where and when a piece of paper is located. The sensors are initially aligned and tested during manufacture and re-aligned and tested as required by field service technicians throughout the life of the apparatus.
In the case of optical sensors
20
,
40
the sensors are aligned so that when paper is present, light from a light emitting diode
20
a
,
40
a
encased within the sensor is blocked by the paper from the photosensitive transistor
20
b
,
40
b
, respectively, also encased within the sensor. Similarly, in the case of mechanical sensors, the sensors
30
,
50
are aligned so that when paper is not present the switch
30
a
,
50
a
, respectively, is closed, thus, indicating the non presence of paper.
During manufacture the mechanical sensors may be aligned or tested using elaborate mechanical setups such as special mechanical jigs, or in the case of optical sensors, a cumbersome digital voltmeter and a power supply arrangement may be used. However, the slow response time of the digital voltmeter leads to a tedious and repetitive alignment process for each sensor being aligned. Moreover, the slow response time and unbuffered sensor signals can also lead to misaligned sensors requiring later apparatus disassembly if still in manufacture or alignment by a field service technician if the unit is in service.
Diagnostic programs within the document processing apparatus exist for assisting a field service technician in aligning and testing a sensor but require that the technician be able to see the apparatus screen or display
8
(see FIG.
1
). However, many of the sensors are located such that the technician cannot see the display
8
while aligning or testing a particular sensor. Thus, attempting to align or test a sensor by use of the display
8
is awkward and time consuming.
SUMMARY OF THE INVENTION
A multi-sensor alignment-testing device for aligning or testing a mechanical or optical sensor in a paper processing apparatus. The testing device may be colocated within the paper processing apparatus housing or self contained within a hand held housing. The testing device comprises a power supply section; a sensor type selector switch, an indicator section, and contacts that are removably connectable to the optical sensor or mechanical switch under test. In the preferred hand held embodiment of the invention the housing can contain a standard 9 v transistor battery or means, such as a jack, for power from an external source. The indicator section signals or alerts the user when the sensor is properly aligned or is blocked or unblocked. In the preferred embodiment the indicator section is comprised of diodes where at least one diode is designated as the red diode and at least one diode is designated as the green diode. Red indicating a misaligned sensor or that the sensor is blocked or paper is present. The green LED indicates an aligned sensor or that the sensor is unblocked or no paper is present. In an alternate embodiment the indicator section may also include a sound device, such as a speaker, where the speaker sound may be proportional to the degree of alignment.
A method for aligning sensors in a paper processing apparatus using a powered alignment indicating device. The method comprising the steps of connecting the powered alignment indicating device to a sensor; selecting a sensor setting on the alignment indicating device; and adjusting the sensor until the device indicates that the sensor is properly aligned.
A method for testing sensors in a paper processing apparatus using the powered alignment indicating device. The method comprising the steps of connecting the powered alignment indicating device to a sensor; selecting a sensor setting on the alignment indicating device; placing a sheet of paper (or other optically solid item) between the photosensitive transistor and a light emitting diode; moving the paper such that the light from the LED to the photosensitive transistor is interrupted or not interrupted causing the RED and GREEN LEDs to switch on and off respectively.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing aspects and other features of the present invention are explained in the following description, taken in connection with the accompanying drawings, wherein:
FIG. 1
is a perspective view of a conventional document processing apparatus;
FIG. 2
is a schematic view of paper paths within the paper processing apparatus shown in
FIG. 1
;
FIG. 3
is a front elevational view of a hand-held multi-sensor alignment testing device incorporating features of the present invention;
FIG. 4
is a circuit diagram of circuitry inside the device shown in
FIG. 3
;
FIGS. 5A-5D
are circuit diagrams of different types of sensors which the device shown in
FIG. 3
may be connected to;
FIG. 6
is a circuit diagram of an alternate embodiment of the invention;
FIG. 7
is a flowchart of one method for aligning a sensor using device shown in
FIG. 3
;
FIG. 8
is a flowchart of another method for aligning an optical sensor using an alternate embodiment of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Although the present invention will be described with reference to the embodiments shown in the drawings, it should be understood that the present invention can be embodied in many alternate forms of embodiments.
Referring now to
FIGS. 3 and 4
there is shown one embodiment of an alignment and testing device
108
incorporating features of the present invention. The device
108
is generally intended to be used for aligning or testing optical sensors and mechanical sensors in a document processing apparatus such as described above with reference to
FIGS. 1 and 2
(e.g.: a copier, a facsimile machine, a computer printer, a scanner, or a multifunction device) . As seen in
FIG. 3
the device
108
generally comprises a housing
110
, circuitry
112
(see
FIG. 4
) located in the housing, a power switch
114
, an indicator section
116
, a selector section
118
, and a connector section
120
.
The housing
110
generally comprises a housing suitable to enclose the circuitry described in FIG.
4
and fit easily within a user's hand. Alternatively, the housing may be a work bench testing station or the housing of the document processing apparatus.
The indication section
116
generally comprises at least two light emitting diodes (LEDs) connected to the connector section and the power switch. One of the diodes is designated as the red diode while the other is designated as the green diode; red signifying a misalignment or that paper is present or the sensor is blocked. The green diode signifies alignment or that no paper is present or that the sensor is unblocked. An alternative arrangement could comprise simply one diode where the off state signals the desired condition or alternatively the on state signals the desired condition. Other alternative arrangements could include an audio device in addition to the LEDs or in place of the LEDs or any suitable type of sensory stimulation device.
The selector section
118
, connected to the power switch
114
and the connector section
120
comprises a double pole double throw switch for distributing power and signals to and from the connector section
120
. Any suitable method could be used to select the type of sensor to be aligned or tested and distribute the appropriate power and signals to and from the appropriate pin in connector section
120
. Methods such as jump wires, dual in-line package (DIP) switches, or remotely controlled relays could be suitable selector switches.
The connector section
120
generally comprises a three pin connector suitable to be mated with the connector on the sensor to be aligned or tested.
The power switch
114
generally comprises a single pole single throw slider switch connected to the selector switch and a nine volt power supply. Any suitable single pole single throw switch could be suitable as the power switch, including push button switches, rotary switches, or relay switches. Alternatively the power switch can be connected to any suitable power supply connector such as a jack for connection to an off-board power supply.
Referring also to
FIG. 4
, one embodiment of the circuitry
112
is shown. In this embodiment the circuitry
112
generally comprises a power supply section, a switching network section, an indicator section, and a connector J
1
.
The power supply stage comprises a 9 volt power supply 9 v, a power supply switch SW
1
, a zener diode D
3
, voltage and current limit resistor R
1
and current limiting resistors R
1
-R
3
. Power supply 9 v can be any DC power supply source suitable for powering indicators and logic circuits and may be a board mounted power supply, such as a transistor battery, or externally provided to power supply switch SW
1
. As noted above, SW
1
could be any suitable power switch used to connect power from the power supply to the current limiting resistor R
1
as shown in FIG.
4
. Zener diode D
3
generally comprises a 5.1 v zener diode designed to clamp the juncture at node 1 N
1
to a nominal 5 volts DC. Alternatively, any suitable voltage clamping circuit or device could be used to clamp or provide the required circuit voltage at node N
1
. For example zener diode D
3
could be replaced by a resistive voltage divider network.
The switching network section is comprised of double pole double throw switch SW
2
and is described above.
The indicator sections comprises inverter IC U
1
, indicator diodes D
1
and D
2
, and current limiting resistors R
4
-R
5
. Any suitable logic circuit combined with a sensory stimulation device or devices could be used. For example, an alternative arrangement could be to eliminate either diode D
1
or D
2
. The off state of the remaining diode could signify the opposite condition. For example, if diode D
1
were removed, then the off state of diode D
2
would signify an aligned sensor or that paper is present or that the sensor is blocked.
Connector J
1
is generally comprised of a three pin connector suitable to be connected with either an optical sensor
20
,
40
or a mechanical sensor
30
,
50
.
Operation of the circuit will be illustrated using optical sensor
20
shown in FIG.
5
A. Referring now to
FIGS. 3-5
, and
7
. The device
108
is connected to the optical sensor
20
via connector J
1
62
. Switch SW
1
on the device
108
is moved to the on position providing nine volts from the battery 9 v. Zener diode D
3
clamps the voltage at 5.1 volts at the juncture, node N
1
, of resistors R
1
and R
3
,R
2
providing a nominal 5 volts to signal selector switch SW
2
. (In addition 5 volts is also provided as circuit power to integrated circuit U
1
comprising U
1
a
,U
1
b
, and U
1
c
.) Setting
64
SW
2
to the Type 1 position for a type 1 optical sensor
20
as shown in
FIG. 5A
, a 2.5 volt potential is developed at pin
2
of J
1
through current limiting resistor R
3
when connected to the optical sensor. The 5 volt potential is also developed at pin
1
of J
1
through resistor R
2
. Pin
3
of J
1
is connected to the return or common side of the power supply and serves as the return or common line for sensors shown in
FIGS. 5A-5D
.
Looking now at the optical sensor
20
in
FIG. 5A
with the voltages on pins
1
-
3
as described above the sensor
20
operates as follows. The 2.5 volt potential on pin
2
of the sensor causes encased light emitting diode (LED)
20
a
to emit light. The user then positions the sensor
64
so that light from LED
20
a
is reflected onto the base of encased phototransistor
20
b
. If the sensor
20
is positioned so that light from the LED
20
a
is not sufficiently reflected onto the base of phototransistor
20
b
the phototransistor
20
b
is in the off state. With the phototransistor
20
b
in the off state the 5 volts on pin
1
of J
1
is also on the input of inverter U
1
a
shown in FIG.
4
. Inverter U
1
a
buffers and inverts the 5 volts so that the input to inverter U
1
b
is 0 volts. Inverter U
1
b
inverts the 0 volts so that the output of inverter U
1
b
is 5 volts, forward biasing the LED D
1
, designated in
FIG. 4
as the red diode, indicating
68
an misaligned sensor or that the paper is present or the sensor is otherwise blocked.
20
. The user continues to adjust the sensor
66
until the light from the photodiode
20
a
forward biases the phototransistor
20
b
. In the forward biased or on state pin
1
is effectively shorted to pin
3
through the phototransistor. The output of U
1
b
is then a low, turning off LED D
1
while the output of U
1
c
is high, turning on diode D
2
, designated as the green diode indicating the sensor is aligned or that no paper is present or that the sensor is otherwise unblocked. Thus the user has immediate feedback that the sensor is properly aligned
70
and the user may disconnect the device
72
. By comparison, other methods, require that the user wait until the voltmeter readout has stabilized before knowing whether or not the sensor is aligned; or, alternatively, have available and be able to see a display of diagnostic routines capable of indicating sensor alignment. The current invention however, allows the user to see immediately whether or not the sensor has been aligned and does not require the availability of diagnostic routines. Also, the use of the 74LS04 Shockley device U
1
buffers the indicating section so that both LEDs do not turn on simultaneously when the phototransistor
20
b
within the sensor under test is only partially illuminated by the LED
20
a
within the sensor under test.
In an alternative embodiment, as shown in FIG.
6
and
FIG. 8
, the user may use a sound indication device either in place of or in conjunction with the LEDs. In this configuration the user proceeds as described above, i.e., connect the alignment device to a sensor
82
and select the sensor type
84
. Now however, the user adjusts
86
the sensor until a sound is emitted by sound device SD
1
shown in FIG.
8
. When the sound has reached its maximum (indicated by the sound inflection point determined by steps
88
-
92
) the user knows that the sensor is aligned properly
94
and may disconnect the device from the sensor. This embodiment provides the advantage that the user not have to see the LEDs but can keep focused on aligning the sensor. In addition to providing immediate feedback when the sensor is aligned this embodiment provides the extra advantage of immediate feedback of the degree of sensor alignment, thus guiding the user in aligning the sensor. For example, the user merely has to adjust the sensor until a sound is heard. Then as indicated in
FIG. 8
, adjust the sensor until the sound inflection point is heard indicating that sensor
20
is positioned so that light from LED
20
a
is fully, or as much as possible under the conditions, illuminating phototransistor
20
b.
It should be understood that the foregoing description is only illustrative of the invention. Various alternatives and modifications can be devised by those skilled in the art without departing from the invention. Accordingly, the present invention is intended to embrace all such alternatives, modifications and variances which fall within the scope of the appended claims.
Claims
- 1. A method for aligning or testing a sensor in a paper processing apparatus using a powered alignment/test indicating device, the method comprising the steps of:connecting the powered alignment/test indicating device to the sensor; selecting a sensor setting on the alignment/test indicating device; adjusting the sensor; and indicating a response to the step of adjusting the sensor.
- 2. A method as in claim 1, wherein the step of indicating a response to the step of adjusting the sensor further comprises the alternate steps of activating a light emitting diode (LED) designated as a misaligned sensor diode or activating a LED designated as an aligned sensor diode.
- 3. A method as in claim 1, wherein the step of indicating a response to the step of adjusting the sensor further comprises sounding an audible tone.
- 4. A method for aligning a sensor in a paper processing apparatus using an alignment/test indicating device, the alignment/test indicating device comprising a housing, a power supply section, a signal selector section connected to the housing, the signal selector section being connectable to the power supply section and the sensor, an indicator section connected to the housing, the indicator section being connectable to the power supply section and the sensor, the method comprising the steps of:connecting the alignment/test indicating device to the sensor; selecting a sensor setting on the alignment/test indicating device; adjusting the sensor; and indicating a response to the step of adjusting the sensor.
- 5. A method as in claim 4 wherein the step of selecting a sensor setting on the alignment/test indicating device further comprises the step of setting a signal selector having a double throw double pole switch.
- 6. A method as in claim 4 wherein the step of selecting a sensor setting on the alignment/test indicating device further comprises the step of setting a signal selector having a plurality of sensor specific hard wires.
- 7. A method as in claim 4 wherein the step of connecting the alignment/test indicating device to the sensor further comprises the step of connecting the alignment/test indicating device to the power supply section, the power supply section having a nominal 5 volts DC power supply.
- 8. A method as in claim 4 wherein the step of adjusting the sensor further comprises the step of adjusting the sensor until the indicator section indicates the sensor is aligned, the indicator section having a control circuit, and at least one sensory stimulation device connected to the control circuit.
- 9. A multi-sensor alignment and testing device as in claim 8 wherein the step of adjusting the sensor until the indicator section indicates the sensor is aligned further comprises the step of adjusting the sensor until the at least one sensory stimulation device sounds an audible signal.