The present disclosure relates to a sensor array for an autonomous vehicle.
This section provides background information related to the present disclosure, which is not necessarily prior art.
Autonomous vehicles typically include an array of sensors that continuously scan the environment about the vehicle and act as the “eyes” of the autonomous vehicle system. It is thus important that the sensors have the greatest possible field of vision. While current autonomous vehicle sensors and sensor arrays are suitable for their intended use, they are subject to improvement. For example, it would be desirable to have a sensor array for an autonomous vehicle that provides autonomous vehicle sensors with an enhanced field of vision. The present teachings address this need in the art, as well as numerous others.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
The present teachings provide for a sensor array for an autonomous vehicle. The sensor array includes a center sensor mounted to a center sensor mounting device, which is configured to telescope to adjust a height of the center sensor. A first side sensor is mounted to a first side sensor mounting device, which is configured to pivot to adjust an angle of the first side sensor. A second side sensor is mounted to a second side sensor mounting device, which is configured to pivot to adjust an angle of the second side sensor.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of select embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
With initial reference to
The sensor array 10 generally includes a center sensor 20, a first side sensor 22, and a second side sensor 24. The center sensor 20 includes a housing 30, which houses sensing components of the center sensor 20. The first side sensor 22 includes a housing 32, which houses sensing components of the first side sensor 22. The second side sensor 24 includes a housing 34, which houses sensing components of the second side sensor 24. The sensors 20, 22, and 24 can be any suitable sensors configured for use with an autonomous vehicle. For example, the sensors 20, 22, and 24 can be LIDAR sensors. When configured as LIDAR sensors, the housings 30, 32, and 34 of the sensors 20, 22, and 24 respectively include laser emitters, laser receivers, and any other suitable LIDAR autonomous vehicle sensor components. Each one of the housings 30, 32, and 34 can be configured to rotate to facilitate scanning of the environment.
Each one of the sensors 20, 22, and 24 can be mounted to a base 40. The base 40 can in turn be mounted to the autonomous vehicle 12, such as a roof 50 thereof, in any suitable manner. The center sensor 20 is mounted to the base 40 with a center sensor mounting device 42. The first side sensor 22 is mounted to the base 40 with a first side sensor mounting device 44. The second side sensor 24 is mounted to the base 40 with a second side sensor mounting device 46. Alternatively, each one of the sensor mounting devices 42, 44, and 46 may be mounted directly to the autonomous vehicle 12.
The center sensor mounting device 42 can be any suitable mounting device configured to telescope to various different heights in order to arrange and support the center sensor 20 at any suitable height above the vehicle 12 to maximize the field of vision of the center sensor 20. The sensor array 10 can include any suitable motor configured to raise and lower the center sensor 20.
The first side sensor mounting device 44 is configured to telescope and pivot in order to position and support the first side sensor 22 at any suitable location to maximize the field of vision of the first side sensor 22. Specifically and with reference to
The second side sensor mounting device 46 is configured in a manner similar to the first side sensor mounting device 44 and thus the description of the first side sensor mounting device 44 is sufficient to describe the second side sensor mounting device 46. The only substantial difference between the first and second side sensor mounting devices 44 and 46 is that the second side sensor mounting device 46 is configured to pivot the second side sensor 24 outward and inward with respect to a right hand side of the vehicle 12. The second side sensor mounting device 46 includes a second hinge 62. Each one of the first and second side sensor mounting devices 44 and 46 is configured to pivot to any suitable angle.
With continued reference to
To move from the active position of
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Number | Name | Date | Kind |
---|---|---|---|
5003911 | Keil | Apr 1991 | A |
5266955 | Izumi | Nov 1993 | A |
5349361 | Egashira et al. | Sep 1994 | A |
5491464 | Carter | Feb 1996 | A |
6072391 | Suzuki | Jun 2000 | A |
8137008 | Mallano | Mar 2012 | B1 |
9802656 | Williams | Oct 2017 | B1 |
9884584 | Lackemeyer | Feb 2018 | B1 |
20030076415 | Strumolo | Apr 2003 | A1 |
20140218530 | Sinclair | Aug 2014 | A1 |
20140350801 | Bonefas | Nov 2014 | A1 |
20160328629 | Sinclair | Nov 2016 | A1 |
20170190300 | Maranville | Jul 2017 | A1 |
20170223889 | Cavender-Bares | Aug 2017 | A1 |
20180065242 | Tanaka | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
WO-2013177650 | Dec 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20180086280 A1 | Mar 2018 | US |