Sensor-based closed loop antenna swapping apparatus and methods

Information

  • Patent Grant
  • 9906260
  • Patent Number
    9,906,260
  • Date Filed
    Thursday, July 30, 2015
    9 years ago
  • Date Issued
    Tuesday, February 27, 2018
    6 years ago
Abstract
Antenna systems that make use of an integrated proximity sensor or other sensor in order to implement a closed loop antenna selection system. In one embodiment, the antenna system is implemented within an exemplary portable wireless device and includes as its primary components for implementing the closed loop antenna selection system: a proximity sensor/microcontroller unit (MCU); a switching apparatus; a baseband front end module (FEM); and a number of antenna modules. The integrated proximity sensor/MCU detects the presence (influence) of a user's hand, or other loading by any other dielectric or metal component, through measurements that take place through the antenna modules and selects the appropriate RF path for transmission and/or reception by the mobile device. Methods of using and testing the aforementioned antenna systems are also disclosed.
Description
COPYRIGHT

A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.


1. TECHNOLOGICAL FIELD

The present disclosure relates generally to antenna solutions for portable wireless devices, and particularly in one exemplary aspect to antenna solutions that make use of an integrated proximity sensor or other sensor.


2. DESCRIPTION OF RELATED TECHNOLOGY

Mobile devices with wireless communications capabilities such as mobile computers, mobile phones, smart phones, tablet computers, personal digital assistants (PDAs), “smart” watches, and other personal communication devices (PCDs) have become more ubiquitous in recent times. As a greater variety of devices have entered the mobile computing space, devices have become lighter in weight and smaller in size, while the functionality of these devices has increased greatly.


Specific Absorption Rate (SAR) is a measure of the rate at which electromagnetic energy is absorbed by the human body when exposed to, for example, a radio frequency (RF) electromagnetic field. Regulations (by e.g., the Federal Communications Commission (FCC)) exist to limit the SAR exposure users of mobile devices experience and thus limit the output power levels of such mobile devices. For example, the FCC limits RF exposure from cellular phones at a SAR level of 1.6 watts per kilogram (1.6 W/kg) taken over the volume containing a mass of 1 gram of tissue that absorbs the most signal. The European Union via the European Committee for Electrotechnical Standardization (CENELEC) limits RF exposure from mobile phones to 2 W/kg averaged over the 10 g of tissue absorbing the most signal. In mobile devices, to limit exposure to RF and to effectuate the regulations, proximity sensors are utilized to detect the presence of, for example, a human body in order to lower the power output for these mobile devices. However, the exclusive utilization of lower power output for these mobile devices can have resultant undesirable communications performance.


Accordingly, there is a need for apparatus, systems and methods that retain the overall performance of mobile device communications while effectuating compliance with, for example, SAR regulations for mobile devices. Ideally such a solution will select the antenna(s) having the best signal condition and connect these antenna(s) to the transmission/reception chain of, for example, a front end module commonly implemented on these mobile devices.


SUMMARY

The aforementioned needs are satisfied herein by providing, inter alia, a sensor-based closed loop antenna swapping system, and methods of making and operating the same.


In a first aspect, a portable wireless device is disclosed. In one embodiment, the portable wireless device includes a sensor coupled to a plurality of antenna modules as well as to a switching apparatus; a front end module in signal communication with the switching apparatus; and a controller configured to selectively couple individual ones of the plurality of antenna modules to the front end module via the switching apparatus.


In a variant, the sensor comprises a proximity sensor having a passive capacitive sensing apparatus.


In another variant, the (e.g., proximity) sensor is configured to obtain a plurality of measurement values from the plurality of antenna modules, as well as to provide these obtained measurement values to the controller.


In yet another variant, the controller is configured to selectively couple individual ones of the plurality of antenna modules to the front end module via the switching apparatus based at least in part on these obtained measurement values.


In yet another variant, the controller is configured to select one or more best available antenna modules of the plurality of antenna modules.


In yet another variant, the controller includes one or more pre-stored efficiency values for individual ones of the plurality of antenna modules.


In yet another variant, a type of the switching apparatus is selected based at least in part on a total number of the antenna modules and a total number of transceivers available in the front end module.


In yet another variant, the front end module includes at least a main transceiver and a separate multiple-in multiple-out (MIMO) transceiver.


In yet another variant, the controller is configured to selectively couple individual ones of the plurality of antenna modules to the front end module via the switching apparatus based at least in part on the type of transceiver chosen.


In yet another variant, the front end module is further configured to transmit signaling to individual ones of the antenna modules in order to switch and/or tune respective ones of the antenna modules.


In yet another variant, the front end module is further configured to transmit signaling to the controller.


In yet another variant, the controller is configured to receive signaling from the front end module, the signaling from the front end module being utilized in order to switch and/or tune respective ones of the antenna modules.


In a second aspect, a method for antenna selection is disclosed. In one embodiment, the method includes obtaining one or more sensing measurements from a plurality of antenna modules; providing these obtained sensing measurements to a controller; selecting a first signaling path between a front end module and individual ones of the plurality of antenna modules based at least in part on these provided sensing measurements; and transmitting signaling information from the front end module to individual ones of the antenna modules based at least in part on the selected first signaling path.


In a first variant, the act of selecting the signaling path is based at least in part on determining one or more best available antenna modules of the plurality of antenna modules.


In another variant, the method further includes selecting a second signaling path between the front end module and individual ones of the plurality of antenna modules based at least in part on these provided sensing measurements.


In yet another variant, the method further includes transmitting signaling information from the front end module to individual ones of the antenna modules based at least in part on the selected second signaling path.


In yet another variant, the first signaling path selected is based at least in part on determining a first type of transceiver for the front end module.


In yet another variant, the second signaling path selected is based at least in part on determining a second type of transceiver for the front end module.


In yet another variant, the method further includes switching and/or tuning one or more of the antenna modules.


In yet another variant, the act of switching and/or tuning is determined at least in part by determining the type of signaling information transmitted.


In a third aspect, a sensor-based antenna swapping apparatus is disclosed.


In a fourth aspect, antenna apparatus useful with e.g., a portable wireless device is disclosed. In one implementation, the antenna apparatus includes a sensor coupled to a plurality of antenna modules, as well as to a switching apparatus; a front end module in signal communication with the switching apparatus; and a controller configured to selectively couple individual ones of the plurality of antenna modules to the front end module via the switching apparatus.


In another embodiment, the antenna apparatus includes: a plurality of antenna elements; sensor apparatus configured to generate an output based on one or more sensed parameters relating to at least one aspect of the operation of the antenna elements; switching apparatus configured to selectively couple one or more of the plurality of antenna elements to a radio frequency front end module of the wireless device; and controller apparatus in operative communication with the sensor apparatus and configured to utilize the output in selective control of the switching apparatus.


In a fifth aspect, a method of operating a portable wireless device is disclosed. In one embodiment, the method includes: operating the device so as to transmit and/or receive wireless signals, including grasping the device in a user's hand; obtaining one or more sensing measurements from a plurality of antenna modules during the operation; providing these obtained sensing measurements to a controller; selecting a first signaling path between a front end module and individual ones of the plurality of antenna modules based at least in part on these provided sensing measurements; transmitting signaling information from the front end module to individual ones of the antenna modules based at least in part on the selected first signaling path; and transmitting and/or receiving the wireless signals via at least the first signaling path.


In a sixth aspect, a method of manufacturing an antenna apparatus is disclosed. In one embodiment, the method includes selecting sensor, controller and switching components according to one or more desired antenna performance metrics, and utilizing the selected components substantially within the interior volume of a portable wireless device.


In a seventh aspect, a method of configuring an antenna apparatus for use in a portable wireless device is disclosed.





BRIEF DESCRIPTION OF THE DRAWINGS

The features, objectives, and advantages of the disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:



FIG. 1 is a generalized block diagram of a portable wireless device that utilizes a sensor (e.g., proximity sensor) in order to enable closed loop antenna selection in accordance with the principles of the present disclosure.



FIG. 2 is a generalized block diagram of a first exemplary portable wireless device that utilizes a proximity sensor in order to enable closed loop antenna selection for non-switchable/tunable antennas in accordance with the principles of the present disclosure.



FIG. 3 is a generalized block diagram of a second exemplary portable wireless device that utilizes a proximity sensor in order to enable closed loop antenna selection for switchable/tunable antennas in accordance with the principles of the present disclosure.



FIG. 3A shows one exemplary implementation of the functionality shown in FIG. 3, in the context of an exemplary cellular telephone apparatus having 2.5G, 3G and 4G communications capability in accordance with the principles of the present disclosure.



FIG. 4 is a generalized block diagram of a third exemplary portable wireless device that utilizes a proximity sensor in order to enable closed loop antenna selection for switchable/tunable antennas in accordance with the principles of the present disclosure.



FIG. 4A shows one exemplary implementation of the functionality shown in FIG. 4, in the context of an exemplary cellular telephone apparatus having 2.5G, 3G and 4G communications capability in accordance with the principles of the present disclosure.





All Figures disclosed herein are © Copyright 2015 Pulse Finland Oy. All rights reserved.


DETAILED DESCRIPTION

Reference is now made to the drawings wherein like numerals refer to like parts throughout.


As used herein, the terms “antenna”, and “antenna assembly” refer without limitation to any system that incorporates a single element, multiple elements, or one or more arrays of elements that receive/transmit and/or propagate one or more frequency bands of electromagnetic radiation. The radiation may be of numerous types, e.g., microwave, millimeter wave, radio frequency, digital modulated, analog, analog/digital encoded, digitally encoded millimeter wave energy, or the like. The energy may be transmitted from one location to another location, using, one or more repeater links, and one or more locations may be mobile, stationary, or fixed to a location on earth such as a base station.


As used herein, the terms “top”, “bottom”, “side”, “up”, “down”, “left”, “right”, and the like merely connote a relative position or geometry of one component to another, and in no way connote an absolute frame of reference or any required orientation. For example, a “top” portion of a component may actually reside below a “bottom” portion when the component is mounted to another device (e.g., to the underside of a PCB).


As used herein, the term “wireless” means any wireless signal, data, communication, or other interface including without limitation Wi-Fi, Bluetooth, 3G (e.g., 3GPP, 3GPP2, and UMTS), HSDPA/HSUPA, TDMA, CDMA (e.g., IS-95A, WCDMA, etc.), FHSS, DSSS, GSM, PAN/802.15, WiMAX (802.16), 802.20, narrowband/FDMA, OFDM, PCS/DCS, Long Term Evolution (LTE) or LTE-Advanced (LTE-A), analog cellular, Zigbee, Near field communication (NFC)/RFID, CDPD, satellite systems such as GPS and GLONASS, and millimeter wave or microwave systems.


Overview


The present disclosure addresses the foregoing needs by providing, inter alia, antenna systems within a portable wireless device that make use of an integrated proximity sensor or other sensor in order to implement a closed loop antenna selection system. In one embodiment, an exemplary portable wireless device includes as its primary components for implementing the closed loop antenna selection system: a proximity sensor/microcontroller unit (MCU); a switching apparatus; a baseband front end module (FEM); and a number of antenna modules. The portable wireless device utilizes “intelligent” antenna selection logic in order to improve upon overall radio frequency performance via an increase in the probability of selecting an appropriate RF signal path having desirable signal conditions. The integrated proximity sensor/MCU detects the presence (influence) of a user's hand, or other loading by any other dielectric or metal component, through measurements that take place through the antenna modules and selects the appropriate RF path for transmission and/or reception by the mobile device.


For example, and in implementations in which a main transceiver and a separate MIMO transceiver are utilized, the MCU will select the best available antenna module(s) available, and will direct the switching apparatus to couple a given transceiver with one or more respective antenna module(s). In one exemplary embodiment, the MCU will pre-store efficiency values for the antenna modules in a lookup table or other such data structure. The MCU will then provide signaling to a switching apparatus based upon at least the proximity sensor measurement values and the pre-stored efficiency values.


Moreover, in some embodiments, the baseband/FEM makes adjustments to operating characteristics of the signaling depending upon which antenna modules have been selected by the proximity sensor/MCU. For example, the baseband FEM may make physical antenna-related adjustments (such as phase), and/or higher-layer adjustments (e.g., modulation coding scheme (MCS) adjustments) in order to obtain better utilization of its multi-antenna system. Moreover, the baseband/FEM may, in some embodiments, provide signaling, either directly or indirectly, to the antenna modules for the purposes of switching and/or tuning respective ones of the antenna modules to a desired frequency band.


Methods of using and testing the aforementioned antenna systems are also disclosed.


Exemplary Embodiments

Detailed descriptions of the various embodiments and variants of the apparatus and methods of the present disclosure are now provided. While primarily discussed in the context of portable wireless devices that incorporate several (e.g., four (4)) distinct antenna modules, the various apparatus and methodologies discussed herein are not so limited. In fact, many of the apparatus and methodologies described herein are useful in any number of portable wireless devices that incorporate any number of antenna modules (so long as at least two distinct antenna modules are resident within/on the portable wireless device) including, without limitation, five (5) or more distinct antenna modules.


Moreover, while primarily described in the exemplary context of an apparatus with a common proximity sensor/microcontroller unit, it is readily understood that the various principles of the present disclosure can be readily extended and applied to implementations having other types of sensors and/or configurations, including without limitation those with a discrete proximity sensor chipset(s) along with discrete controller and/or microcontroller unit(s), other types of proximity sensors (e.g., those which do not operate on a capacitance principle), or even non-proximity sensors (e.g., those which sense orientation/attitude, acceleration, conductivity, optical characteristics, etc.).


Furthermore, while described primarily in the exemplary context of a portable wireless device that communicates in accordance with a so-called multiple-in/multiple-out (MIMO) context, the various apparatus and methodologies discussed herein are not so limited. Those of ordinary skill will readily understand that the teachings of the present disclosure can be applied to virtually any wireless system or wireless communication protocol(s) including, without limitation, usage scenarios involving so-called carrier aggregation (CA) in which any band combination (e.g., low band (LB) and high band (HB); HB-HB; etc.) are utilized, as well as SIMO and MISO applications.


Exemplary Antenna Solution with Integrated Proximity Sensor

Referring now to FIG. 1, an exemplary portable wireless device 100 that utilizes a proximity sensor/microcontroller unit (MCU) 102 in order to enable closed loop antenna selection is shown and described in detail. The portable wireless device illustrated in FIG. 1 is shown in FIG. 1 at a high level of abstraction, and utilizes “intelligent” antenna selection logic in order to improve upon overall radio frequency performance via an increase in the probability of selecting an appropriate RF signal path having desirable signal conditions. For example, the integrated proximity sensor/MCU detects the presence (influence) of a user's hand, or other loading by any other dielectric or metal component, and selects the appropriate RF path for transmission and/or reception by the mobile device. In other words, the portable wireless device utilizes the proximity sensor/MCU in order to select the appropriate antenna(s), and connect these antenna(s) to the transmission/reception chain of the baseband/front end module (FEM) 106.


It will be appreciated that the best/appropriate chain for a transmission event may also not always be the same as the best/appropriate chain for reception; hence, the present disclosure contemplates the possibility of use of one chain or configuration for transmission, and another for reception in certain cases.


In one embodiment, the portable wireless device 100 constitutes a smart phone; however, it is readily appreciated that in alternative implementations, the portable wireless device could include, without limitation, any number of well-known devices such as mobile computers (e.g., laptops), mobile phones, tablet computers, personal digital assistants (PDAs), “smart” watches, and other personal communication devices (PCDs).


The portable wireless device includes as its primary components for implementing its closed loop antenna selection system: a proximity sensor/MCU 102; a switching apparatus 104; a baseband front end module (FEM) 106; and a number of antenna modules 108a, 108b, 108c, 108d.


In one exemplary embodiment, the proximity sensor/MCU 102 includes a capacitive sensing apparatus. The capacitive sensing apparatus utilizes, i.e., body capacitance as an input, but generally can detect other objects or changes in environment that are in proximity to a capacitive sensing detection apparatus. One exemplary benefit for the capacitive sensing apparatus is that it is not dependent upon RF power for object detection (i.e., it is considered a passive electrical component) and hence advantageously is a comparatively low power solution for object detection (as compared to e.g., active sensors which require greater electrical power and hence which can reduce battery life). In an exemplary embodiment, the proximity sensor/MCU 102 utilizes measurements (values) obtained from proximity sensor compatible antenna modules 108a, 108b, 108c, 108d. Typically, the proximity sensor obtains these measurements every few milliseconds, although it is appreciated that the periodicity for these measurements can be varied depending upon the specific requirements for the application, as well as a function of operational conditions (e.g., when powered off, the frequency may be reduced, or in highly dynamic environments, the frequency may be increased). The proximity sensor detection apparatus provides its change in capacitance measurements (for example, when a user's hand comes in close proximity to one or more of the antenna modules) over to the MCU for use by the latter.


The MCU utilizes these measurement values in order to choose the best available antenna module(s) for transmission and/or reception of wireless signals. For example, and in implementations in which a main transceiver and a separate MIMO transceiver are utilized, the MCU will select the best available antenna modules available, and will direct the switching apparatus to couple a given transceiver with one or more respective antenna module(s). In one exemplary embodiment, the MCU will pre-store efficiency values for the antenna modules in a lookup table or other such data structure. The MCU will then provide signaling to the switching apparatus based upon at least the proximity sensor measurement values and the pre-stored efficiency values. For example, in an embodiment in which two antenna modules (of an available four) are not covered by a user's hand, the MCU will select the antenna module with the higher efficiency for the main transceiver, and the other available antenna module will be selected for the MIMO transceiver. In other words, the baseband will combine the signals from the two branches. If the signal condition is good on both branches, then the portable wireless device 100 will stay in MIMO mode. Alternatively, if the signal condition is not good enough for demodulation of two separate paths then the portable wireless device will switch to a diversity mode. For example, in 2×2 MIMO, two separate data streams are received and demodulated thus giving better data throughput. In diversity mode operation, two copies of the same signal are combined thereby enabling longer range/better cell edge performance.


It will also be recognized that while pre-stored/predetermined efficiency values are described in the exemplary implementation, other types of values may be used consistent with the present disclosure. For example, in one alternate implementation, the efficiency values are dynamically determined as opposed to being previously stored (such as by, e.g., calculation according to an algorithm running on the MCU or another digital processor in the host device, or gate logic such as on an FPGA). In another implementation, other metrics of antenna performance are used. In yet another implementation, two or more metrics (whether predetermined and/or dynamic) are used. Myriad other possibilities will be recognized by those of ordinary skill given the present disclosure.


The switching apparatus 104 is in signal communication with the MCU as well as the baseband/FEM 106 and each of the antenna modules. Accordingly, and in instances where the baseband/FEM includes: a main transceiver; and a separate MIMO transceiver along with four (4) available antenna modules, the switching apparatus will advantageously be a two-pole four-throw (2P4T) switch. In other words, the switching apparatus will be switched in order to couple each of these transceivers (i.e., main and MIMO) to a respective antenna module. The selection of these respective antenna modules will be governed by signaling from the MCU. In alternative implementations such as, for example, higher rank of multiple-in/multiple-out (MIMO) applications, a 4P6T switch may be chosen in order to connect each of four available transceivers to four different antenna modules (where six antenna modules are otherwise available for selection). Other switching implementations are also envisioned and are chosen depending upon: the number of transceivers available for the portable wireless device and the number of available antenna modules.


Moreover, in some embodiments, the baseband/FEM makes adjustments to operating characteristics of the signaling depending upon which antenna modules have been selected by the proximity sensor/MCU. For example, the baseband FEM may make physical antenna-related adjustments (such as phase), and/or higher-layer adjustments (e.g., modulation coding scheme (MCS) adjustments) in order to obtain better utilization of its multi-antenna system. In other words, if antenna module 108a and antenna module 108d have been selected, a given phase adjustment may be made to the signaling provided to and/or received from antenna module 108a and/or antenna module 108d. Moreover, if antenna module 108b and antenna module 108d have been selected, a given phase adjustment (albeit differing from the phase adjustment associated with the selection of antenna module 108a and antenna module 108d) may be made to the signaling provided to and/or received from antenna module 108b and antenna module 108d. Similar phase adjustments may be made to other ones of the antenna module(s) depending upon factors such as antenna module placement, spacing, etc.


Exemplary closed loop antenna switching apparatus implementation examples consistent with the principles of the present disclosure are now described in detail.


Example #1

Referring now to FIG. 2, a first exemplary mobile device 200 implementation is shown and described in detail. Similar to the embodiment described with regards to FIG. 1, the main components involved in the closed loop antenna switching system include: a proximity sensor/MCU 202; a switching apparatus 204; a baseband FEM 206; and a plurality of antenna modules 208a, 208b, 208c, 208d. The specific implementation details for each of these components can be readily selected from the options described above with regards to FIG. 1, and would readily be understood by one of ordinary skill given the present disclosure. The baseband/FEM 206 in this illustrated embodiment includes a two branch FEM. In other words, two radio frequency (RF) lines 216 couple the baseband/FEM with the switching apparatus 204. Although an exemplary two branch FEM is shown, it is readily appreciated that the number of branches may vary depending upon the particular configuration chosen for the mobile device. The switching apparatus is further coupled to respective ones of the antenna modules 208a, 208b, 208c, 208d via respective RF lines 212 that couple the switching apparatus to respective ones of the antenna modules. In the illustrated embodiment, the switching apparatus constitutes an exemplary 2P4T switch.


The proximity sensor/MCU 202 is coupled with respective ones of the antenna modules via proximity sensing lines 210. The proximity sensor/MCU obtains periodic measurements (e.g., every few milliseconds) from one or more of the antenna modules via sensing lines 210. Alternatively, separate sensing pads (not shown) are located adjacent the antenna modules and periodic measurement are obtained via sensing lines 210. In one exemplary embodiment, the proximity sensing lines are manufactured from coaxial lines each of which includes an inner conductor surrounded by both an insulating layer as well as a conductive shield outer layer. The use of coaxial lines is exemplary in that noise doesn't couple to the signal transmitted along sensing lines. Alternatively, in embodiments which include separate sensing chips disposed adjacent each of the antenna modules, the lines coupled to the MCU don't necessarily need to include coaxial lines as digital signaling can be transmitted from each of these sensing chips to a centrally located MCU.


Additionally, a feedback line 214 is located between the proximity sensor/MCU and the switching apparatus which is utilized by the proximity sensor/MCU to inform the switching apparatus which of the antenna module(s) should be selected for transmission/reception. In one embodiment, this feedback line 214 includes one or more general-purpose input/output (GPIO) lines for the transmission of signaling from the proximity sensor/MCU to the switching apparatus. Alternatively, this feedback line includes one or more mobile industry processor interface (MIPI) compliant lines for the transmission of signaling from the proximity sensor/MCU to the switching apparatus.


Accordingly, in one implementation, a user's hand is detected by proximity sensor/MCU via sensing lines 210 and proximity sensor pads located adjacent antenna modules 208a and 208b. The proximity sensor/MCU will, in an exemplary embodiment, utilize a lookup table indicating that switching apparatus should couple RF lines 216 to respective ones of antenna module 208c and antenna module 208d as each of these antenna modules has been collectively determined to have the best efficiency available for mobile device 200. The switching apparatus will then couple the baseband/FEM 206 to antenna module 208c and antenna module 208d. Moreover, in one exemplary embodiment, proximity sensor/MCU will determine that antenna module 208c has a higher efficiency value associated with it then the efficiency value associated with antenna module 208d. Accordingly, in MIMO implementations, antenna module 208c will be selected as the main antenna for the baseband/FEM while antenna module 208d will be selected as the MIMO antenna for the baseband/FEM. Alternatively, it is also envisioned that the antenna implementation selected (e.g., main and MIMO) may effectively be reversed, such that the MIMO antenna is selected for antenna module 208c, while the main antenna is selected for antenna module 208d. The specific choices made may be predetermined by, for example, the mobile device manufacturer. These illustrated embodiments are merely illustrative of the broader concepts described herein (i.e., they are illustrative of the broader closed loop antenna switching methodologies described herein).


Example #2

Referring now to FIG. 3, a second exemplary mobile device 300 implementation is shown and described in detail. Similar to the embodiment described above with regards to FIGS. 1 and 2, the main components involved in the closed loop antenna switching system include: a proximity sensor/MCU 302; a switching apparatus 304; a baseband/FEM 306; and a plurality of antenna modules 308a, 308b, 308c, 308d. The underlying methodology for the closed loop antenna switching apparatus is generally as described with regards to FIG. 2 above and hence, the operation of much of the methodology for the mobile device is not reiterated here. However, unlike the embodiment described above with regards to FIG. 2, one or more of the antenna modules 308a, 308b, 308c, 308d are switchable and/or tunable antenna modules such as those described with regards to U.S. patent application Ser. No. 11/008,447 filed Dec. 9, 2004 and entitled “Adjustable multi-band antenna”, now U.S. Pat. No. 7,468,700; U.S. patent application Ser. No. 11/544,173 filed Oct. 5, 2006 and entitled “Multi-band antenna with a common resonant feed structure and methods”, now U.S. Pat. No. 7,589,678; U.S. patent application Ser. No. 12/080,741 filed Apr. 3, 2008 and entitled “Multiband antenna system and methods”, now U.S. Pat. No. 7,889,143; U.S. patent application Ser. No. 11/801,894 filed May 11, 2007 and entitled “Antenna component and methods”, now U.S. Pat. No. 7,916,086; U.S. patent application Ser. No. 12/596,141 filed May 17, 2010 and entitled “Methods and apparatus for matching an antenna”, now U.S. Pat. No. 8,466,756; U.S. patent application Ser. No. 12/082,882 filed Apr. 14, 2008 and entitled “Adjustable antenna and methods”, now U.S. Pat. No. 8,473,017; U.S. patent application Ser. No. 11/989,451 filed Jul. 27, 2009 and entitled “Adjustable multiband antenna and methods”, now U.S. Pat. No. 8,564,485; U.S. patent application Ser. No. 13/086,319 filed Apr. 13, 2011 and entitled “Wideband antenna and methods”, now U.S. Pat. No. 8,618,990; U.S. patent application Ser. No. 12/083,129 filed May 17, 2010 and entitled “Multiband antenna system and methods”, now U.S. Pat. No. 8,786,499; and U.S. patent application Ser. No. 13/439,576 filed Apr. 4, 2012 and entitled “Compact polarized antenna and methods”, now U.S. Pat. No. 8,988,296, the contents of each of the foregoing being incorporated herein by reference in their entirety.


In the illustrated embodiment, the baseband/FEM 306 is coupled to each of the antenna modules 308a, 308b, 308c, 308d via control lines 310. In one embodiment, control lines 310 include one or more general-purpose input/output (GPIO) lines for the transmission of signaling from the baseband/FEM to respective ones of the antenna modules for the purposes of switching and/or tuning respective ones of the antenna modules to a desired frequency band. Alternatively, these control lines include one or more mobile industry processor interface (MIPI) compliant lines for the transmission of signaling from the baseband/FEM to respective ones of the antenna modules.


The operation of the switching/tuning of the antenna modules operates, in one exemplary embodiment, as follows. A user's hand is detected by proximity sensor/MCU via sensing lines and proximity sensors located adjacent antenna modules 308c and 308d. Proximity sensor/MCU will, in an exemplary embodiment, utilize a lookup table to determine which of the available antenna modules are best suited for transmission/reception and signal the switching apparatus accordingly via feedback line 312. In one embodiment, feedback line 312 includes one or more general-purpose input/output (GPIO) lines for the transmission of signaling from the proximity sensor/MCU to the switching apparatus. Alternatively, this feedback line includes one or more mobile industry processor interface (MIPI) compliant lines for the transmission of signaling from the proximity sensor/MCU to the switching apparatus.


The signaling from the proximity sensor/MCU indicates to the switching apparatus that RF lines 314 should be coupled to antenna modules 308a and 308b, as each of these antenna modules have been determined to have the best efficiency values available for mobile device 300. The switching apparatus will then couple the baseband/FEM 306 to antenna modules 308a and 308b. Moreover, in one exemplary embodiment, proximity sensor/MCU will determine that antenna module 308a has a higher efficiency value associated with it then antenna module 308b. Accordingly, in MIMO implementations, antenna module 308a will be selected as the main antenna for the baseband/FEM while antenna module 308b will be selected as the MIMO antenna for the baseband/FEM. Simultaneously, or prior to, the coupling of the RF lines 314 to antenna modules 308a and 308b; baseband/FEM 306 will provide signaling via control lines 310 to antenna modules 308a and 308b, respectively, in order to switch and/or tune these antenna modules 308a and 308b to the appropriate frequency band selected by proximity sensor/MCU 302. Accordingly, antenna modules 308a and 308b are switched/tuned appropriately so that antenna module 308a transmits and/or receives signals in accordance with main antenna operation while antenna module 308b transmits and/or receives signals in accordance with MIMO antenna operation.



FIG. 3A illustrates one exemplary implementation for the generalized block diagram shown in FIG. 3 in the context of a cellular telephone having 2.5G, 3G, and 4G communications capability.


Example #3

Referring now to FIG. 4, a third exemplary mobile device 400 implementation is shown and described in detail. Similar to the embodiments described above with regards to FIGS. 1-3, the main components involved in the closed loop antenna switching system include: a proximity sensor/MCU 402; a switching apparatus 404; a baseband FEM 406; and a plurality of antenna modules 408a, 408b, 408c, 408d. The underlying methodology for the closed loop antenna switching apparatus is generally as described with regards to FIG. 2 and hence, the operation of much of the methodology for the mobile device is not reiterated here. However, unlike the embodiment described with regards to FIG. 2 (and similar to the embodiment of FIG. 3), one or more of the antenna modules 408a, 408b, 408c, 408d are switchable and/or tunable antenna modules such as those described with regards to U.S. patent application Ser. No. 11/008,447 filed Dec. 9, 2004 and entitled “Adjustable multi-band antenna”, now U.S. Pat. No. 7,468,700; U.S. patent application Ser. No. 11/544,173 filed Oct. 5, 2006 and entitled “Multi-band antenna with a common resonant feed structure and methods”, now U.S. Pat. No. 7,589,678; U.S. patent application Ser. No. 12/080,741 filed Apr. 3, 2008 and entitled “Multiband antenna system and methods”, now U.S. Pat. No. 7,889,143; U.S. patent application Ser. No. 11/801,894 filed May 11, 2007 and entitled “Antenna component and methods”, now U.S. Pat. No. 7,916,086; U.S. patent application Ser. No. 12/596,141 filed May 17, 2010 and entitled “Methods and apparatus for matching an antenna”, now U.S. Pat. No. 8,466,756; U.S. patent application Ser. No. 12/082,882 filed Apr. 14, 2008 and entitled “Adjustable antenna and methods”, now U.S. Pat. No. 8,473,017; U.S. patent application Ser. No. 11/989,451 filed Jul. 27, 2009 and entitled “Adjustable multiband antenna and methods”, now U.S. Pat. No. 8,564,485; U.S. patent application Ser. No. 13/086,319 filed Apr. 13, 2011 and entitled “Wideband antenna and methods”, now U.S. Pat. No. 8,618,990; U.S. patent application Ser. No. 12/083,129 filed May 17, 2010 and entitled “Multiband antenna system and methods”, now U.S. Pat. No. 8,786,499; and U.S. patent application Ser. No. 13/439,576 filed Apr. 4, 2012 and entitled “Compact polarized antenna and methods”, now U.S. Pat. No. 8,988,296, the contents of each of the foregoing being previously incorporated herein by reference in their entirety.


In the illustrated embodiment, the baseband/FEM 406 is coupled to proximity sensor/MCU 402 via control line 416. In one embodiment, control line 416 includes one or more general-purpose input/output (GPIO) lines for the transmission of signaling from the baseband/FEM to the proximity sensor/MCU for the purposes of switching and/or tuning respective ones of the antenna modules to a desired frequency band. Alternatively, this control line includes one or more mobile industry processor interface (MIPI) compliant lines for the transmission of signaling from the baseband/FEM to respective ones of the antenna modules.


The operation of the switching/tuning of the antenna modules operates, in one exemplary embodiment, as follows. A user's hand is detected by proximity sensor/MCU via sensing lines and proximity sensors located adjacent antenna modules 408a and 408b. Proximity sensor/MCU will, in an exemplary embodiment, utilize a lookup table to determine which of the available antenna modules are best suited for transmission/reception and signal the switching apparatus accordingly via feedback line 412. In one embodiment, feedback line 412 includes one or more general-purpose input/output (GPIO) lines for the transmission of signaling from the proximity sensor/MCU to the switching apparatus. Alternatively, this feedback line includes one or more mobile industry processor interface (MIPI) compliant lines for the transmission of signaling from the proximity sensor/MCU to the switching apparatus.


The signaling from the proximity sensor/MCU indicates to the switching apparatus that RF lines 414 should be coupled to antenna modules 408c and 408d as each of these antenna modules have been determined to have the best efficiency available for mobile device 400. The switching apparatus will then couple the baseband/FEM 406 to antenna modules 408c and 408d. Moreover, in one exemplary embodiment, proximity sensor/MCU will determine that antenna module 408c has a higher efficiency value associated with it then antenna module 408d. Accordingly, in MIMO implementations, antenna module 408c will be selected as the main antenna for the baseband/FEM while antenna module 408d will be selected as the MIMO antenna for the baseband/FEM. Simultaneously, or prior to, the coupling of the RF lines 414 to antenna modules 408c and 408d; baseband/FEM 406 will provide signaling to proximity sensor/MCU 402 in order for proximity sensor/MCU to switch and/or tune these antenna modules 408c and 408d to the appropriate frequency band via control lines 410. Accordingly, antenna modules 408a and 408b are switched/tuned appropriately so that antenna module 408c transmits and/or receives signals in accordance with main antenna operation while antenna module 408d transmits and/or receives signals in accordance with MIMO antenna operation.



FIG. 4A illustrates one exemplary implementation for the generalized block diagram shown in FIG. 4 in the context of a cellular telephone having 2.5G, 3G, and 4G communications capability.


It will be appreciated that while the foregoing exemplary embodiments and examples utilize a single sensing (e.g., capacitance-based passive proximity sensor) and processing (MCU) unit, various of these functions may be divided across two or more similar devices (e.g., left/right and top/bottom proximity sensors, two or more MCUs), and/or performed by other indigenous sensors and/or processing apparatus within the host device. For instance, rather than include a separate MCU for the functions described herein, an extant MCU or digital processor on the host device (e.g., DSP or CPU) can be configured to perform these calculations/operations, such as via software/firmware running thereon and implementing the foregoing logic.


It will be recognized that while certain aspects of the present disclosure are described in terms of specific design examples, these descriptions are only illustrative of the broader methods of the disclosure, and may be modified as required by the particular design. Certain steps may be rendered unnecessary or optional under certain circumstances. Additionally, certain steps or functionality may be added to the disclosed embodiments, or the order of performance of two or more steps permuted. All such variations are considered to be encompassed within the present disclosure described and claimed herein.


While the above detailed description has shown, described, and pointed out novel features of the present disclosure as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the principles of the present disclosure. The foregoing description is of the best mode presently contemplated of carrying out the present disclosure. This description is in no way meant to be limiting, but rather should be taken as illustrative of the general principles of the present disclosure. The scope of the present disclosure should be determined with reference to the claims.

Claims
  • 1. Antenna apparatus for use in a wireless device, the apparatus comprising: a plurality of antenna elements;sensor apparatus coupled to each of the plurality of antenna elements, the sensor apparatus being configured to periodically sense one or more parameters from each of the plurality of antenna elements at a periodic time interval, the periodic time interval being based on an operational condition of the antenna apparatus, the sensor apparatus being further configured to generate an output based on the one or more periodically sensed parameters relating to at least one aspect of the operation of the plurality of antenna elements;switching apparatus configured to selectively couple two or more of the plurality of antenna elements to a radio frequency front end module of the wireless device, the selective coupling of the two or more of the plurality of antenna elements comprising an exclusion from use of ones of the plurality of antenna elements associated with change in the one or more periodically sensed one or more parameters; andcontroller apparatus in operative communication with the sensor apparatus and configured to utilize the output in selective control of the switching apparatus;wherein the controller apparatus utilizes both the output from the sensor apparatus as well as a plurality of pre-stored efficiency values associated with one or more of the plurality of antenna elements for the selective control of the switching apparatus.
  • 2. The antenna apparatus of claim 1, wherein the controller apparatus is further configured to select a first antenna element based at least in part on the plurality of pre-stored efficiency values for a main transceiver, the first antenna element having a higher efficiency than other ones of the selectively coupled antenna elements.
  • 3. The antenna apparatus of claim 2, wherein the controller apparatus is further configured to select a second antenna element based at least in part on the plurality of pre-stored efficiency values for an auxiliary transceiver, the second antenna element having a lower efficiency than the first antenna element.
  • 4. The antenna apparatus of claim 1, wherein one of the plurality of antenna elements is configured to receive a signal from the radio frequency front end module of the wireless device, the signal configured to switch the one antenna element from a first operational frequency band to a second distinct operational frequency band.
  • 5. The antenna apparatus of claim 1, wherein the controller apparatus utilizes one or more dynamically determined efficiency values associated with each of the plurality of antenna elements.
  • 6. The antenna apparatus of claim 5, wherein the controller apparatus is further configured to utilize the one or more dynamically determined efficiency values for the selective control of the switching apparatus.
  • 7. The antenna apparatus of claim 1, wherein a type of the switching apparatus is selected based at least in part on a total number of the plurality of antenna elements and a total number of transceivers available in the radio frequency front end module.
  • 8. The antenna apparatus of claim 1, wherein the front end module includes at least a main transceiver and a separate multiple-in multiple-out (MIMO) transceiver.
  • 9. The antenna apparatus of claim 8, wherein the controller apparatus is configured to selectively couple individual ones of the plurality of antenna modules to the radio frequency front end module via the switching apparatus based at least in part on a type of transceiver chosen.
  • 10. The antenna apparatus of claim 1, wherein the radio frequency front end module is configured to transmit signaling to individual ones of the plurality of antenna elements in order to switch and/or tune respective ones of the plurality of antenna elements.
  • 11. The antenna apparatus of claim 10, wherein the radio frequency front end module is further configured to transmit signaling to the controller apparatus.
  • 12. The antenna apparatus of claim 11, wherein the controller apparatus is further configured to receive signaling from the radio frequency front end module, the signaling from the radio frequency front end module being utilized in order to switch and/or tune the respective ones of the plurality of antenna elements.
  • 13. A method for intelligent antenna selection, comprising: obtaining one or more sensing measurements from a plurality of antenna modules;providing the obtained one or more sensing measurements to a controller;selecting a first signaling path between a front end module and first ones of the plurality of antenna modules based at least in part on the provided one or more sensing measurements;selecting a second signaling path between the front end module and second ones of the plurality of antenna modules based at least in part on the provided one or more sensing measurements;simultaneously transmitting signaling information from the front end module to the first and second ones of the antenna modules based at least in part on the selected first and second signaling paths; andbased on a first efficiency value associated with the first ones of the plurality of antenna modules being greater than a second efficiency value associated with the second ones of the plurality of antenna modules: combining the signaling information corresponding to the first and second signaling paths; andoperating the first ones of the plurality of antenna modules as main antennas simultaneously with operating the second ones of the plurality of antenna modules as multiple-in, multiple-out (MIMO) antennas.
  • 14. The method of claim 13, wherein the operating of the first ones of the plurality of antenna modules is based at least in part on determining one or more best available antenna modules of the plurality of antenna modules.
  • 15. The method of claim 13, wherein the first signaling path selected is based at least in part on determining a first type of transceiver for the front end module.
  • 16. The method of claim 15, wherein the second signaling path selected is based at least in part on determining a second type of transceiver for the front end module.
  • 17. The method of claim 13, further comprising performing at least one of (i) switching and/or (ii) tuning of one or more of the antenna modules; wherein the act of switching and/or tuning is determined at least in part by determining the type of signaling information transmitted.
  • 18. The method of claim 13, wherein the obtaining of the one or more sensing measurements from the plurality of antenna modules comprises periodically obtaining the one or more sensing measurements through sensing lines connecting a proximity sensor and sensing pads disposed adjacent to respective ones of the plurality of antenna modules.
  • 19. The method of claim 13, wherein the first efficiency value comprises a predetermined efficiency value, and the method further includes storing the predetermined efficiency value in a data structure associated with the controller.
  • 20. The method of claim 13, wherein the second efficiency value comprises a predetermined efficiency value, and the method further includes storing the predetermined efficiency value in a data structure associated with the controller.
US Referenced Citations (485)
Number Name Date Kind
2745102 Norgorden May 1956 A
3938161 Sanford Feb 1976 A
4004228 Mullett Jan 1977 A
4028652 Wakino et al. Jun 1977 A
4031468 Ziebell et al. Jun 1977 A
4054874 Oltman Oct 1977 A
4069483 Kaloi Jan 1978 A
4123756 Nagata et al. Oct 1978 A
4123758 Shibano et al. Oct 1978 A
4131893 Munson et al. Dec 1978 A
4201960 Skutta et al. May 1980 A
4255729 Fukasawa et al. Mar 1981 A
4313121 Campbell et al. Jan 1982 A
4356492 Kaloi Oct 1982 A
4370657 Kaloi Jan 1983 A
4423396 Makimoto et al. Dec 1983 A
4431977 Sokola et al. Feb 1984 A
4546357 Laughon et al. Oct 1985 A
4559508 Nishikawa et al. Dec 1985 A
4625212 Oda et al. Nov 1986 A
4653889 Bizouard et al. Mar 1987 A
4661992 Garay et al. Apr 1987 A
4692726 Green et al. Sep 1987 A
4703291 Nishikawa et al. Oct 1987 A
4706050 Andrews Nov 1987 A
4716391 Moutrie et al. Dec 1987 A
4740765 Ishikawa et al. Apr 1988 A
4742562 Kommrusch May 1988 A
4761624 Igarashi et al. Aug 1988 A
4800348 Rosar et al. Jan 1989 A
4800392 Garay et al. Jan 1989 A
4821006 Ishikawa et al. Apr 1989 A
4823098 DeMuro et al. Apr 1989 A
4827266 Sato et al. May 1989 A
4829274 Green et al. May 1989 A
4835538 McKenna et al. May 1989 A
4835541 Johnson et al. May 1989 A
4862181 PonceDeLeon et al. Aug 1989 A
4879533 De Muro et al. Nov 1989 A
4896124 Schwent Jan 1990 A
4907006 Nishikawa et al. Mar 1990 A
4954796 Green et al. Sep 1990 A
4965537 Kommrusch Oct 1990 A
4977383 Niiranen Dec 1990 A
4980694 Hines Dec 1990 A
5016020 Simpson May 1991 A
5017932 Ushiyama et al. May 1991 A
5043738 Shapiro et al. Aug 1991 A
5047739 Kuokkanen Sep 1991 A
5053786 Silverman et al. Oct 1991 A
5057847 Vaeisaenen Oct 1991 A
5061939 Nakase Oct 1991 A
5097236 Wakino et al. Mar 1992 A
5103197 Turunen Apr 1992 A
5109536 Kommrusch Apr 1992 A
5155493 Thursby et al. Oct 1992 A
5157363 Puurunen Oct 1992 A
5159303 Flink Oct 1992 A
5166697 Viladevall et al. Nov 1992 A
5170173 Krenz et al. Dec 1992 A
5203021 Repplinger et al. Apr 1993 A
5210510 Karsikas May 1993 A
5210542 Pett et al. May 1993 A
5220335 Huang Jun 1993 A
5229777 Doyle Jul 1993 A
5239279 Turunen Aug 1993 A
5278528 Turunen Jan 1994 A
5281326 Galla Jan 1994 A
5298873 Ala-Kojola Mar 1994 A
5302924 Jantunen Apr 1994 A
5304968 Ohtonen Apr 1994 A
5307036 Turunen Apr 1994 A
5319328 Turunen Jun 1994 A
5349315 Ala-Kojola Sep 1994 A
5349700 Parker Sep 1994 A
5351023 Niiranen Sep 1994 A
5354463 Turunen Oct 1994 A
5355142 Marshall et al. Oct 1994 A
5357262 Blaese Oct 1994 A
5363114 Shoemaker Nov 1994 A
5369782 Kawano et al. Nov 1994 A
5382959 Pett et al. Jan 1995 A
5386214 Sugawara Jan 1995 A
5387886 Takalo Feb 1995 A
5394162 Korovesis et al. Feb 1995 A
RE34898 Turunen Apr 1995 E
5408206 Turunen Apr 1995 A
5418508 Puurunen May 1995 A
5432489 Yrjola Jul 1995 A
5438697 Fowler et al. Aug 1995 A
5440315 Wright et al. Aug 1995 A
5442280 Baudart Aug 1995 A
5442366 Sanford Aug 1995 A
5444453 Lalezari Aug 1995 A
5467065 Turunen Nov 1995 A
5473295 Turunen Dec 1995 A
5506554 Ala-Kojola Apr 1996 A
5508668 Prokkola Apr 1996 A
5510802 Tsuru et al. Apr 1996 A
5517683 Collett et al. May 1996 A
5521561 Yrjola May 1996 A
5526003 Ogawa et al. Jun 1996 A
5532703 Stephens et al. Jul 1996 A
5541560 Turunen Jul 1996 A
5541617 Connolly et al. Jul 1996 A
5543764 Turunen Aug 1996 A
5550519 Korpela Aug 1996 A
5557287 Pottala et al. Sep 1996 A
5557292 Nygren et al. Sep 1996 A
5566441 Marsh et al. Oct 1996 A
5570071 Ervasti Oct 1996 A
5585771 Ervasti Dec 1996 A
5585810 Tsuru et al. Dec 1996 A
5589844 Belcher et al. Dec 1996 A
5594395 Niiranen Jan 1997 A
5604471 Rattila Feb 1997 A
5627502 Ervasti May 1997 A
5649316 Prudhomme et al. Jul 1997 A
5668561 Perrotta et al. Sep 1997 A
5675301 Nappa Oct 1997 A
5689221 Niiranen Nov 1997 A
5694135 Dikun et al. Dec 1997 A
5696517 Kawahata et al. Dec 1997 A
5703600 Burrell et al. Dec 1997 A
5709823 Hayes et al. Jan 1998 A
5711014 Crowley et al. Jan 1998 A
5717368 Niiranen Feb 1998 A
5731749 Yrjola Mar 1998 A
5734305 Ervasti Mar 1998 A
5734350 Deming et al. Mar 1998 A
5734351 Ojantakanen Mar 1998 A
5736965 Mosebrook et al. Apr 1998 A
5739735 Pyykko Apr 1998 A
5742259 Annamaa Apr 1998 A
5757327 Yajima et al. May 1998 A
5760746 Kawahata Jun 1998 A
5764190 Murch et al. Jun 1998 A
5767809 Chuang et al. Jun 1998 A
5768217 Sonoda et al. Jun 1998 A
5777581 Lilly et al. Jul 1998 A
5777585 Tsuda et al. Jul 1998 A
5793269 Ervasti Aug 1998 A
5797084 Tsuru et al. Aug 1998 A
5812094 Maldonado Sep 1998 A
5815048 Ala-Kojola Sep 1998 A
5822705 Lehtola Oct 1998 A
5852421 Maldonado Dec 1998 A
5861854 Kawahata et al. Jan 1999 A
5874926 Tsuru et al. Feb 1999 A
5880697 McCarrick et al. Mar 1999 A
5886668 Pedersen et al. Mar 1999 A
5892490 Asakura et al. Apr 1999 A
5903820 Hagstrom May 1999 A
5905475 Annamaa May 1999 A
5920290 McDonough et al. Jul 1999 A
5926139 Korisch Jul 1999 A
5929813 Eggleston Jul 1999 A
5936583 Tadahiko et al. Aug 1999 A
5943016 Snyder, Jr. et al. Aug 1999 A
5952975 Pedersen et al. Sep 1999 A
5959583 Funk Sep 1999 A
5963180 Leisten Oct 1999 A
5966097 Fukasawa et al. Oct 1999 A
5970393 Khorrami et al. Oct 1999 A
5977710 Kuramoto et al. Nov 1999 A
5986606 Kossiavas et al. Nov 1999 A
5986608 Korisch et al. Nov 1999 A
5990848 Annamaa Nov 1999 A
5999132 Kitchener et al. Dec 1999 A
6005529 Hutchinson Dec 1999 A
6006419 Vandendolder et al. Dec 1999 A
6008764 Ollikainen Dec 1999 A
6009311 Killion et al. Dec 1999 A
6014106 Annamaa Jan 2000 A
6016130 Annamaa Jan 2000 A
6023608 Yrjola Feb 2000 A
6031496 Kuittinen et al. Feb 2000 A
6034637 McCoy et al. Mar 2000 A
6037848 Alila Mar 2000 A
6043780 Funk et al. Mar 2000 A
6052096 Tsuru et al. Apr 2000 A
6072434 Papatheodorou Jun 2000 A
6078231 Pelkonen Jun 2000 A
6091363 Komatsu et al. Jul 2000 A
6091365 Anders et al. Jul 2000 A
6097345 Walton Aug 2000 A
6100849 Tsubaki et al. Aug 2000 A
6112108 Tepper et al. Aug 2000 A
6121931 Levi et al. Sep 2000 A
6133879 Grangeat et al. Oct 2000 A
6134421 Lee et al. Oct 2000 A
6140966 Pankinaho Oct 2000 A
6140973 Annamaa Oct 2000 A
6147650 Kawahata et al. Nov 2000 A
6157819 Vuokko Dec 2000 A
6177908 Kawahata Jan 2001 B1
6185434 Hagstrom Feb 2001 B1
6190942 Wilm et al. Feb 2001 B1
6195049 Kim et al. Feb 2001 B1
6204826 Rutkowski et al. Mar 2001 B1
6215376 Hagstrom Apr 2001 B1
6218989 Schneider et al. Apr 2001 B1
6246368 Deming et al. Jun 2001 B1
6252552 Tarvas et al. Jun 2001 B1
6252554 Isohatala Jun 2001 B1
6255994 Saito Jul 2001 B1
6268831 Sanford Jul 2001 B1
6281848 Nagumo et al. Aug 2001 B1
6259029 Chen et al. Sep 2001 B1
6297776 Pankinaho Oct 2001 B1
6304220 Herve et al. Oct 2001 B1
6308720 Modi Oct 2001 B1
6316975 O'Toole et al. Nov 2001 B1
6323811 Tsubaki Nov 2001 B1
6326921 Egorov et al. Dec 2001 B1
6337663 Chi-Minh Jan 2002 B1
6340954 Annamaa et al. Jan 2002 B1
6342859 Kurz et al. Jan 2002 B1
6343208 Ying Jan 2002 B1
6346914 Annamaa Feb 2002 B1
6348892 Annamaa Feb 2002 B1
6353443 Ying Feb 2002 B1
6366243 Isohatala Apr 2002 B1
6377827 Rydbeck Apr 2002 B1
6380905 Annarnaa Apr 2002 B1
6396444 Goward May 2002 B1
6404394 Hill Jun 2002 B1
6417813 Durham et al. Jul 2002 B1
6421014 Sanad Jul 2002 B1
6423915 Winter Jul 2002 B1
6429818 Johnson et al. Aug 2002 B1
6452551 Chen Sep 2002 B1
6452558 Saitou et al. Sep 2002 B1
6456249 Johnson et al. Sep 2002 B1
6459413 Tsang et al. Oct 2002 B1
6462716 Kushihi Oct 2002 B1
6469673 Kaiponen Oct 2002 B2
6473056 Annamaa Oct 2002 B2
6476767 Aoyama et al. Nov 2002 B2
6476769 Lehtola Nov 2002 B1
6480155 Eggleston Nov 2002 B1
6483462 Weinberger Nov 2002 B2
6498586 Pankinaho Dec 2002 B2
6501425 Nagumo Dec 2002 B1
6515625 Johnson Feb 2003 B1
6518925 Annamaa Feb 2003 B1
6529168 Mikkola Mar 2003 B2
6529749 Hayes et al. Mar 2003 B1
6535170 Sawamura et al. Mar 2003 B2
6538604 Isohatala Mar 2003 B1
6538607 Barna Mar 2003 B2
6542050 Arai et al. Apr 2003 B1
6549167 Yoon Apr 2003 B1
6552686 Ollikainen et al. Apr 2003 B2
6556812 Pennanen et al. Apr 2003 B1
6566944 Pehlke May 2003 B1
6580396 Lin Jun 2003 B2
6580397 Kuriyama et al. Jun 2003 B2
6600449 Onaka Jul 2003 B2
6603430 Hill et al. Aug 2003 B1
6606016 Takamine et al. Aug 2003 B2
6611235 Barna et al. Aug 2003 B2
6614400 Egorov Sep 2003 B2
6614401 Onaka et al. Sep 2003 B2
6614405 Mikkoken Sep 2003 B1
6634564 Kuramochi Oct 2003 B2
6636181 Asano Oct 2003 B2
6639564 Johnson Oct 2003 B2
6646606 Mikkola Nov 2003 B2
6650295 Ollikainen et al. Nov 2003 B2
6657593 Nagumo et al. Dec 2003 B2
6657595 Phillips et al. Dec 2003 B1
6670926 Miyasaka Dec 2003 B2
6677903 Wang Jan 2004 B2
6680705 Tan et al. Jan 2004 B2
6683573 Park Jan 2004 B2
6693594 Pankinaho et al. Feb 2004 B2
6717551 Desclos et al. Apr 2004 B1
6727857 Mikkola Apr 2004 B2
6734825 Guo et al. May 2004 B1
6734826 Dai et al. May 2004 B1
6738022 Varjakka May 2004 B2
6741214 Kadambi et al. May 2004 B1
6753813 Kushihi Jun 2004 B2
6759989 Tarvas et al. Jul 2004 B2
6765536 Phillips et al. Jul 2004 B2
6774853 Wong et al. Aug 2004 B2
6781545 Sung Aug 2004 B2
6801166 Mikkola Oct 2004 B2
6801169 Chang et al. Oct 2004 B1
6806835 Iwai Oct 2004 B2
6819287 Sullivan et al. Nov 2004 B2
6819293 Antonius Johannes et al. Nov 2004 B2
6825818 Toncich Nov 2004 B2
6836249 Kenoun et al. Dec 2004 B2
6847329 Ikegaya et al. Jan 2005 B2
6856293 Bordi Feb 2005 B2
6862437 McNamara Mar 2005 B1
6862441 Ella Mar 2005 B2
6873291 Aoyama Mar 2005 B2
6876329 Milosavljevic Apr 2005 B2
6882317 Koskiniemi Apr 2005 B2
6891507 Kushihi et al. May 2005 B2
6897810 Dai et al. May 2005 B2
6900768 Iguchi et al. May 2005 B2
6903692 Kivekas Jun 2005 B2
6911945 Korva Jun 2005 B2
6922171 Annamaa Jul 2005 B2
6925689 Folkmar Aug 2005 B2
6927729 Legay Aug 2005 B2
6937196 Korva Aug 2005 B2
6950065 Ying et al. Sep 2005 B2
6950066 Hendler et al. Sep 2005 B2
6950068 Bordi Sep 2005 B2
6950072 Miyata et al. Sep 2005 B2
6952144 Javor Oct 2005 B2
6952187 Annamaa Oct 2005 B2
6958730 Nagumo et al. Oct 2005 B2
6961544 Hagstrom Nov 2005 B1
6963308 Korva Nov 2005 B2
6963310 Horita et al. Nov 2005 B2
6967618 Ojantakanen Nov 2005 B2
6975278 Song et al. Dec 2005 B2
6980158 Iguchi et al. Dec 2005 B2
6985108 Mikkota Jan 2006 B2
6992543 Luetzelschwab et al. Jan 2006 B2
6995710 Sugimoto et al. Feb 2006 B2
7023341 Stilp Apr 2006 B2
7031744 Kojima et al. Apr 2006 B2
7034752 Sekiguchi et al. Apr 2006 B2
7042403 Colburn et al. May 2006 B2
7053841 Ponce De Leon et al. May 2006 B2
7054671 Kaiponen et al. May 2006 B2
7057560 Erkocevic Jun 2006 B2
7061430 Zheng et al. Jun 2006 B2
7081857 Kinnunen et al. Jul 2006 B2
7084831 Takagi et al. Aug 2006 B2
7099690 Milosavljevic Aug 2006 B2
7113133 Chen et al. Sep 2006 B2
7119749 Miyata et al. Oct 2006 B2
7126546 Annamaa Oct 2006 B2
7129893 Otaka et al. Oct 2006 B2
7136019 Mikkola Nov 2006 B2
7136020 Yamaki Nov 2006 B2
7142824 Kojima et al. Nov 2006 B2
7148847 Yuanzhu Dec 2006 B2
7148849 Lin Dec 2006 B2
7148851 Takaki et al. Dec 2006 B2
7170464 Tang et al. Jan 2007 B2
7176838 Kinezos Feb 2007 B1
7180455 Oh et al. Feb 2007 B2
7193574 Chiang et al. Mar 2007 B2
7205942 Wang et al. Apr 2007 B2
7215283 Boyle May 2007 B2
7218280 Annamaa May 2007 B2
7218282 Humpfer et al. May 2007 B2
7224313 McKinzie, III et al. May 2007 B2
7230574 Johnson Jun 2007 B2
7233775 De Graauw Jun 2007 B2
7237318 Annamaa Jul 2007 B2
7256743 Korva Aug 2007 B2
7274334 O'Riordan et al. Sep 2007 B2
7283097 Wen et al. Oct 2007 B2
7289064 Cheng Oct 2007 B2
7292200 Posluszny et al. Nov 2007 B2
7319432 Andersson Jan 2008 B2
7330153 Rentz Feb 2008 B2
7333067 Hung et al. Feb 2008 B2
7339528 Wang et al. Mar 2008 B2
7340286 Kempele Mar 2008 B2
7345634 Ozkar et al. Mar 2008 B2
7352326 Korva Apr 2008 B2
7355270 Hasebe et al. Apr 2008 B2
7358902 Erkocevic Apr 2008 B2
7375695 Ishizuka et al. May 2008 B2
7381774 Bish et al. Jun 2008 B2
7382319 Kaunari Jun 2008 B2
7385556 Chung et al. Jun 2008 B2
7388543 Vance Jun 2008 B2
7391378 Mikkola Jun 2008 B2
7405702 Annamaa et al. Jul 2008 B2
7417588 Castany et al. Aug 2008 B2
7418990 Park Sep 2008 B2
7423592 Pros et al. Sep 2008 B2
7432860 Huynh Oct 2008 B2
7439929 Ozkar Oct 2008 B2
7443344 Boyle Oct 2008 B2
7468700 Milosavljevic Dec 2008 B2
7468709 Niemi Dec 2008 B2
7501983 Mikkola Mar 2009 B2
7502598 Kronberger Mar 2009 B2
7564413 Kim et al. Jul 2009 B2
7589678 Nissinen et al. Sep 2009 B2
7616158 Mark et al. Nov 2009 B2
7633449 Oh Dec 2009 B2
7663551 Nissinen Feb 2010 B2
7679565 Sorvala Mar 2010 B2
7692543 Copeland Apr 2010 B2
7710325 Cheng May 2010 B2
7724204 Annamaa May 2010 B2
7760146 Ollikainen Jul 2010 B2
7764245 Loyet Jul 2010 B2
7786938 Sorvala Aug 2010 B2
7800544 Thornell-Pers Sep 2010 B2
7830327 He Nov 2010 B2
7843397 Boyle Nov 2010 B2
7889139 Hobson et al. Feb 2011 B2
7889143 Milosavljevic Feb 2011 B2
7901617 Taylor Mar 2011 B2
7903035 Mikkola et al. Mar 2011 B2
7916086 Koskiniemi et al. Mar 2011 B2
7963347 Pabon Jun 2011 B2
7973720 Sorvala Jul 2011 B2
8049670 Jung et al. Nov 2011 B2
8054232 Chiang et al. Nov 2011 B2
8077032 Vier et al. Dec 2011 B1
8098202 Annamaa et al. Jan 2012 B2
8179322 Nissinen May 2012 B2
8193998 Puente et al. Jun 2012 B2
8378892 Sorvala Feb 2013 B2
8466756 Milosavljevic et al. Jun 2013 B2
8473017 Milosavljevic et al. Jun 2013 B2
8564485 Milosavljevic et al. Oct 2013 B2
8629813 Milosavljevic Jan 2014 B2
9203154 Korva Dec 2015 B2
20010050636 Weinberger Dec 2001 A1
20020183013 Auckland et al. Dec 2002 A1
20020196192 Nagumo et al. Dec 2002 A1
20030146873 Blancho Aug 2003 A1
20040090378 Dai et al. May 2004 A1
20040137950 Bolin et al. Jul 2004 A1
20040145525 Annabi et al. Jul 2004 A1
20040171403 Mikkola Sep 2004 A1
20050055164 Neff et al. Mar 2005 A1
20050057401 Yuanzhu Mar 2005 A1
20050159131 Shibagaki et al. Jul 2005 A1
20050176481 Jeong Aug 2005 A1
20060071857 Pelzer Apr 2006 A1
20060192723 Harada Aug 2006 A1
20070042615 Liao Feb 2007 A1
20070082789 Nissila Apr 2007 A1
20070152881 Chan Jul 2007 A1
20070188388 Feng Aug 2007 A1
20080059106 Wight Mar 2008 A1
20080088511 Sorvala Apr 2008 A1
20080096492 Yoon Apr 2008 A1
20080174494 Suzuki et al. Jul 2008 A1
20080266199 Milosavljevic Oct 2008 A1
20090009415 Tanska Jan 2009 A1
20090135066 Raappana et al. May 2009 A1
20090153412 Chiang et al. Jun 2009 A1
20090174604 Keskitalo Jul 2009 A1
20090196160 Crombach Aug 2009 A1
20090197654 Teshima Aug 2009 A1
20090231213 Ishimiya Sep 2009 A1
20100220016 Nissinen Sep 2010 A1
20100244978 Milosavljevic Sep 2010 A1
20100309092 Lambacka Dec 2010 A1
20110045786 Leinonen Feb 2011 A1
20110133994 Korva Jun 2011 A1
20110279232 Tuttle Nov 2011 A1
20120032876 Tabe Feb 2012 A1
20120052820 Lin Mar 2012 A1
20120057388 Garrity Mar 2012 A1
20120062424 Hwang Mar 2012 A1
20120093046 Tikka Apr 2012 A1
20120098588 Ujvari Apr 2012 A1
20120119955 Milosavljevic et al. May 2012 A1
20120329407 Rousu Dec 2012 A1
20130109370 Rowson May 2013 A1
20130127670 Desclos May 2013 A1
20130137487 Sato May 2013 A1
20130241780 Amm Sep 2013 A1
20140071008 Desclos et al. Mar 2014 A1
20140087673 Mostov Mar 2014 A1
20140106684 Burns Apr 2014 A1
20140162574 Rousu Jun 2014 A1
20140192845 Szini Jul 2014 A1
20140307354 Watanabe Oct 2014 A1
20140333494 Huang et al. Nov 2014 A1
20140362038 Murakami et al. Dec 2014 A1
20150022403 Lin Jan 2015 A1
20150091762 Hsiao Apr 2015 A1
20150200447 Tang et al. Jul 2015 A1
20160173172 Greene Jun 2016 A1
Foreign Referenced Citations (92)
Number Date Country
1316797 Oct 2007 CN
101958455 Jan 2011 CN
10104862 Aug 2002 DE
10150149 Apr 2003 DE
0 208 424 Jan 1987 EP
0 376 643 Apr 1990 EP
0 751 043 Apr 1997 EP
0 807 988 Nov 1997 EP
0 831 547 Mar 1998 EP
0 851 530 Jul 1998 EP
1 294 048 Jan 1999 EP
1 014 487 Jun 2000 EP
1 024 553 Aug 2000 EP
1 067 627 Jan 2001 EP
0 923 158 Sep 2002 EP
1 329 980 Jul 2003 EP
1 361 623 Nov 2003 EP
1 406 345 Apr 2004 EP
1 453 137 Sep 2004 EP
1 220 456 Oct 2004 EP
1 467 456 Oct 2004 EP
1 753 079 Feb 2007 EP
20020829 Nov 2003 FI
1118782 Mar 2008 FI
2553584 Oct 1983 FR
2724274 Mar 1996 FR
2873247 Jan 2006 FR
2266997 Nov 1993 GB
2360422 Sep 2001 GB
2389246 Dec 2003 GB
59-202831 Nov 1984 JP
60-206304 Oct 1985 JP
61-245704 Nov 1986 JP
06-152463 May 1994 JP
07-131234 May 1995 JP
07-221536 Aug 1995 JP
07-249923 Sep 1995 JP
07-307612 Nov 1995 JP
08-216571 Aug 1996 JP
09-083242 Mar 1997 JP
09-260934 Oct 1997 JP
09-307344 Nov 1997 JP
10-028013 Jan 1998 JP
10-107671 Apr 1998 JP
10-173423 Jun 1998 JP
10-209733 Aug 1998 JP
10-224142 Aug 1998 JP
10-322124 Dec 1998 JP
10-327011 Dec 1998 JP
11-004113 Jan 1999 JP
11-004117 Jan 1999 JP
11-068456 Mar 1999 JP
11-127010 May 1999 JP
11-127014 May 1999 JP
11-136025 May 1999 JP
11-355033 Dec 1999 JP
2000-278028 Oct 2000 JP
2001-053543 Feb 2001 JP
2001-267833 Sep 2001 JP
2001-217631 Oct 2001 JP
2001-326513 Nov 2001 JP
2002-319811 Oct 2002 JP
2002-329541 Nov 2002 JP
2002-335117 Nov 2002 JP
2003-060417 Feb 2003 JP
2003-124730 Apr 2003 JP
2003-179426 Jun 2003 JP
2004-112028 Apr 2004 JP
2004-363859 Dec 2004 JP
2005-005985 Jan 2005 JP
2005-252661 Sep 2005 JP
20010080521 Oct 2001 KR
20020096016 Dec 2002 KR
20130133853 Dec 2013 KR
511900 Dec 1999 SE
M460421 Aug 2013 TW
M484801 Aug 2014 TW
WO 1992000635 Jan 1992 WO
WO 1996027219 Sep 1996 WO
WO 1998001919 Jan 1998 WO
WO 1999030479 Jun 1999 WO
WO 2001020718 Mar 2001 WO
WO 2001029927 Apr 2001 WO
WO 2001033665 May 2001 WO
WO 2001061781 Aug 2001 WO
WO 2004017462 Feb 2004 WO
WO 2004057697 Jul 2004 WO
WO 2004100313 Nov 2004 WO
WO 2004112189 Dec 2004 WO
WO 2005062416 Jul 2005 WO
WO 2007012697 Feb 2007 WO
WO 2010122220 Oct 2010 WO
Non-Patent Literature Citations (53)
Entry
“An Adaptive Microstrip Patch Antenna for Use in Portable Transceivers”, Rostbakken et al., Vehicular Technology Conference, 1996, Mobile Technology for the Human Race, pp. 339-343.
“Dual Band Antenna for Hand Held Portable Telephones”, Liu et al., Electronics Letters, vol. 32, No. 7, 1996, pp. 609-610.
“Improved Bandwidth of Microstrip Antennas using Parasitic Elements,” IEE Proc. vol. 127, Pt. H. No. 4, Aug. 1980.
“A 13.56MHz RFID Device and Software for Mobile Systems”, by H. Ryoson, et al., Micro Systems Network Co., 2004 IEEE, pp. 241-244.
“A Novel Approach of a Planar Multi-Band Hybrid Series Feed Network for Use in Antenna Systems Operating at Millimeter Wave Frequencies,” by M.W. Elsallal and B.L. Hauck, Rockwell Collins, Inc., 2003 pp. 15-24, waelsall@rockwellcollins.com and blhauck@rockwellcollins.com.
Abedin, M. F. and M. Ali, “Modifying the ground plane and its effect on planar inverted-F antennas (PIFAs) for mobile handsets,” IEEE Antennas and Wireless Propagation Letters, vol. 2, 226-229, 2003.
C. R. Rowell and R. D. Murch, “A compact PIFA suitable for dual frequency 900/1800-MHz operation,” IEEE Trans. Antennas Propag., vol. 46, No. 4, pp. 596-598, Apr. 1998.
Cheng-Nan Hu, Willey Chen, and Book Tai, “A Compact Multi-Band Antenna Design for Mobile Handsets”, APMC 2005 Proceedings.
Endo, T., Y. Sunahara, S. Satoh and T. Katagi, “Resonant Frequency and Radiation Efficiency of Meander Line Antennas,” Electronics and Commu-nications in Japan, Part 2, vol. 83, No. 1, 52-58, 2000.
European Office Action, dated May 30, 2005 issued during prosecution of EP 04 396 001.2-1248.
Examination Report dated May 3, 2006 issued by the EPO for European Patent Application No. 04 396 079.8.
F.R. Hsiao, et al. “A dual-band planar inverted-F patch antenna with a branch-line slit,” Microwave Opt. Technol. Lett., vol. 32, Feb. 20, 2002.
Griffin, Donald W. et al., “Electromagnetic Design Aspects of Packages for Monolithic Microwave Integrated Circuit-Based Arrays with Integrated Antenna Elements”, IEEE Transactions on Antennas and Propagation, vol. 43, No. 9, pp. 927-931, Sep. 1995.
Guo, Y. X. and H. S. Tan, “New compact six-band internal antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 3, 295-297, 2004.
Guo, Y. X. and Y.W. Chia and Z. N. Chen, “Miniature built-in quadband antennas for mobile handsets”, IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 30-32, 2004.
Hoon Park, et al. “Design of an Internal antenna with wide and multiband characteristics for a mobile handset”, IEEE Microw. & Opt. Tech. Lett. vol. 48, No. 5, May 2006.
Hoon Park, et al. “Design of Planar Inverted-F Antenna With Very Wide Impedance Bandwidth”, IEEE Microw. & Wireless Comp., Lett., vol. 16, No. 3, pp. 113-115, Mar. 2006.
Hossa, R., A. Byndas, and M. E. Bialkowski, “Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane,” IEEE Microwave and Wireless Components Letters, vol. 14, 283-285, 2004.
I. Ang, Y. X. Guo, and Y. W. Chia, “Compact internal quad-band antenna for mobile phones” Micro. Opt. Technol. Lett., vol. 38, No. 3 pp. 217-223 Aug. 2003.
International Preliminary Report on Patentability for International Application No. PCT/FI2004/000554, dated May 1, 2006.
Jing, X., et al.; “Compact Planar Monopole Antenna for Multi-Band Mobile Phones”; Microwave Conference Proceedings, Dec. 4-7, 2005.APMC 2005, Asia-Pacific Conference Proceedings, vol. 4.
Kim, B. C., J. H. Yun, and H. D. Choi, “Small wideband PIFA for mobile phones at 1800 MHz,” IEEE International Conference on Vehicular Technology, 27{29, Daejeon, South Korea, May 2004.
Kim, Kihong et al., “Integrated Dipole Antennas on Silicon Substrates for Intra-Chip Communication”, IEEE, pp. 1582-1585, 1999.
Kivekas., O., J. Ollikainen, T. Lehtiniemi, and P. Vainikainen, “Bandwidth, SAR, and eciency of internal mobile phone antennas,” IEEE Transactions on Electromagnetic Compatibility, vol. 46, 71{86, 2004.
K-L Wong, Planar Antennas for Wireless Communications, Hoboken, NJ: Willey, 2003, ch. 2.
Lindberg., P. and E. Ojefors, “A bandwidth enhancement technique for mobile handset antennas using wavetraps,” IEEE Transactions on Antennas and Propagation, vol. 54, 2226{2232, 2006.
Marta Martinez-Vazquez, et al., “Integrated Planar Multiband Antennas for Personal Communication Handsets”, IEEE Trasactions on Antennas and propagation, vol. 54, No. 2, Feb. 2006.
P. Ciais, et al., “Compact Internal Multiband Antennas for Mobile and WLAN Standards”, Electronic Letters, vol. 40, No. 15, pp. 920-921, Jul. 2004.
P. Ciais, R. Staraj, G. Kossiavas, and C. Luxey, “Design of an internal quadband antenna for mobile phones”, IEEE Microwave Wireless Comp. Lett., vol. 14, No. 4, pp. 148-150, Apr. 2004.
P. Salonen, et al. “New slot configurations for dual-band planar inverted-F antenna,” Microwave Opt. Technol., vol. 28, pp. 293-298, 2001.
Papapolymerou, Ioannis et al., “Micromachined Patch Antennas”, IEEE Transactions on Antennas and Propagation, vol. 46, No. 2, pp. 275-283, Feb. 1998.
Product of the Month, RFDesign, “GSM/GPRS Quad Band Power AMP Includes Antenna Switch,” 1 page, reprinted Nov. 2004 issue of RF Design (www.rfdesign.com), Copyright 2004, Freescale Semiconductor, RFD-24-EK.
S. Tarvas, et al. “An internal dual-band mobile phone antenna,” in 2000 IEEE Antennas Propagat. Soc. Int. Symp. Dig., pp. 266-269, Salt Lake City, UT, USA.
Wang, F., Z. Du, Q. Wang, and K. Gong, “Enhanced-bandwidth PIFA with T-shaped ground plane,” Electronics Letters, vol. 40, 1504-1505, 2004.
Wang, H.; “Dual-Resonance Monopole Antenna with Tuning Stubs”; IEEE Proceedings, Microwaves, Antennas & Propagation, vol. 153, No. 4, Aug. 2006; pp. 395-399.
Wong, K., et al.; “A Low-Profile Planar Monopole Antenna for Multiband Operation of Mobile Handsets”; IEEE Transactions on Antennas and Propagation, Jan. 2003, vol. 51, No. 1.
X.-D. Cai and J.-Y. Li, Analysis of asymmetric TEM cell and its optimum design of electric field distribution, IEE Proc 136 (1989), 191-194.
X.-Q. Yang and K.-M. Huang, Study on the key problems of interaction between microwave and chemical reaction, Chin Jof Radio Sci 21 (2006), 802-809.
Chiu, C.-W., et al., “A Meandered Loop Antenna for LTE/WWAN Operations in a Smartphone,” Progress In Electromagnetics Research C, vol. 16, pp. 147-160, 2010.
Lin, Sheng-Yu; Liu, Hsien-Wen; Weng, Chung-Hsun; and Yang, Chang-Fa, “A miniature Coupled loop Antenna to be Embedded in a Mobile Phone for Penta-band Applications,” Progress in Electromagnetics Research Symposium Proceedings, Xi'an, China, Mar. 22-26, 2010, pp. 721-724.
Zhang, Y.Q., et al. “Band-Notched UWB Crossed Semi-Ring Monopole Antenna,” Progress in Electronics Research C, vol. 19, 107-118, 2011, pp. 107-118.
Joshi, Ravi K., et al., “Broadband Concentric Rings Fractal Slot Antenna”, XXVIIIth General Assembly of International Union of Radio Science (URSI). (Oct. 23-29, 2005), 4 Pgs.
Singh, Rajender, “Broadband Planar Monopole Antennas,” M.Tech credit seminar report, Electronic Systems group, EE Dept, IIT Bombay, Nov. 2003, pp. 1-24.
Gobien, Andrew, T. “Investigation of Low Profile Antenna Designs for Use in Hand-Held Radios,” Ch.3, The Inverted-L Antenna and Variations; Aug. 1997, pp. 42-76.
See, C.H., et al., “Design of Planar Metal-Plate Monopole Antenna for Third Generation Mobile Handsets,” Telecommunications Research Centre, Bradford University, 2005, pp. 27-30.
Chen, Jin-Sen, et al., “CPW-fed Ring Slot Antenna with Small Ground Plane,” Department of Electronic Engineering, Cheng Shiu University.
“LTE—an introduction,” Ericsson White Paper, Jun. 2009, pp. 1-16.
“Spectrum Analysis for Future LTE Deployments,” Motorola White Paper, 2007, pp. 1-8.
Chi, Yun-Wen, et al. “Quarter-Wavelength Printed Loop Antenna With an Internal Printed Matching Circuit for GSM/DCS/PCS/UMTS Operation in the Mobile Phone,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 9m Sep. 2009, pp. 2541-2547.
Wong, Kin-Lu, et al. “Planar Antennas for WLAN Applications,” Dept. of Electrical Engineering, National Sun Yat-Sen University, Sep. 2002 Ansoft Workshop, pp. 1-45.
“λ/4 printed monopole antenna for 2.45GHz,” Nordic Semiconductor, White Paper, 2005, pp. 1-6.
White, Carson, R., “Single- and Dual-Polarized Slot and Patch Antennas with Wide Tuning Ranges,” The University of Michigan, 2008.
Extended European Search Report dated Jan. 30, 2013, issued by the EPO for EP Patent Application No. 12177740.3.
Related Publications (1)
Number Date Country
20170033830 A1 Feb 2017 US