The present disclosure relates generally to motor vehicle light assemblies, and more particularly, the present disclosure is directed to motor vehicle light assemblies having a radiant heat lens heater.
This section provides background information related to the present disclosure which is not necessarily prior art.
Motor vehicle light assemblies, including headlight assemblies, taillight assemblies, directional light assemblies, fog light assemblies, and a daytime running light assemblies are known to include a light source disposed in a housing with a light-transmissive lens operably attached to the housing to allow light emitted from the light source to pass through the light-transmissive lens. The aforementioned light assemblies are known to include incandescent light bulbs or light emitting diodes (LED's), and although the light assemblies are generally suitable for their intended use, they can experience a variety of issues associated with fogging, frost-buildup and ice-buildup on the light-transmissive lens.
In view of the above, there is a need to provide motor vehicle light assemblies that have light-transmissive lenses that are resistant to fogging, frost-buildup and ice-buildup, while at the same time being economical in manufacture and assembly.
This section provides a general summary of the present disclosure and is not a comprehensive disclosure of its full scope or all of its features, aspects and objectives.
It is an aspect of the present disclosure to provide a motor vehicle light assembly having a light-transmissive lens that is resistant to fogging, to the buildup of frost and to the buildup of ice in reliable and economic fashion.
It is a further aspect of the present disclosure to provide a motor vehicle light assembly having a light-transmissive lens that is able to be defogged, defrosted, and deiced in reliable and economic fashion.
It is an aspect of the present disclosure to provide a motor vehicle light assembly having a lens heater assembly including a heater member that is routed over a predetermined path to optimize the flow of radiant heat toward a light-transmissive lens to render the light-transmissive lens resistant to fogging, to the buildup of frost and to the buildup of ice.
It is a further aspect of the present disclosure to provide a motor vehicle light assembly having a lens heater assembly including a heater member that is routed over a predetermined path to optimize the flow of radiant heat toward a light-transmissive lens to defog, to defrost and to deice the light-transmissive lens.
In accordance with these and other aspects, a motor vehicle light assembly is provided including a housing; a light source disposed in the housing, and a light-transmissive lens, having an inner surface facing toward the light source and an outer surface facing away from the light source, operably attached to the housing to allow light emitted from the light source to pass through the light-transmissive lens. Further, a heater member is disposed between the housing and the light-transmissive lens. The heater member is configured to radiate heat emitted from the light source, with the heater member being precisely routed to direct the radiated heat optimally onto the light-transmissive lens to regulate the temperature of the inner surface and the outer surface of the light-transmissive lens to resist fogging and to defog, to resist frosting and to defrost and to resist icing and deice the light-transmissive lens.
In accordance with another aspect, the heater member can be formed having a tubular wall bounding a cavity to facilitate the flow of radiant heat through the cavity and toward the light-transmissive lens.
In accordance with another aspect, a fluid can be sealed within the cavity of the tubular wall to further facilitate the flow of heat through the cavity and toward the light-transmissive lens.
In accordance with another aspect, a heat conducting wick can be disposed in the cavity of the tubular wall to further facilitate the flow of heat through the cavity and toward the light-transmissive lens.
In accordance with another aspect, a valve can be operably coupled to the heater member, with the valve being selectively moveable between an open state, whereat heat is free to flow into and through the cavity of the heater member, and a closed state, whereat heat is inhibited from flowing into the cavity of the heater member.
In accordance with another aspect, a controller can be configured in operable communication with the valve to facilitate moving the valve between the open state and the closed state to regulate the flow of heat through the heater member.
In accordance with another aspect, a temperature sensor can be configured in operable communication with the controller, with the controller being configured to move the valve between the open state and the closed state in response to an environmental temperature sensed by the temperature sensor. Accordingly, the valve can be automated to open in response to a temperature sensed that would tend to cause fogging, frosting and icing of the light-transmissive lens, and to close when the temperature sensed is not conducive to fogging, frosting and icing of the light-transmissive lens.
In accordance with another aspect, the environmental temperature sensed by the temperature sensor can be at least one or both of an internal environment temperature within the housing and an external environment temperature outside the housing.
In accordance with another aspect, a vent member can be configured to direct heat emitted from the light source to an external environment outside of the housing when the valve is in the closed state, thereby avoiding an undesirable elevated temperature within the motor vehicle light assembly that could otherwise degrade the performance of temperature sensitive components of the motor vehicle light assembly, such as by impacting the optimal performance of components of a printed circuit board, for example.
In accordance with another aspect, the vent member can be operably coupled to the valve, such that the valve acts as a bidirectional valve to direct the flow of heat through the heater member while the valve is in the open state and to direct the flow of heat through the vent member while the valve is in the closed state.
In accordance with another aspect, the heater member can include an elongate member having a plurality of radiator fins extending radially outwardly therefrom, wherein the elongate member can be shaped and routed, and the radiator fins can be strategically located along the elongate member to optimize the flow path of radiant heat to the desired regions of the light-transmissive lens to facilitate maintaining clear, light transmissive properties of the light-transmissive lens.
In accordance with another aspect, the housing can be provided having a plurality of apertures configured to register in alignment with the plurality of radiator fins and the apertures sized so as to conceal the elongate member from direct view through the light-transmissive lens by an observer and to allow the radiated heat to flow through the plurality of apertures onto strategically predetermined regions of the light-transmissive lens.
In accordance with another aspect, the plurality of radiator fins can be clustered in discrete groups, with the discrete groups being spaced from one another to optimize and concentrate the flow of radiant heat onto predetermined regions of the light-transmissive lens.
In accordance with another aspect, at least some of the discrete groups of the radiator fins can include a plurality of the radiator fins spaced from one another by a first distance, with adjacent ones of the discrete groups being spaced from one another by a distance greater than the first distance, thereby further enhancing the ability to optimize and concentrate the flow of radiant heat onto predetermined regions of the light-transmissive lens.
In accordance with another aspect, the elongate member can be formed of a first type of material and the plurality of radiator fins can formed of a second type of material, wherein the first type of material and the second type of material can be different so as to optimize and promote the flow of radiant heat through the cavity of the elongate of the elongate member and outwardly from the radiator fins in economical and efficient fashion.
In accordance with another aspect, the elongate member can be formed of copper and the plurality of radiator fins can formed of a different metal.
In accordance with another aspect, the radiator fins can formed of aluminum.
In accordance with another aspect, the light source can be provided as a LED light source mounted on a printed circuit board, with the printed circuit board being mounted to a support member, and with the heater member being mounted to at least one of the LED light source, the printed circuit board and the support member.
In accordance with another aspect, a mount adaptor can be fixed to at least one of the printed circuit board and the support member, with the heater member being fixed to the mount adaptor to facilitate the flow of heat toward the heater member.
In accordance with another aspect, the mount adaptor can be formed of a thermally conductive metal material to facilitate the flow of heat from the LED light source to the heater member.
In accordance with another aspect, the motor vehicle light assembly can include at least one of a headlight assembly, a taillight assembly, a directional light, a fog light, and a daytime running light.
In accordance with another aspect, a method of inhibiting fogging, frosting and/or icing of a light-transmissive lens of a motor vehicle light assembly is provided. The method includes routing a heater member within a housing of the motor vehicle light assembly and configuring a first end portion of the heater member to be in close proximity with a light source of the motor vehicle light assembly and a second end portion of the heater member to be in close proximity with a light-transmissive lens of the motor vehicle light assembly to promote the transfer of radiant heat from the light source to the light-transmissive lens.
In accordance with another aspect, the method can further include routing the second end portion of the heater member to extend along and adjacent a lowermost edge of the light-transmissive lens, thereby promoting radiant heat to rise into thermal contact with an entirety or substantial entirety of the light-transmissive lens, thus, assuring the entirety or substantial entirety of the light-transmissive lens remains defogged, defrosted and deiced while at the same time concealing the heater member from view through the light-transmissive lens by an observer and keeping the heater member from obstructing light emitted from the light source from passing through the light-transmissive lens.
In accordance with another aspect, the method can further include providing radiator fins extending radially outwardly from an outer surface of the heater member to optimize the transfer of radiant heat onto the light-transmissive lens.
In accordance with another aspect, the method can further include forming discrete groups of the radiator fins and spacing the discrete groups from one another along a length of the heater member to further optimize the transfer of radiant heat to desired locations of the light-transmissive lens.
In accordance with another aspect, the method can further include operably coupling a valve to the heater member and configuring the valve to be selectively moveable between an open state, whereat heat is free to flow through the heater member to the light-transmissive lens, and a closed state, whereat heat is inhibited from flowing through the heater member to the light-transmissive lens.
In accordance with another aspect, the method can further include configuring a controller in operable communication with the valve to move the valve between the open state and the closed state.
In accordance with another aspect, the method can further include configuring a temperature sensor in operable communication with the controller and configuring the controller to move the valve between the open state and the closed state in response to an environmental temperature sensed by the temperature sensor.
In accordance with another aspect, the method can further include configuring a vent member to promote the free transfer of heat emitted from the light source to an external environment outside of the housing when the valve is in the closed state, thereby avoiding an undesirable elevated temperature within the motor vehicle light assembly that could otherwise degrade the performance of the motor vehicle light assembly, such as by impacting the optimal performance of components of a printed circuit board, for example.
In accordance with another aspect, the method can further include operably coupling the vent member to the valve, thereby regulating the optimal temperature within the housing with a single valve, and thus, enhancing the ability to inhibit fogging, frosting and/or icing of the light-transmissive lens in and economical, reliable fashion.
In accordance with another aspect, there is provided a sensor assembly, including a housing, a sensor disposed in the housing and including a processor configured for processing signals detected by the sensor, wherein the processing causes the processor to generate heat; and a heater member disposed in the housing, the heater member being routed to radiate heat generated by the processor to an exterior of the housing to regulate the temperature of processor. In accordance with a related aspect, the sensor is a radar sensor and the processor is configured for processing radar signals detected by the radar sensor. In a related aspect, the housing is a sealed housing. In a related aspect, the heat member is a heat pipe.
In accordance with another aspect, there is provided a motor vehicle electronic module, including a housing, an electronic device as a source of heat disposed in the housing, and a heat pipe in communication, such as thermally coupled, with the electronic device, the heater member being routed to radiate heat emitted from the electronic device to an exterior of the housing.
These and other aspects, features, and advantages of the present disclosure will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In general, example embodiments of motor vehicle light assemblies having a lens heater assembly constructed in accordance with the teachings of the present disclosure will now be disclosed. The example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail, as they will be readily understood by the skilled artisan in view of the disclosure herein.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” “top”, “bottom”, and the like, may be used herein for ease of description to describe one element's or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.
Referring in more detail to the drawings,
The housing 14 can be constructed of any suitable metal or plastic material, can configured to take on any suitable shape. Housing 14 is shown sized to accommodate at least one or more printed circuit board (PCB) 28, at least one or more lens heater assembly 24 and at least one or more light sources 16 therein.
At least some of the illustrated light sources 16 are, by way of example and without limitation, illustrated as LED light sources 16 mounted on a PCB 28. The PCB 28 is shown, by way of example and without limitation, mounted to a support member, such as a heat-sink support member 30 constructed of suitable heat-sink material, as will be understood by one possessing ordinary skill in the art. The heater member 26 can be mounted to at least one of the LED light source 16, the PCB 28 and/or the support member 30. To facilitate mounting the heater member 26, a mount adaptor 32 can be fixed to at least one of the PCB 28 and/or the support member 30, with the heat member 26 being fixed to the mount adaptor 32. Mount adaptor 32 is preferably constructed of a thermally conductive, lightweight metal material, such as aluminum, by way of example and without limitation.
The heater member 26 is constructed as an elongate member, and can be formed having a tubular wall 34 bounding a cavity 36, with the cavity 36 extending between opposite closed and sealed first and second end portions, referred to hereafter as ends 38, 40. The heater member 26 is constructed of a thermally conductive material, and in accordance with one aspect, copper, by way of example and without limitation. It is to be understood that other thermally conductive metals could be used, such as aluminum or steel, for example. With the ends 38, 40 being closed and sealed, the cavity 36 defines an encapsulated, enclosed system, such that fluid F can be disposed and sealed within the cavity 36 to facilitate heat transfer from end 38 toward end 40, such as water, for example. To further facilitate heat transfer from end 38 toward end 40, a wicking material, referred to as wick 42, such as a sintered material or felt, by way of example and without limitation, can be disposed within cavity 36. With reference to
Further yet, a plurality of radiator fins 44 extending radially outwardly from the tubular wall 34. The radiator fins 44 can be attached to the tubular wall 34 as individual members (
As shown schematically in
As shown in
The light assembly 112 has a lens heater assembly 124 including a heater member 126, a PCB 128, a support member 130, and a plurality of radiator fins 144 disposed about the heater member 126, the radiator fins 144 extending radially outwardly from the heater member 126. In accordance with a further aspect, the radiator fins 144 are shown clustered in discrete clusters, also referred to as groups G1, G2, G3, spaced from one another. The groups G1, G2, G3 are each shown including a plurality of the radiator fins 144 spaced from one another within each group G1, G2, G3 by a first distance D1, while adjacent groups G1, G2, and G2, G3 are spaced from one another by a second distance D2, wherein D1 is less than D2. It is to be recognized that the radiator fins 144 and separate groups G1, G2, G3 can be spaced from one another by any suitable distances, as desired, to attain the radiant heat flow pattern desired for the intended application.
The lens heater assembly 124 further includes a valve 50 operably coupled to a first end portion, also referred to as an inlet end 138, of the heater member 126. The valve 50 is selectively moveable between an open state, whereat heat is free to flow into a cavity 136 of the heater member 126 to a second end portion 140, and a closed state, whereat heat is inhibited from flowing into the cavity 136 of the heater member 126. To facilitate opening and closing the valve 50, a controller 52 can be configured in operable communication with the valve 50 to move the valve between the open state and the closed state, such as in response to a temperature sensed by a temperature sensor 54 configured in operable communication with the controller 52, shown schematically as being contained within the controller 52. Accordingly, the controller 52 is configured to move the valve 50 between the open state and the closed state in response to an environmental temperature sensed by the temperature sensor 54, wherein the environmental temperature is at least one of an internal environment temperature within a housing 114 of the light assembly 112 and an external environment E temperature outside the housing 114.
The lens heater assembly 124 can further include a vent member 56 configured to carry and direct heat emitted from the light source 116 to the external environment E outside the housing 114 when the valve 50 is in the closed state. The vent member 56 is shown operably coupled to the valve 50, such that the valve 50 functions as a bi-directional valve to either direct heat through the cavity 136 of heater member 126, such as during winter, or through vent member 56, such as during summer, wherein vent member 56 can be provided, in a non-limiting embodiment, as a tubular member having an open end to allow the heat flow therethrough to flow freely to the external environment E.
In accordance with yet another aspect, the housing 114 or decorative lowermost floor or partition 57 (
In accordance with a further aspect, as illustrated in
In accordance with another aspect, the method 1000 can further include a step 1300 of routing the second end portion 40, 140 of the heater member 26, 126 to extend along and adjacent a lowermost edge of the light-transmissive lens 18, 118, thereby promoting radiant heat to rise into thermal contact with an entirety or substantial entirety of the light-transmissive lens 18, 118, thus, assuring the entirety or substantial entirety of the light-transmissive lens 18, 118 remains defogged, defrosted and deiced.
In accordance with another aspect, the method 1000 can further include a step 1400 of providing radiator fins 44, 144 extending radially outwardly from an outer surface of the heater member 26, 126 to optimize the transfer of radiant heat to the light-transmissive lens 18, 118.
In accordance with another aspect, the method 1000 can further include a step 1500 of forming discrete groups G1, G2, G3 of the radiator fins 44, 144 and spacing the discrete groups G1, G2, G3 from one another along a length of the heater member 26, 126 to further optimize the transfer of radiant heat to desired locations of the light-transmissive lens 18, 118.
In accordance with another aspect, the method 1000 can further include a step 1600 of operably coupling a valve 50 to the heater member 26, 126 and configuring the valve 50 to be selectively moveable between an open state, whereat radiant heat is free to flow through the heater member 26, 126 to the light-transmissive lens 18, 118, and a closed state, whereat radiant heat is inhibited from flowing through the heater member 26, 126 to the light-transmissive lens 18, 118.
In accordance with another aspect, the method 1000 can further include a step 1700 of configuring a controller 52 in operable communication with the valve 50 to move the valve 50 between the open state and the closed state.
In accordance with another aspect, the method 1000 can further include a step 1800 of configuring a temperature sensor 54 in operable communication with the controller 52 and configuring the controller 52 to move the valve 50 between the open state and the closed state in response to an environmental temperature sensed by the temperature sensor 54.
In accordance with another aspect, the method 1000 can further include a step 1900 of configuring a vent member 56 to carry and direct heat emitted from the light source 16, 116 to an external environment E outside the housing 14, 114 when the valve 50 is in the closed state, thereby maintaining and optimal temperature within the housing 14, 114 to optimally inhibit fogging, frosting and/or icing of the light-transmissive lens 18, 118.
With reference to
With reference to
Now referring to
It is recognized that the teachings herein may be applied for transferring heat generated by a motor vehicle electronic device, such as the herein above described light assembly 12, or also referred to as a light module, and the sensor assembly 20′, or also referred to as a sensor module, to another part of the module, or to an external environment of the module. The heat member 26 described herein for transferring heat may be configured for coupling to the source of heat, such as for example and without limitation to a printed circuit board, a chip such as a microprocessor, drivers, FETS, LED chips, and the like, and may be routed to another area of the module, such as to another part of the housing or through the housing via a sealed port to an external environment of the housing.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements, assemblies/subassemblies, or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application is a continuation of U.S. patent application Ser. No. 16/802,360, filed on Feb. 26, 2020, now U.S. Pat. No. 10,907,794, which claims the benefit of U.S. Provisional Application Ser. No. 62/811,151, filed Feb. 27, 2019, which is incorporated herein by way of reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6587573 | Stam | Jul 2003 | B1 |
8982559 | Ohsawa | Mar 2015 | B2 |
10043729 | Manninen | Aug 2018 | B1 |
20050057542 | Plut | Mar 2005 | A1 |
20080296926 | Hanzel | Dec 2008 | A1 |
20090213613 | Mitic | Aug 2009 | A1 |
20180149334 | Muehlbauer et al. | May 2018 | A1 |
20180196501 | Trotta | Jul 2018 | A1 |
20190154800 | Schmidt | May 2019 | A1 |
20190162822 | Rafrafi | May 2019 | A1 |
Number | Date | Country |
---|---|---|
101389901 | Mar 2009 | CN |
102005027893 | Dec 2007 | DE |
2005239133 | Sep 2005 | JP |
20120089595 | Aug 2012 | KR |
Number | Date | Country | |
---|---|---|---|
20210148540 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62811151 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16802360 | Feb 2020 | US |
Child | 17159196 | US |