The present invention is related to a sensor of inductive type comprising at least one support, wherein the support is provided with at least one coil, and wherein the coil is adapted to be fed with a high-frequency signal, as disclosed in the preamble of attached claim 1.
Furthermore, the invention is related to a device for the detection of water fraction or “water cut” in a multiphase flow of fluid, wherein the device has a holder of metal or metal alloy having at least one aperture in which with the aid of glass ceramic material or glass material there is embedded a respective capacitive sensor, the holder being connected via an intermediate piece to an attachment flange intended for mounting on pipeline equipment carrying said fluid, so that the holder when so mounted penetrates into the fluid flow, as disclosed in the preamble of attached claim 17
Moreover, the invention is related to a method for multiphase measurement of a fluid flow for detection of water fraction in said fluid, wherein a sensor device is used that projects into or is in contact with the fluid flow, as disclosed in the preamble of attached claim 24.
In addition, the invention is related to a specific use of said sensor and said device.
For measuring multiphase fluid flow, it is previously known to use a water cut meter (WCM) produced by phase TECHNOLOGIES AS in Norway. This meter uses a plurality of capacitive sensors in addition to being able to have both temperature meters and a manometer.
During oil production, that is to say, the recovery of hydrocarbons from subterranean formations either by drilling onshore from the surface or offshore beneath the seabed, a certain fraction of water will as a rule be present in the fluid flow of oil that is produced. As the reservoir is emptied, the fraction of water will gradually increase. Therefore, after some time there comes a point in the production when measures must be taken to help to prevent the percentage of water from increasing significantly in the fluid recovered from the formation, for example, by moving the recovery point or by causing more oil to be forced out at the discharge point. It is however important, not least from a production and profitability point of view, to have a clear picture of the percentage of water at all times, so that necessary decisions can be taken under way when this percentage exceeds a desired value.
Capacitive measurement of such multiphase fluid flow consisting of, for example, oil and water, functions extremely well as long as the water fraction remains below about 50%. When the water fraction rises above this limit value it is difficult, tricky or impossible to be able to determine the water fraction using capacitive meters.
Although the known water cut meters function extremely well in the most common operating conditions, because the water fraction remains below or well below 50%, there has nevertheless arisen a need to be able to determine with certainty the water fraction in the fluid flow when it approaches or has passed 50%. As indicated in
It has been found that inductive sensors will be capable of measuring water fraction that is about 50% or higher, but also for values that are somewhat lower, for example, down to 30-40%, so that with the aid of one inductive sensor it is also possible at the same time to measure in a transitional phase where the detection capacity of the capacitive sensor gradually diminishes.
For measuring in environments where high fluid pressures and high fluid temperatures prevail, as for example in the recovery of hydrocarbons from formations beneath the seabed, stringent demands are made where operational reliability is concerned, in that such fluid flow meters should be expected to have a lifetime of at least 25 years. By high fluid pressures is meant, for example, pressures of up to about 1500 bar, and by high fluid temperatures is meant temperatures of up to, for example, about +250° C., although such equipment should also be capable of withstanding low temperatures, for example, down to −40° C. without being damaged as a result. It will be understood that fluid flow meters must be capable of withstanding large pressure and temperature fluctuations without leakages occurring in the meter.
In the light of these facts, there emerged in connection with the invention the challenge of providing in the first place a sensor of the type referred to in the introduction, and in the second place a device for measuring fluid flow which includes such a sensor, together with at least one capacitive sensor, so as to be able to extend the measuring range for such a sensor-based device in a reliable manner.
According to the invention, the aforementioned sensor is characterised, as disclosed in claim 1, in that the coil or each coil part thereof has its respective windings arranged in one plane, that the support is formed of a disc-shaped substrate having a deformation temperature which is at least 1000° C., that the windings are provided on the substrate by vapour deposition or etching, and that the coil is adapted for operation selected in the frequency range of 1 MHz-1 GHz.
Additional embodiments of the sensor will be apparent from subsidiary patent claims 2-13.
The sensor will advantageously be used for multiphase measurement of a fluid flow containing a fraction of water, at a pressure selected in the range of 0-1500 bar and a temperature selected in the range of from −50° C. to +250° C., as disclosed in claim 14. Additional aspects of the use can be seen from claims 15 and 16.
The device referred to in the introduction is characterised, according to the invention, in that the holder has at least one additional aperture in which there is embedded a respective sensor of said inductive type, as disclosed in claim 17.
Additional embodiments of the device are set forth in subsidiary claims 18-21.
A preferred use of the device is related to the detection of water fraction in a hydrocarbon-containing fluid flow during recovery of hydrocarbons from a land-based, subterranean formation or from a formation located beneath a seabed, as disclosed in claims 22 and 23.
The aforementioned method, as disclosed in claim 24, is characterised according to the invention in that said water fraction is detected capacitively and at least partly inductively in a first measuring range, and that said condition is detected inductively in a second measuring range.
Additional embodiments of the method are set forth in attached subsidiary claims 25-27.
The invention will now be explained in more detail with reference to the attached drawings which show exemplary embodiments that are non-limiting for the invention.
a shows a sensor seen from a first side face,
The sensor 3 comprises at least one support 6, said support being provided with at least one coil 3′; 3″. The coil is adapted to be fed with a high-frequency signal selected in the frequency range of 1 MHz-1 GHz, preferably in the range of 10 MHz-500 MHz, from a signal processing unit 5, as shown in
The coil may have a set of windings arranged in one plane, as shown in
Each coil part 3′, 3,″ has its respective windings arranged in one plane, and the windings are advantageously formed of copper or copper alloy, and are provided on the substrate by vapour deposition or etching.
Although it should not be understood as limiting for the possible embodiments of the sensor, the coil windings in a preferred embodiment are selected to have a width of about 0.1 mm and a thickness of about 0.004 mm. In this non-limiting example, the disc-shaped substrate 6 is selected to have a thickness of about 0.4 mm and a diameter selected in the range of 10-100 mm. As shown in
When using the configuration shown in
When using the coil winding configuration shown in
As shown in
As indicated in
As indicated in
It will be understood, inter alia, on studying what is shown in
According to the invention, such a sensor will be especially suitable for multiphase measurement of a fluid flow containing a fraction of water, at a pressure selected in the range of 0-1500 bar and at a temperature selected in the range of from −50° C. to +250° C. The sensor will be particularly useful when the fraction of water in the fluid flow is greater than 30-50% and the sensor is especially useful for detection of water fraction in a fluid during the recovery of hydrocarbons from a subterranean formation, such as in onshore or offshore oil production.
As indicated in the introduction, capacitive meters have a limited measuring range, although such meters are accurate within that range. It is therefore proposed that the present inductive sensor be used in a device 14 for detection of water fraction in a multiphase fluid flow. The device 14 has a holder 15 of metal or metal alloy with at least one aperture 16, 17, 18 in which with the aid of glass ceramic material or glass material 19, 20, 21 there is embedded a respective capacitive sensor, symbolically shown as C1, C2, C3, see
The holder 15 is connected via intermediate piece 22 to an attachment flange 23 intended for mounting on pipeline equipment 24 (see
Said at least one capacitive sensor C1, C2, C3 and said at least one inductive sensor L1 are connectable to the common signal processing equipment represented by the unit 5. In addition, said at least one extra sensor T; P may be connected to said common signal processing equipment in the form of the unit 5. This equipment is placed in a pressure-resistant housing 28 on said attachment flange 23. The pressure-resistant housing will, in a preferred embodiment, be designed to withstand a pressure of up to about 700-1500 bar.
It will be understood from the above description that such a device which has both capacitive and inductive sensors, in addition to optional pressure sensor and/or temperature sensor, is particularly suitable for detection of water fraction in a hydrocarbon-containing fluid flow during the recovery of hydrocarbons from a land-based, subterranean formation or from a formation located beneath a seabed, and where the pressure in the fluid flow may be in the range of 0-1500 bar and temperatures selected in the range of from −50° C. to +250° C.
As shown in
In a first measuring range, i.e., where the water fraction is equal to or less than about 50%, the water fraction is detected capacitively and at least more than part of the range inductively as indicated in
Number | Date | Country | Kind |
---|---|---|---|
NO20080077 | Jan 2008 | NO | national |