Autonomous vehicles include a variety of sensors. Some sensors detect internal states of the vehicle, for example, wheel speed, wheel orientation, and engine and transmission variables. Some sensors detect the position or orientation of the vehicle, for example, global positioning system (GPS) sensors; accelerometers such as piezo-electric or microelectromechanical systems (MEMS); gyroscopes such as rate, ring laser, or fiber-optic gyroscopes; inertial measurements units (IMU); and magnetometers. Some sensors detect the external world, for example, radar sensors, scanning laser range finders, light detection and ranging (LIDAR) devices, and image processing sensors such as cameras. A LIDAR device detects distances to objects by emitting laser pulses and measuring the time of flight for the pulse to travel to the object and back. When sensor lenses, covers, and the like become dirty, smudged, etc., sensor operation can be impaired or precluded.
A sensor apparatus includes a first sensing device; sensor housing, wherein the sensor housing includes a first sensor window and a top panel, and the first sensing device has a field of view through the first sensor window; a bracket mounted on top of the top panel; a second sensor held by the bracket and including a second sensor window; and a channel plate fixed to the bracket. The bracket includes a first nozzle aimed at the first sensor window and a second nozzle aimed at the second sensor window. The bracket includes a channel fluidly connected to the first nozzle and the second nozzle, and the channel plate covers the channel.
The channel plate may include an inlet fluidly connected to the channel. The inlet may be aligned with the second nozzle.
The sensor apparatus may further include a third sensing device, the sensor housing may include a third sensor window, and the third sensing device may have a field of view through the third sensor window. The bracket may include a third nozzle aimed at the third sensor window, and the channel may be fluidly connected to the third nozzle. The channel plate may include an inlet fluidly connected to the channel, and the channel may be sealed except for the inlet, the first nozzle, the second nozzle, and the third nozzle.
The channel may be elongated from the first nozzle to the second nozzle and from the second nozzle to the third nozzle.
The bracket may be a single piece.
The first nozzle may include a first orifice and a second orifice. The first orifice may be shaped to discharge onto a first region of the first sensor window, and the second orifice may be shaped to discharge onto a second region of the first sensor window.
The first nozzle may include a cylindrical section including the first orifice and second orifice, and the cylindrical section defines an axis. The first orifice may have a direction of discharge forming an acute angle with the axis in a direction along the axis toward the first sensor window. The acute angle may be a first acute angle, and the second orifice may have a direction of discharge forming a second acute angle with the axis in a direction along the axis toward the first sensor window. The first acute angle may be greater than the second acute angle. The first orifice may be spaced from the second orifice along the axis, and the first orifice may be farther from the first sensor window along the axis than the second orifice is.
The first sensor window may have a rectangular shape, and the axis may be transverse to a plane defined by the rectangular shape of the first sensor window.
The sensor apparatus may further include a face plate including a clip, and the bracket may include a slot into which the clip is inserted. The face plate may include openings through which the second sensor, first nozzle, and second nozzle extend.
The first sensing device may be a LIDAR sensing device.
The second sensor may be a camera, and the second sensor window may be a lens.
With reference to the Figures, a sensor apparatus 102 for a vehicle 100 includes a first sensing device 104, a sensor housing 106, a bracket 108, a second sensor 110, and a channel plate 112. The sensor housing 106 includes a first sensor window 114 and a top panel 116, and the first sensing device 104 has a field of view through the first sensor window 114. The bracket 108 is mounted on top of the top panel 116. The second sensor 110 is held by the bracket 108 and includes a second sensor window 118. The channel plate 112 is fixed to the bracket 108. The bracket 108 includes a first nozzle 120 aimed at the first sensor window 114 and a second nozzle 122 aimed at the second sensor window 118. The bracket 108 includes a channel 124 fluidly connected to the first nozzle 120 and the second nozzle 122. The channel plate 112 covers the channel 124.
The sensor apparatus 102 can provide an efficiently packaged collection of the first sensing device 104, the second sensor 110, and a third sensing device 126 along with a combined cleaning apparatus for the first sensor window 114, the second sensor window 118, and a third sensor window 128 of the third sensing device 126. The integration of the first nozzle 120, the second nozzle 122, and a third nozzle 130 for the third sensor window 128 with the bracket 108 and of the channel 124 with the bracket 108 provides a low dimensional stackup and can be supplied with fluid using a small number of components. The sensor apparatus 102 can thus provide a low complexity, a small number of components, and a small volume occupied, i.e., small package size. The sensor apparatus 102 provides an interchangeable design that can be located in multiple locations on the vehicle 100.
With reference to
The vehicle 100 includes a body 132. The vehicle 100 may be of a unibody construction, in which a frame and the body 132 of the vehicle 100 are a single component. The vehicle 100 may, alternatively, be of a body-on-frame construction, in which the frame supports the body 132 that is a separate component from the frame. The frame and body 132 may be formed of any suitable material, for example, steel, aluminum, etc. The body 132 includes body panels 134 partially defining an exterior of the vehicle 100. The body panels 134 may present a class-A surface, e.g., a finished surface exposed to view by a customer and free of unaesthetic blemishes and defects.
The sensor apparatus 102 is disposed on and mounted to one of the body panels 134. For example, the sensor apparatus 102 can be disposed on a front end of the vehicle 100 below a beltline of the vehicle 100, as shown in
With reference to
The first sensing device 104 and the third sensing device 126 are disposed inside the sensor housing 106. The first sensing device 104 and the third sensing device 126 can each be a LIDAR device. A LIDAR device detects distances to objects by emitting laser pulses at a particular wavelength and measuring the time of flight for the pulse to travel to the object and back. The first sensing device 104 and the third sensing device 126 each include components for emitting and detecting the pulses. The first sensing device 104 has a field of view through the first sensor window 114, and the third sensing device 126 has a field of view through the third sensor window 128.
The first sensor window 114 is transparent with respect to wavelengths of light that the first sensing device 104 is capable of emitting and/or detecting. The third sensor window 128 is transparent with respect to wavelengths of light that the third sensing device 126 is capable of emitting and/or detecting.
The first sensor window 114 and the third sensor window 128 are fixed relative to the rest of the sensor housing 106 and relative to each other. The first sensor window 114 has a flat rectangular shape and defines a plane. The third sensor window 128 has a flat rectangular shape and defines a different plane than the plane defined by the first sensor window 114. An angle defined by the first sensor window 114 and the third sensor window 128, i.e., an angle at which the portions of the planes defined by the first sensor window 114 and third sensor window 128 intersect, is obtuse.
The first sensor window 114 and third sensor window 128 each include a first short edge 142, a second short edge 144, a first long edge 146, a second long edge 148, a first corner 150, a second corner 152, a third corner 154, and a fourth corner 156 defined by the rectangular shape. The first short edge 142 and second short edge 144 extend horizontally, and the first long edge 146 and second long edge 148 extend vertically. The second short edge 144 is closer to the respective first nozzle 120 or third nozzle 130 than the first short edge 142 is. The second short edge 144 connects the first corner 150 and the second corner 152. The first sensor window 114 and third sensor window 128 can each be divided into a first half 158 and a second half 160, and the first half 158 and the second half 160 encompass all of the respective first sensor window 114 or third sensor window 128 and are nonoverlapping. The first half 158 is a lower half and extends from a horizontal midline 162 of the respective first sensor window 114 or third sensor window 128 to the first short edge 142 and from the first long edge 146 to the second long edge 148. The second half 160 is an upper half and extends from the horizontal midline 162 of the respective first sensor window 114 or third sensor window 128 to the second short edge 144 and from the first long edge 146 to the second long edge 148. The first half 158 is farther from the respective first nozzle 120 or third nozzle 130 than the second half 160 is.
With reference to
The bracket 108 holds the second sensor 110. For example, the second sensor 110 can be press-fit into an opening through the bracket 108. The bracket 108 fixes the position of the second sensor 110 relative to the sensor housing 106.
The second sensor 110 detects the external world, e.g., objects and/or characteristics of surroundings of the vehicle 100, such as other vehicles, road lane markings, traffic lights and/or signs, pedestrians, etc. For example, the second sensor 110 can be a radar sensor, a scanning laser range finder, a light detection and ranging (LIDAR) device, or an image processing sensor such as a camera. In particular, the second sensor 110 can be a camera.
The second sensor 110 includes the second sensor window 118. The second sensor window 118 faces outward through a face plate 164, i.e., the second sensor window 118 is aimed through the face plate 164, e.g., through a sensor opening 166 in the face plate 164. The second sensor window 118 can be, e.g., a camera lens.
The sensor apparatus 102 includes the face plate 164. The face plate 164 is fixed relative to the bracket 108. For example, the face plate 164 can include one or more clips 170, e.g., two clips 170 as shown in
The sensor apparatus 102 includes an internal cover 174, a top cover 176, and a blower 178. The internal cover 174 attaches, e.g., by a snap-fit, to the bracket 108, and the internal cover 174, bracket 108, and top panel 116 can form a chamber 180 in which the second sensor 110 is disposed. The blower 178 is mounted to the internal cover 174 and is positioned to blow into the chamber 180, which can help cool the second sensor 110 and sensor housing 106. The top cover 176 and the face plate 164 enclose the bracket 108, the internal cover 174, the second sensor 110, and the blower 178.
With reference to
With reference to
The channel 124 is fluidly connected to the first nozzle 120, to the second nozzle 122, and to the third nozzle 130. For the purposes of this disclosure, “A and B are fluidly connected” means that fluid can freely flow between A and B. In particular, the first nozzle 120, the second nozzle 122, and the third nozzle 130 are open to the channel 124. The channel 124 fluidly connects the first nozzle 120, the second nozzle 122, and the third nozzle 130 to each other.
With reference to
The channel plate 112 includes the inlet 186. The inlet 186 is fluidly connected to the channel 124, e.g., by being open to the channel 124 through the channel plate 112, and the inlet 186 is thereby fluidly connected to the first nozzle 120, the second nozzle 122, and the third nozzle 130. A hose 196 (shown in
With reference to
Each of the first nozzle 120 and third nozzle 130, specifically each cylindrical section 188, includes the first orifice 182 and the second orifice 184. The first orifice 182 and the second orifice 184 for each cylindrical section 188 are spaced from each other along the axis A. The first orifice 182 is farther from the respective first sensor window 114 or third sensor window 128 along the axis A than the second orifice 184 is. The first orifice 182 and the second orifice 184 for each cylindrical section 188 are aimed in the same radial direction relative the axis A, e.g., downward.
The first orifice 182 and second orifice 184 are each shaped to emit a spray pattern having a deflection angle φ and a spray angle ψ. The spray angle ψ is an angular width of the spray measured circumferentially around the axis A. The spray angles ψ1, ψ2 of the first orifice 182 and second orifice 184 can be the same or approximately the same, e.g., 81°. The deflection angle φ is an angular thickness measured perpendicular to the spray angle ψ. The deflection angle φ1 for the first orifice 182 can be greater than the deflection angle φ2 for the second orifice 184. For example, the deflection angle φ1 for the first orifice 182 can be approximately 42°, and the deflection angle φ2 for the second orifice 184 can be approximately 36°. The first orifice 182 and second orifice 184 each have a direction of discharge directed along a center of the spray pattern, i.e., bisecting the spray angle ψ and bisecting the deflection angle . The direction of discharge of the first orifice 182 forms a first acute angle θ1 with the axis A in a direction along the axis A toward the respective first sensor window 114 or third sensor window 128, and the direction of discharge of the second orifice 184 forms a second acute angle θ2 with the axis A in a direction along the axis A toward the respective first sensor window 114 or third sensor window 128. The first acute angle θ1 is greater than the second acute angle θ2, meaning that the spray pattern from the first orifice 182 can reach the first half 158 of the respective first sensor window 114 or third sensor window 128, which is farther away than the second half 160 is.
Returning to
The disclosure has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. The adjectives “first,” “second,” “third,” and “fourth” are used throughout this document as identifiers and are not intended to signify importance, order, or quantity. Many modifications and variations of the present disclosure are possible in light of the above teachings, and the disclosure may be practiced otherwise than as specifically described.
Number | Name | Date | Kind |
---|---|---|---|
4520961 | Hueber | Jun 1985 | A |
5657929 | DeWitt | Aug 1997 | A |
6360969 | Egner-Walter | Mar 2002 | B1 |
20020005440 | Holt | Jan 2002 | A1 |
20060054224 | Lasebnick | Mar 2006 | A1 |
20070018013 | Lasebnick | Jan 2007 | A1 |
20090014555 | Litvinov | Jan 2009 | A1 |
20110266375 | Ono | Nov 2011 | A1 |
20140367487 | Oestergren | Dec 2014 | A1 |
20150183406 | Tanaka | Jul 2015 | A1 |
20160244028 | Wakatsuki | Aug 2016 | A1 |
20170036647 | Zhao | Feb 2017 | A1 |
20170166170 | Park | Jun 2017 | A1 |
20170313286 | Galera | Nov 2017 | A1 |
20180015908 | Rice | Jan 2018 | A1 |
20180079392 | Karasik | Mar 2018 | A1 |
20190054855 | Krishnan | Feb 2019 | A1 |
20190184942 | Vaishnav | Jun 2019 | A1 |
20190314865 | Sevak | Oct 2019 | A1 |
20190384313 | Toth | Dec 2019 | A1 |
20200061643 | Rachow | Feb 2020 | A1 |
20200114877 | Hu | Apr 2020 | A1 |
20200180567 | Sakai | Jun 2020 | A1 |
20200254464 | Romack | Aug 2020 | A1 |
20200331438 | Matsushita | Oct 2020 | A1 |
20210009088 | Hayashi | Jan 2021 | A1 |
20210170995 | Zhuang | Jun 2021 | A1 |
20210179030 | Sakai | Jun 2021 | A1 |
20210179032 | Vitanov | Jun 2021 | A1 |
20210293932 | Bruce-Wen | Sep 2021 | A1 |
20210309186 | Rice | Oct 2021 | A1 |
20210339710 | Adams | Nov 2021 | A1 |
20220009453 | Rachow | Jan 2022 | A1 |
20220032878 | Shawgo | Feb 2022 | A1 |
20220126790 | Matsunaga | Apr 2022 | A1 |
20220132004 | Kanitz | Apr 2022 | A1 |
20230031726 | Kubota | Feb 2023 | A1 |
20230089733 | Avram | Mar 2023 | A1 |
20230132583 | Matsunaga | May 2023 | A1 |
Number | Date | Country |
---|---|---|
19500349 | Jul 1996 | DE |
102019218610 | Jun 2021 | DE |
Number | Date | Country | |
---|---|---|---|
20220066031 A1 | Mar 2022 | US |