A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
The present disclosure relates generally to antenna solutions for portable wireless devices, and particularly in one exemplary aspect to antenna solutions that make use of an integrated proximity sensor or other sensor.
Mobile devices with wireless communications capabilities such as mobile computers, mobile phones, smart phones, tablet computers, personal digital assistants (PDAs), “smart” watches, and other personal communication devices (PCDs) have become more ubiquitous in recent times. As a greater variety of devices have entered the mobile computing space, devices have become lighter in weight and smaller in size, while the functionality of these devices has increased greatly.
Specific Absorption Rate (SAR) is a measure of the rate at which electromagnetic energy is absorbed by the human body when exposed to, for example, a radio frequency (RF) electromagnetic field. Regulations (by e.g., the Federal Communications Commission (FCC)) exist to limit the SAR exposure users of mobile devices experience and thus limit the output power levels of such mobile devices. For example, the FCC limits RF exposure from cellular phones at a SAR level of 1.6 watts per kilogram (1.6 W/kg) taken over the volume containing a mass of 1 gram of tissue that absorbs the most signal. The European Union via the European Committee for Electrotechnical Standardization (CENELEC) limits RF exposure from mobile phones to 2 W/kg averaged over the 10 g of tissue absorbing the most signal. In mobile devices, to limit exposure to RF and to effectuate the regulations, proximity sensors are utilized to detect the presence of, for example, a human body in order to lower the power output for these mobile devices. However, the exclusive utilization of lower power output for these mobile devices can have resultant undesirable communications performance.
Accordingly, there is a need for apparatus, systems and methods that retain the overall performance of mobile device communications while effectuating compliance with, for example, SAR regulations for mobile devices. Ideally such a solution will select the antenna(s) having the best signal condition and connect these antenna(s) to the transmission/reception chain of, for example, a front end module commonly implemented on these mobile devices.
The aforementioned needs are satisfied herein by providing, inter alia, a sensor-based closed loop antenna swapping system, and methods of making and operating the same.
In a first aspect, a portable wireless device is disclosed. In one embodiment, the portable wireless device includes a sensor coupled to a plurality of antenna modules as well as to a switching apparatus; a front end module in signal communication with the switching apparatus; and a controller configured to selectively couple individual ones of the plurality of antenna modules to the front end module via the switching apparatus.
In a variant, the sensor comprises a proximity sensor having a passive capacitive sensing apparatus.
In another variant, the (e.g., proximity) sensor is configured to obtain a plurality of measurement values from the plurality of antenna modules, as well as to provide these obtained measurement values to the controller.
In yet another variant, the controller is configured to selectively couple individual ones of the plurality of antenna modules to the front end module via the switching apparatus based at least in part on these obtained measurement values.
In yet another variant, the controller is configured to select one or more best available antenna modules of the plurality of antenna modules.
In yet another variant, the controller includes one or more pre-stored efficiency values for individual ones of the plurality of antenna modules.
In yet another variant, a type of the switching apparatus is selected based at least in part on a total number of the antenna modules and a total number of transceivers available in the front end module.
In yet another variant, the front end module includes at least a main transceiver and a separate multiple-in multiple-out (MIMO) transceiver.
In yet another variant, the controller is configured to selectively couple individual ones of the plurality of antenna modules to the front end module via the switching apparatus based at least in part on the type of transceiver chosen.
In yet another variant, the front end module is further configured to transmit signaling to individual ones of the antenna modules in order to switch and/or tune respective ones of the antenna modules.
In yet another variant, the front end module is further configured to transmit signaling to the controller.
In yet another variant, the controller is configured to receive signaling from the front end module, the signaling from the front end module being utilized in order to switch and/or tune respective ones of the antenna modules.
In a second aspect, a method for antenna selection is disclosed. In one embodiment, the method includes obtaining one or more sensing measurements from a plurality of antenna modules; providing these obtained sensing measurements to a controller; selecting a first signaling path between a front end module and individual ones of the plurality of antenna modules based at least in part on these provided sensing measurements; and transmitting signaling information from the front end module to individual ones of the antenna modules based at least in part on the selected first signaling path.
In a first variant, the act of selecting the signaling path is based at least in part on determining one or more best available antenna modules of the plurality of antenna modules.
In another variant, the method further includes selecting a second signaling path between the front end module and individual ones of the plurality of antenna modules based at least in part on these provided sensing measurements.
In yet another variant, the method further includes transmitting signaling information from the front end module to individual ones of the antenna modules based at least in part on the selected second signaling path.
In yet another variant, the first signaling path selected is based at least in part on determining a first type of transceiver for the front end module.
In yet another variant, the second signaling path selected is based at least in part on determining a second type of transceiver for the front end module.
In yet another variant, the method further includes switching and/or tuning one or more of the antenna modules.
In yet another variant, the act of switching and/or tuning is determined at least in part by determining the type of signaling information transmitted.
In a third aspect, a sensor-based antenna swapping apparatus is disclosed.
In a fourth aspect, antenna apparatus useful with e.g., a portable wireless device is disclosed. In one implementation, the antenna apparatus includes a sensor coupled to a plurality of antenna modules, as well as to a switching apparatus; a front end module in signal communication with the switching apparatus; and a controller configured to selectively couple individual ones of the plurality of antenna modules to the front end module via the switching apparatus.
In another embodiment, the antenna apparatus includes: a plurality of antenna elements; sensor apparatus configured to generate an output based on one or more sensed parameters relating to at least one aspect of the operation of the antenna elements; switching apparatus configured to selectively couple one or more of the plurality of antenna elements to a radio frequency front end module of the wireless device; and controller apparatus in operative communication with the sensor apparatus and configured to utilize the output in selective control of the switching apparatus.
In a fifth aspect, a method of operating a portable wireless device is disclosed. In one embodiment, the method includes: operating the device so as to transmit and/or receive wireless signals, including grasping the device in a user's hand; obtaining one or more sensing measurements from a plurality of antenna modules during the operation; providing these obtained sensing measurements to a controller; selecting a first signaling path between a front end module and individual ones of the plurality of antenna modules based at least in part on these provided sensing measurements; transmitting signaling information from the front end module to individual ones of the antenna modules based at least in part on the selected first signaling path; and transmitting and/or receiving the wireless signals via at least the first signaling path.
In a sixth aspect, a method of manufacturing an antenna apparatus is disclosed. In one embodiment, the method includes selecting sensor, controller and switching components according to one or more desired antenna performance metrics, and utilizing the selected components substantially within the interior volume of a portable wireless device.
In a seventh aspect, a method of configuring an antenna apparatus for use in a portable wireless device is disclosed.
The features, objectives, and advantages of the disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:
All Figures disclosed herein are © Copyright 2015 Pulse Finland Oy. All rights reserved.
Reference is now made to the drawings wherein like numerals refer to like parts throughout.
As used herein, the terms “antenna”, and “antenna assembly” refer without limitation to any system that incorporates a single element, multiple elements, or one or more arrays of elements that receive/transmit and/or propagate one or more frequency bands of electromagnetic radiation. The radiation may be of numerous types, e.g., microwave, millimeter wave, radio frequency, digital modulated, analog, analog/digital encoded, digitally encoded millimeter wave energy, or the like. The energy may be transmitted from one location to another location, using, one or more repeater links, and one or more locations may be mobile, stationary, or fixed to a location on earth such as a base station.
As used herein, the terms “top”, “bottom”, “side”, “up”, “down”, “left”, “right”, and the like merely connote a relative position or geometry of one component to another, and in no way connote an absolute frame of reference or any required orientation. For example, a “top” portion of a component may actually reside below a “bottom” portion when the component is mounted to another device (e.g., to the underside of a PCB).
As used herein, the term “wireless” means any wireless signal, data, communication, or other interface including without limitation Wi-Fi, Bluetooth, 3G (e.g., 3GPP, 3GPP2, and UMTS), HSDPA/HSUPA, TDMA, CDMA (e.g., IS-95A, WCDMA, etc.), FHSS, DSSS, GSM, PAN/802.15, WiMAX (802.16), 802.20, narrowband/FDMA, OFDM, PCS/DCS, Long Term Evolution (LTE) or LTE-Advanced (LTE-A), analog cellular, Zigbee, Near field communication (NFC)/RFID, CDPD, satellite systems such as GPS and GLONASS, and millimeter wave or microwave systems.
Overview
The present disclosure addresses the foregoing needs by providing, inter alia, antenna systems within a portable wireless device that make use of an integrated proximity sensor or other sensor in order to implement a closed loop antenna selection system. In one embodiment, an exemplary portable wireless device includes as its primary components for implementing the closed loop antenna selection system: a proximity sensor/microcontroller unit (MCU); a switching apparatus; a baseband front end module (FEM); and a number of antenna modules. The portable wireless device utilizes “intelligent” antenna selection logic in order to improve upon overall radio frequency performance via an increase in the probability of selecting an appropriate RF signal path having desirable signal conditions. The integrated proximity sensor/MCU detects the presence (influence) of a user's hand, or other loading by any other dielectric or metal component, through measurements that take place through the antenna modules and selects the appropriate RF path for transmission and/or reception by the mobile device.
For example, and in implementations in which a main transceiver and a separate MIMO transceiver are utilized, the MCU will select the best available antenna module(s) available, and will direct the switching apparatus to couple a given transceiver with one or more respective antenna module(s). In one exemplary embodiment, the MCU will pre-store efficiency values for the antenna modules in a lookup table or other such data structure. The MCU will then provide signaling to a switching apparatus based upon at least the proximity sensor measurement values and the pre-stored efficiency values.
Moreover, in some embodiments, the baseband/FEM makes adjustments to operating characteristics of the signaling depending upon which antenna modules have been selected by the proximity sensor/MCU. For example, the baseband FEM may make physical antenna-related adjustments (such as phase), and/or higher-layer adjustments (e.g., modulation coding scheme (MCS) adjustments) in order to obtain better utilization of its multi-antenna system. Moreover, the baseband/FEM may, in some embodiments, provide signaling, either directly or indirectly, to the antenna modules for the purposes of switching and/or tuning respective ones of the antenna modules to a desired frequency band.
Methods of using and testing the aforementioned antenna systems are also disclosed.
Detailed descriptions of the various embodiments and variants of the apparatus and methods of the present disclosure are now provided. While primarily discussed in the context of portable wireless devices that incorporate several (e.g., four (4)) distinct antenna modules, the various apparatus and methodologies discussed herein are not so limited. In fact, many of the apparatus and methodologies described herein are useful in any number of portable wireless devices that incorporate any number of antenna modules (so long as at least two distinct antenna modules are resident within/on the portable wireless device) including, without limitation, five (5) or more distinct antenna modules.
Moreover, while primarily described in the exemplary context of an apparatus with a common proximity sensor/microcontroller unit, it is readily understood that the various principles of the present disclosure can be readily extended and applied to implementations having other types of sensors and/or configurations, including without limitation those with a discrete proximity sensor chipset(s) along with discrete controller and/or microcontroller unit(s), other types of proximity sensors (e.g., those which do not operate on a capacitance principle), or even non-proximity sensors (e.g., those which sense orientation/attitude, acceleration, conductivity, optical characteristics, etc.).
Furthermore, while described primarily in the exemplary context of a portable wireless device that communicates in accordance with a so-called multiple-in/multiple-out (MIMO) context, the various apparatus and methodologies discussed herein are not so limited. Those of ordinary skill will readily understand that the teachings of the present disclosure can be applied to virtually any wireless system or wireless communication protocol(s) including, without limitation, usage scenarios involving so-called carrier aggregation (CA) in which any band combination (e.g., low band (LB) and high band (HB); HB-HB; etc.) are utilized, as well as SIMO and MISO applications.
Referring now to
It will be appreciated that the best/appropriate chain for a transmission event may also not always be the same as the best/appropriate chain for reception; hence, the present disclosure contemplates the possibility of use of one chain or configuration for transmission, and another for reception in certain cases.
In one embodiment, the portable wireless device 100 constitutes a smart phone; however, it is readily appreciated that in alternative implementations, the portable wireless device could include, without limitation, any number of well-known devices such as mobile computers (e.g., laptops), mobile phones, tablet computers, personal digital assistants (PDAs), “smart” watches, and other personal communication devices (PCDs).
The portable wireless device includes as its primary components for implementing its closed loop antenna selection system: a proximity sensor/MCU 102; a switching apparatus 104; a baseband front end module (FEM) 106; and a number of antenna modules 108a, 108b, 108c, 108d.
In one exemplary embodiment, the proximity sensor/MCU 102 includes a capacitive sensing apparatus. The capacitive sensing apparatus utilizes, i.e., body capacitance as an input, but generally can detect other objects or changes in environment that are in proximity to a capacitive sensing detection apparatus. One exemplary benefit for the capacitive sensing apparatus is that it is not dependent upon RF power for object detection (i.e., it is considered a passive electrical component) and hence advantageously is a comparatively low power solution for object detection (as compared to e.g., active sensors which require greater electrical power and hence which can reduce battery life). In an exemplary embodiment, the proximity sensor/MCU 102 utilizes measurements (values) obtained from proximity sensor compatible antenna modules 108a, 108b, 108c, 108d. Typically, the proximity sensor obtains these measurements every few milliseconds, although it is appreciated that the periodicity for these measurements can be varied depending upon the specific requirements for the application, as well as a function of operational conditions (e.g., when powered off, the frequency may be reduced, or in highly dynamic environments, the frequency may be increased). The proximity sensor detection apparatus provides its change in capacitance measurements (for example, when a user's hand comes in close proximity to one or more of the antenna modules) over to the MCU for use by the latter.
The MCU utilizes these measurement values in order to choose the best available antenna module(s) for transmission and/or reception of wireless signals. For example, and in implementations in which a main transceiver and a separate MIMO transceiver are utilized, the MCU will select the best available antenna modules available, and will direct the switching apparatus to couple a given transceiver with one or more respective antenna module(s). In one exemplary embodiment, the MCU will pre-store efficiency values for the antenna modules in a lookup table or other such data structure. The MCU will then provide signaling to the switching apparatus based upon at least the proximity sensor measurement values and the pre-stored efficiency values. For example, in an embodiment in which two antenna modules (of an available four) are not covered by a user's hand, the MCU will select the antenna module with the higher efficiency for the main transceiver, and the other available antenna module will be selected for the MIMO transceiver. In other words, the baseband will combine the signals from the two branches. If the signal condition is good on both branches, then the portable wireless device 100 will stay in MIMO mode. Alternatively, if the signal condition is not good enough for demodulation of two separate paths then the portable wireless device will switch to a diversity mode. For example, in 2×2 MIMO, two separate data streams are received and demodulated thus giving better data throughput. In diversity mode operation, two copies of the same signal are combined thereby enabling longer range/better cell edge performance.
It will also be recognized that while pre-stored/predetermined efficiency values are described in the exemplary implementation, other types of values may be used consistent with the present disclosure. For example, in one alternate implementation, the efficiency values are dynamically determined as opposed to being previously stored (such as by, e.g., calculation according to an algorithm running on the MCU or another digital processor in the host device, or gate logic such as on an FPGA). In another implementation, other metrics of antenna performance are used. In yet another implementation, two or more metrics (whether predetermined and/or dynamic) are used. Myriad other possibilities will be recognized by those of ordinary skill given the present disclosure.
The switching apparatus 104 is in signal communication with the MCU as well as the baseband/FEM 106 and each of the antenna modules. Accordingly, and in instances where the baseband/FEM includes: a main transceiver; and a separate MIMO transceiver along with four (4) available antenna modules, the switching apparatus will advantageously be a two-pole four-throw (2P4T) switch. In other words, the switching apparatus will be switched in order to couple each of these transceivers (i.e., main and MIMO) to a respective antenna module. The selection of these respective antenna modules will be governed by signaling from the MCU. In alternative implementations such as, for example, higher rank of multiple-in/multiple-out (MIMO) applications, a 4P6T switch may be chosen in order to connect each of four available transceivers to four different antenna modules (where six antenna modules are otherwise available for selection). Other switching implementations are also envisioned and are chosen depending upon: the number of transceivers available for the portable wireless device and the number of available antenna modules.
Moreover, in some embodiments, the baseband/FEM makes adjustments to operating characteristics of the signaling depending upon which antenna modules have been selected by the proximity sensor/MCU. For example, the baseband FEM may make physical antenna-related adjustments (such as phase), and/or higher-layer adjustments (e.g., modulation coding scheme (MCS) adjustments) in order to obtain better utilization of its multi-antenna system. In other words, if antenna module 108a and antenna module 108d have been selected, a given phase adjustment may be made to the signaling provided to and/or received from antenna module 108a and/or antenna module 108d. Moreover, if antenna module 108b and antenna module 108d have been selected, a given phase adjustment (albeit differing from the phase adjustment associated with the selection of antenna module 108a and antenna module 108d) may be made to the signaling provided to and/or received from antenna module 108b and antenna module 108d. Similar phase adjustments may be made to other ones of the antenna module(s) depending upon factors such as antenna module placement, spacing, etc.
Exemplary closed loop antenna switching apparatus implementation examples consistent with the principles of the present disclosure are now described in detail.
Referring now to
The proximity sensor/MCU 202 is coupled with respective ones of the antenna modules via proximity sensing lines 210. The proximity sensor/MCU obtains periodic measurements (e.g., every few milliseconds) from one or more of the antenna modules via sensing lines 210. Alternatively, separate sensing pads (not shown) are located adjacent the antenna modules and periodic measurement are obtained via sensing lines 210. In one exemplary embodiment, the proximity sensing lines are manufactured from coaxial lines each of which includes an inner conductor surrounded by both an insulating layer as well as a conductive shield outer layer. The use of coaxial lines is exemplary in that noise doesn't couple to the signal transmitted along sensing lines. Alternatively, in embodiments which include separate sensing chips disposed adjacent each of the antenna modules, the lines coupled to the MCU don't necessarily need to include coaxial lines as digital signaling can be transmitted from each of these sensing chips to a centrally located MCU.
Additionally, a feedback line 214 is located between the proximity sensor/MCU and the switching apparatus which is utilized by the proximity sensor/MCU to inform the switching apparatus which of the antenna module(s) should be selected for transmission/reception. In one embodiment, this feedback line 214 includes one or more general-purpose input/output (GPIO) lines for the transmission of signaling from the proximity sensor/MCU to the switching apparatus. Alternatively, this feedback line includes one or more mobile industry processor interface (MIPI) compliant lines for the transmission of signaling from the proximity sensor/MCU to the switching apparatus.
Accordingly, in one implementation, a user's hand is detected by proximity sensor/MCU via sensing lines 210 and proximity sensor pads located adjacent antenna modules 208a and 208b. The proximity sensor/MCU will, in an exemplary embodiment, utilize a lookup table indicating that switching apparatus should couple RF lines 216 to respective ones of antenna module 208c and antenna module 208d as each of these antenna modules has been collectively determined to have the best efficiency available for mobile device 200. The switching apparatus will then couple the baseband/FEM 206 to antenna module 208c and antenna module 208d. Moreover, in one exemplary embodiment, proximity sensor/MCU will determine that antenna module 208c has a higher efficiency value associated with it then the efficiency value associated with antenna module 208d. Accordingly, in MIMO implementations, antenna module 208c will be selected as the main antenna for the baseband/FEM while antenna module 208d will be selected as the MIMO antenna for the baseband/FEM. Alternatively, it is also envisioned that the antenna implementation selected (e.g., main and MIMO) may effectively be reversed, such that the MIMO antenna is selected for antenna module 208c, while the main antenna is selected for antenna module 208d. The specific choices made may be predetermined by, for example, the mobile device manufacturer. These illustrated embodiments are merely illustrative of the broader concepts described herein (i.e., they are illustrative of the broader closed loop antenna switching methodologies described herein).
Referring now to
In the illustrated embodiment, the baseband/FEM 306 is coupled to each of the antenna modules 308a, 308b, 308c, 308d via control lines 310. In one embodiment, control lines 310 include one or more general-purpose input/output (GPIO) lines for the transmission of signaling from the baseband/FEM to respective ones of the antenna modules for the purposes of switching and/or tuning respective ones of the antenna modules to a desired frequency band. Alternatively, these control lines include one or more mobile industry processor interface (MIPI) compliant lines for the transmission of signaling from the baseband/FEM to respective ones of the antenna modules.
The operation of the switching/tuning of the antenna modules operates, in one exemplary embodiment, as follows. A user's hand is detected by proximity sensor/MCU via sensing lines and proximity sensors located adjacent antenna modules 308c and 308d. Proximity sensor/MCU will, in an exemplary embodiment, utilize a lookup table to determine which of the available antenna modules are best suited for transmission/reception and signal the switching apparatus accordingly via feedback line 312. In one embodiment, feedback line 312 includes one or more general-purpose input/output (GPIO) lines for the transmission of signaling from the proximity sensor/MCU to the switching apparatus. Alternatively, this feedback line includes one or more mobile industry processor interface (MIPI) compliant lines for the transmission of signaling from the proximity sensor/MCU to the switching apparatus.
The signaling from the proximity sensor/MCU indicates to the switching apparatus that RF lines 314 should be coupled to antenna modules 308a and 308b, as each of these antenna modules have been determined to have the best efficiency values available for mobile device 300. The switching apparatus will then couple the baseband/FEM 306 to antenna modules 308a and 308b. Moreover, in one exemplary embodiment, proximity sensor/MCU will determine that antenna module 308a has a higher efficiency value associated with it then antenna module 308b. Accordingly, in MIMO implementations, antenna module 308a will be selected as the main antenna for the baseband/FEM while antenna module 308b will be selected as the MIMO antenna for the baseband/FEM. Simultaneously, or prior to, the coupling of the RF lines 314 to antenna modules 308a and 308b; baseband/FEM 306 will provide signaling via control lines 310 to antenna modules 308a and 308b, respectively, in order to switch and/or tune these antenna modules 308a and 308b to the appropriate frequency band selected by proximity sensor/MCU 302. Accordingly, antenna modules 308a and 308b are switched/tuned appropriately so that antenna module 308a transmits and/or receives signals in accordance with main antenna operation while antenna module 308b transmits and/or receives signals in accordance with MIMO antenna operation.
Referring now to
In the illustrated embodiment, the baseband/FEM 406 is coupled to proximity sensor/MCU 402 via control line 416. In one embodiment, control line 416 includes one or more general-purpose input/output (GPIO) lines for the transmission of signaling from the baseband/FEM to the proximity sensor/MCU for the purposes of switching and/or tuning respective ones of the antenna modules to a desired frequency band. Alternatively, this control line includes one or more mobile industry processor interface (MIPI) compliant lines for the transmission of signaling from the baseband/FEM to respective ones of the antenna modules.
The operation of the switching/tuning of the antenna modules operates, in one exemplary embodiment, as follows. A user's hand is detected by proximity sensor/MCU via sensing lines and proximity sensors located adjacent antenna modules 408a and 408b. Proximity sensor/MCU will, in an exemplary embodiment, utilize a lookup table to determine which of the available antenna modules are best suited for transmission/reception and signal the switching apparatus accordingly via feedback line 412. In one embodiment, feedback line 412 includes one or more general-purpose input/output (GPIO) lines for the transmission of signaling from the proximity sensor/MCU to the switching apparatus. Alternatively, this feedback line includes one or more mobile industry processor interface (MIPI) compliant lines for the transmission of signaling from the proximity sensor/MCU to the switching apparatus.
The signaling from the proximity sensor/MCU indicates to the switching apparatus that RF lines 414 should be coupled to antenna modules 408c and 408d as each of these antenna modules have been determined to have the best efficiency available for mobile device 400. The switching apparatus will then couple the baseband/FEM 406 to antenna modules 408c and 408d. Moreover, in one exemplary embodiment, proximity sensor/MCU will determine that antenna module 408c has a higher efficiency value associated with it then antenna module 408d. Accordingly, in MIMO implementations, antenna module 408c will be selected as the main antenna for the baseband/FEM while antenna module 408d will be selected as the MIMO antenna for the baseband/FEM. Simultaneously, or prior to, the coupling of the RF lines 414 to antenna modules 408c and 408d; baseband/FEM 406 will provide signaling to proximity sensor/MCU 402 in order for proximity sensor/MCU to switch and/or tune these antenna modules 408c and 408d to the appropriate frequency band via control lines 410. Accordingly, antenna modules 408a and 408b are switched/tuned appropriately so that antenna module 408c transmits and/or receives signals in accordance with main antenna operation while antenna module 408d transmits and/or receives signals in accordance with MIMO antenna operation.
It will be appreciated that while the foregoing exemplary embodiments and examples utilize a single sensing (e.g., capacitance-based passive proximity sensor) and processing (MCU) unit, various of these functions may be divided across two or more similar devices (e.g., left/right and top/bottom proximity sensors, two or more MCUs), and/or performed by other indigenous sensors and/or processing apparatus within the host device. For instance, rather than include a separate MCU for the functions described herein, an extant MCU or digital processor on the host device (e.g., DSP or CPU) can be configured to perform these calculations/operations, such as via software/firmware running thereon and implementing the foregoing logic.
It will be recognized that while certain aspects of the present disclosure are described in terms of specific design examples, these descriptions are only illustrative of the broader methods of the disclosure, and may be modified as required by the particular design. Certain steps may be rendered unnecessary or optional under certain circumstances. Additionally, certain steps or functionality may be added to the disclosed embodiments, or the order of performance of two or more steps permuted. All such variations are considered to be encompassed within the present disclosure described and claimed herein.
While the above detailed description has shown, described, and pointed out novel features of the present disclosure as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the principles of the present disclosure. The foregoing description is of the best mode presently contemplated of carrying out the present disclosure. This description is in no way meant to be limiting, but rather should be taken as illustrative of the general principles of the present disclosure. The scope of the present disclosure should be determined with reference to the claims.
Number | Name | Date | Kind |
---|---|---|---|
2745102 | Norgorden | May 1956 | A |
3938161 | Sanford | Feb 1976 | A |
4004228 | Mullett | Jan 1977 | A |
4028652 | Wakino et al. | Jun 1977 | A |
4031468 | Ziebell et al. | Jun 1977 | A |
4054874 | Oltman | Oct 1977 | A |
4069483 | Kaloi | Jan 1978 | A |
4123756 | Nagata et al. | Oct 1978 | A |
4123758 | Shibano et al. | Oct 1978 | A |
4131893 | Munson et al. | Dec 1978 | A |
4201960 | Skutta et al. | May 1980 | A |
4255729 | Fukasawa et al. | Mar 1981 | A |
4313121 | Campbell et al. | Jan 1982 | A |
4356492 | Kaloi | Oct 1982 | A |
4370657 | Kaloi | Jan 1983 | A |
4423396 | Makimoto et al. | Dec 1983 | A |
4431977 | Sokola et al. | Feb 1984 | A |
4546357 | Laughon et al. | Oct 1985 | A |
4559508 | Nishikawa et al. | Dec 1985 | A |
4625212 | Oda et al. | Nov 1986 | A |
4653889 | Bizouard et al. | Mar 1987 | A |
4661992 | Garay et al. | Apr 1987 | A |
4692726 | Green et al. | Sep 1987 | A |
4703291 | Nishikawa et al. | Oct 1987 | A |
4706050 | Andrews | Nov 1987 | A |
4716391 | Moutrie et al. | Dec 1987 | A |
4740765 | Ishikawa et al. | Apr 1988 | A |
4742562 | Kommrusch | May 1988 | A |
4761624 | Igarashi et al. | Aug 1988 | A |
4800348 | Rosar et al. | Jan 1989 | A |
4800392 | Garay et al. | Jan 1989 | A |
4821006 | Ishikawa et al. | Apr 1989 | A |
4823098 | DeMuro et al. | Apr 1989 | A |
4827266 | Sato et al. | May 1989 | A |
4829274 | Green et al. | May 1989 | A |
4835538 | McKenna et al. | May 1989 | A |
4835541 | Johnson et al. | May 1989 | A |
4862181 | PonceDeLeon et al. | Aug 1989 | A |
4879533 | De Muro et al. | Nov 1989 | A |
4896124 | Schwent | Jan 1990 | A |
4907006 | Nishikawa et al. | Mar 1990 | A |
4954796 | Green et al. | Sep 1990 | A |
4965537 | Kommrusch | Oct 1990 | A |
4977383 | Niiranen | Dec 1990 | A |
4980694 | Hines | Dec 1990 | A |
5016020 | Simpson | May 1991 | A |
5017932 | Ushiyama et al. | May 1991 | A |
5043738 | Shapiro et al. | Aug 1991 | A |
5047739 | Kuokkanen | Sep 1991 | A |
5053786 | Silverman et al. | Oct 1991 | A |
5057847 | Vaeisaenen | Oct 1991 | A |
5061939 | Nakase | Oct 1991 | A |
5097236 | Wakino et al. | Mar 1992 | A |
5103197 | Turunen | Apr 1992 | A |
5109536 | Kommrusch | Apr 1992 | A |
5155493 | Thursby et al. | Oct 1992 | A |
5157363 | Puurunen | Oct 1992 | A |
5159303 | Flink | Oct 1992 | A |
5166697 | Viladevall et al. | Nov 1992 | A |
5170173 | Krenz et al. | Dec 1992 | A |
5203021 | Repplinger et al. | Apr 1993 | A |
5210510 | Karsikas | May 1993 | A |
5210542 | Pett et al. | May 1993 | A |
5220335 | Huang | Jun 1993 | A |
5229777 | Doyle | Jul 1993 | A |
5239279 | Turunen | Aug 1993 | A |
5278528 | Turunen | Jan 1994 | A |
5281326 | Galla | Jan 1994 | A |
5298873 | Ala-Kojola | Mar 1994 | A |
5302924 | Jantunen | Apr 1994 | A |
5304968 | Ohtonen | Apr 1994 | A |
5307036 | Turunen | Apr 1994 | A |
5319328 | Turunen | Jun 1994 | A |
5349315 | Ala-Kojola | Sep 1994 | A |
5349700 | Parker | Sep 1994 | A |
5351023 | Niiranen | Sep 1994 | A |
5354463 | Turunen | Oct 1994 | A |
5355142 | Marshall et al. | Oct 1994 | A |
5357262 | Blaese | Oct 1994 | A |
5363114 | Shoemaker | Nov 1994 | A |
5369782 | Kawano et al. | Nov 1994 | A |
5382959 | Pett et al. | Jan 1995 | A |
5386214 | Sugawara | Jan 1995 | A |
5387886 | Takalo | Feb 1995 | A |
5394162 | Korovesis et al. | Feb 1995 | A |
RE34898 | Turunen | Apr 1995 | E |
5408206 | Turunen | Apr 1995 | A |
5418508 | Puurunen | May 1995 | A |
5432489 | Yrjola | Jul 1995 | A |
5438697 | Fowler et al. | Aug 1995 | A |
5440315 | Wright et al. | Aug 1995 | A |
5442280 | Baudart | Aug 1995 | A |
5442366 | Sanford | Aug 1995 | A |
5444453 | Lalezari | Aug 1995 | A |
5467065 | Turunen | Nov 1995 | A |
5473295 | Turunen | Dec 1995 | A |
5506554 | Ala-Kojola | Apr 1996 | A |
5508668 | Prokkola | Apr 1996 | A |
5510802 | Tsuru et al. | Apr 1996 | A |
5517683 | Collett et al. | May 1996 | A |
5521561 | Yrjola | May 1996 | A |
5526003 | Ogawa et al. | Jun 1996 | A |
5532703 | Stephens et al. | Jul 1996 | A |
5541560 | Turunen | Jul 1996 | A |
5541617 | Connolly et al. | Jul 1996 | A |
5543764 | Turunen | Aug 1996 | A |
5550519 | Korpela | Aug 1996 | A |
5557287 | Pottala et al. | Sep 1996 | A |
5557292 | Nygren et al. | Sep 1996 | A |
5566441 | Marsh et al. | Oct 1996 | A |
5570071 | Ervasti | Oct 1996 | A |
5585771 | Ervasti | Dec 1996 | A |
5585810 | Tsuru et al. | Dec 1996 | A |
5589844 | Belcher et al. | Dec 1996 | A |
5594395 | Niiranen | Jan 1997 | A |
5604471 | Rattila | Feb 1997 | A |
5627502 | Ervasti | May 1997 | A |
5649316 | Prudhomme et al. | Jul 1997 | A |
5668561 | Perrotta et al. | Sep 1997 | A |
5675301 | Nappa | Oct 1997 | A |
5689221 | Niiranen | Nov 1997 | A |
5694135 | Dikun et al. | Dec 1997 | A |
5696517 | Kawahata et al. | Dec 1997 | A |
5703600 | Burrell et al. | Dec 1997 | A |
5709823 | Hayes et al. | Jan 1998 | A |
5711014 | Crowley et al. | Jan 1998 | A |
5717368 | Niiranen | Feb 1998 | A |
5731749 | Yrjola | Mar 1998 | A |
5734305 | Ervasti | Mar 1998 | A |
5734350 | Deming et al. | Mar 1998 | A |
5734351 | Ojantakanen | Mar 1998 | A |
5736965 | Mosebrook et al. | Apr 1998 | A |
5739735 | Pyykko | Apr 1998 | A |
5742259 | Annamaa | Apr 1998 | A |
5757327 | Yajima et al. | May 1998 | A |
5760746 | Kawahata | Jun 1998 | A |
5764190 | Murch et al. | Jun 1998 | A |
5767809 | Chuang et al. | Jun 1998 | A |
5768217 | Sonoda et al. | Jun 1998 | A |
5777581 | Lilly et al. | Jul 1998 | A |
5777585 | Tsuda et al. | Jul 1998 | A |
5793269 | Ervasti | Aug 1998 | A |
5797084 | Tsuru et al. | Aug 1998 | A |
5812094 | Maldonado | Sep 1998 | A |
5815048 | Ala-Kojola | Sep 1998 | A |
5822705 | Lehtola | Oct 1998 | A |
5852421 | Maldonado | Dec 1998 | A |
5861854 | Kawahata et al. | Jan 1999 | A |
5874926 | Tsuru et al. | Feb 1999 | A |
5880697 | McCarrick et al. | Mar 1999 | A |
5886668 | Pedersen et al. | Mar 1999 | A |
5892490 | Asakura et al. | Apr 1999 | A |
5903820 | Hagstrom | May 1999 | A |
5905475 | Annamaa | May 1999 | A |
5920290 | McDonough et al. | Jul 1999 | A |
5926139 | Korisch | Jul 1999 | A |
5929813 | Eggleston | Jul 1999 | A |
5936583 | Tadahiko et al. | Aug 1999 | A |
5943016 | Snyder, Jr. et al. | Aug 1999 | A |
5952975 | Pedersen et al. | Sep 1999 | A |
5959583 | Funk | Sep 1999 | A |
5963180 | Leisten | Oct 1999 | A |
5966097 | Fukasawa et al. | Oct 1999 | A |
5970393 | Khorrami et al. | Oct 1999 | A |
5977710 | Kuramoto et al. | Nov 1999 | A |
5986606 | Kossiavas et al. | Nov 1999 | A |
5986608 | Korisch et al. | Nov 1999 | A |
5990848 | Annamaa | Nov 1999 | A |
5999132 | Kitchener et al. | Dec 1999 | A |
6005529 | Hutchinson | Dec 1999 | A |
6006419 | Vandendolder et al. | Dec 1999 | A |
6008764 | Ollikainen | Dec 1999 | A |
6009311 | Killion et al. | Dec 1999 | A |
6014106 | Annamaa | Jan 2000 | A |
6016130 | Annamaa | Jan 2000 | A |
6023608 | Yrjola | Feb 2000 | A |
6031496 | Kuittinen et al. | Feb 2000 | A |
6034637 | McCoy et al. | Mar 2000 | A |
6037848 | Alila | Mar 2000 | A |
6043780 | Funk et al. | Mar 2000 | A |
6052096 | Tsuru et al. | Apr 2000 | A |
6072434 | Papatheodorou | Jun 2000 | A |
6078231 | Pelkonen | Jun 2000 | A |
6091363 | Komatsu et al. | Jul 2000 | A |
6091365 | Anders et al. | Jul 2000 | A |
6097345 | Walton | Aug 2000 | A |
6100849 | Tsubaki et al. | Aug 2000 | A |
6112108 | Tepper et al. | Aug 2000 | A |
6121931 | Levi et al. | Sep 2000 | A |
6133879 | Grangeat et al. | Oct 2000 | A |
6134421 | Lee et al. | Oct 2000 | A |
6140966 | Pankinaho | Oct 2000 | A |
6140973 | Annamaa | Oct 2000 | A |
6147650 | Kawahata et al. | Nov 2000 | A |
6157819 | Vuokko | Dec 2000 | A |
6177908 | Kawahata | Jan 2001 | B1 |
6185434 | Hagstrom | Feb 2001 | B1 |
6190942 | Wilm et al. | Feb 2001 | B1 |
6195049 | Kim et al. | Feb 2001 | B1 |
6204826 | Rutkowski et al. | Mar 2001 | B1 |
6215376 | Hagstrom | Apr 2001 | B1 |
6218989 | Schneider et al. | Apr 2001 | B1 |
6246368 | Deming et al. | Jun 2001 | B1 |
6252552 | Tarvas et al. | Jun 2001 | B1 |
6252554 | Isohatala | Jun 2001 | B1 |
6255994 | Saito | Jul 2001 | B1 |
6268831 | Sanford | Jul 2001 | B1 |
6281848 | Nagumo et al. | Aug 2001 | B1 |
6259029 | Chen et al. | Sep 2001 | B1 |
6297776 | Pankinaho | Oct 2001 | B1 |
6304220 | Herve et al. | Oct 2001 | B1 |
6308720 | Modi | Oct 2001 | B1 |
6316975 | O'Toole et al. | Nov 2001 | B1 |
6323811 | Tsubaki | Nov 2001 | B1 |
6326921 | Egorov et al. | Dec 2001 | B1 |
6337663 | Chi-Minh | Jan 2002 | B1 |
6340954 | Annamaa et al. | Jan 2002 | B1 |
6342859 | Kurz et al. | Jan 2002 | B1 |
6343208 | Ying | Jan 2002 | B1 |
6346914 | Annamaa | Feb 2002 | B1 |
6348892 | Annamaa | Feb 2002 | B1 |
6353443 | Ying | Feb 2002 | B1 |
6366243 | Isohatala | Apr 2002 | B1 |
6377827 | Rydbeck | Apr 2002 | B1 |
6380905 | Annarnaa | Apr 2002 | B1 |
6396444 | Goward | May 2002 | B1 |
6404394 | Hill | Jun 2002 | B1 |
6417813 | Durham et al. | Jul 2002 | B1 |
6421014 | Sanad | Jul 2002 | B1 |
6423915 | Winter | Jul 2002 | B1 |
6429818 | Johnson et al. | Aug 2002 | B1 |
6452551 | Chen | Sep 2002 | B1 |
6452558 | Saitou et al. | Sep 2002 | B1 |
6456249 | Johnson et al. | Sep 2002 | B1 |
6459413 | Tsang et al. | Oct 2002 | B1 |
6462716 | Kushihi | Oct 2002 | B1 |
6469673 | Kaiponen | Oct 2002 | B2 |
6473056 | Annamaa | Oct 2002 | B2 |
6476767 | Aoyama et al. | Nov 2002 | B2 |
6476769 | Lehtola | Nov 2002 | B1 |
6480155 | Eggleston | Nov 2002 | B1 |
6483462 | Weinberger | Nov 2002 | B2 |
6498586 | Pankinaho | Dec 2002 | B2 |
6501425 | Nagumo | Dec 2002 | B1 |
6515625 | Johnson | Feb 2003 | B1 |
6518925 | Annamaa | Feb 2003 | B1 |
6529168 | Mikkola | Mar 2003 | B2 |
6529749 | Hayes et al. | Mar 2003 | B1 |
6535170 | Sawamura et al. | Mar 2003 | B2 |
6538604 | Isohatala | Mar 2003 | B1 |
6538607 | Barna | Mar 2003 | B2 |
6542050 | Arai et al. | Apr 2003 | B1 |
6549167 | Yoon | Apr 2003 | B1 |
6552686 | Ollikainen et al. | Apr 2003 | B2 |
6556812 | Pennanen et al. | Apr 2003 | B1 |
6566944 | Pehlke | May 2003 | B1 |
6580396 | Lin | Jun 2003 | B2 |
6580397 | Kuriyama et al. | Jun 2003 | B2 |
6600449 | Onaka | Jul 2003 | B2 |
6603430 | Hill et al. | Aug 2003 | B1 |
6606016 | Takamine et al. | Aug 2003 | B2 |
6611235 | Barna et al. | Aug 2003 | B2 |
6614400 | Egorov | Sep 2003 | B2 |
6614401 | Onaka et al. | Sep 2003 | B2 |
6614405 | Mikkoken | Sep 2003 | B1 |
6634564 | Kuramochi | Oct 2003 | B2 |
6636181 | Asano | Oct 2003 | B2 |
6639564 | Johnson | Oct 2003 | B2 |
6646606 | Mikkola | Nov 2003 | B2 |
6650295 | Ollikainen et al. | Nov 2003 | B2 |
6657593 | Nagumo et al. | Dec 2003 | B2 |
6657595 | Phillips et al. | Dec 2003 | B1 |
6670926 | Miyasaka | Dec 2003 | B2 |
6677903 | Wang | Jan 2004 | B2 |
6680705 | Tan et al. | Jan 2004 | B2 |
6683573 | Park | Jan 2004 | B2 |
6693594 | Pankinaho et al. | Feb 2004 | B2 |
6717551 | Desclos et al. | Apr 2004 | B1 |
6727857 | Mikkola | Apr 2004 | B2 |
6734825 | Guo et al. | May 2004 | B1 |
6734826 | Dai et al. | May 2004 | B1 |
6738022 | Varjakka | May 2004 | B2 |
6741214 | Kadambi et al. | May 2004 | B1 |
6753813 | Kushihi | Jun 2004 | B2 |
6759989 | Tarvas et al. | Jul 2004 | B2 |
6765536 | Phillips et al. | Jul 2004 | B2 |
6774853 | Wong et al. | Aug 2004 | B2 |
6781545 | Sung | Aug 2004 | B2 |
6801166 | Mikkola | Oct 2004 | B2 |
6801169 | Chang et al. | Oct 2004 | B1 |
6806835 | Iwai | Oct 2004 | B2 |
6819287 | Sullivan et al. | Nov 2004 | B2 |
6819293 | Antonius Johannes et al. | Nov 2004 | B2 |
6825818 | Toncich | Nov 2004 | B2 |
6836249 | Kenoun et al. | Dec 2004 | B2 |
6847329 | Ikegaya et al. | Jan 2005 | B2 |
6856293 | Bordi | Feb 2005 | B2 |
6862437 | McNamara | Mar 2005 | B1 |
6862441 | Ella | Mar 2005 | B2 |
6873291 | Aoyama | Mar 2005 | B2 |
6876329 | Milosavljevic | Apr 2005 | B2 |
6882317 | Koskiniemi | Apr 2005 | B2 |
6891507 | Kushihi et al. | May 2005 | B2 |
6897810 | Dai et al. | May 2005 | B2 |
6900768 | Iguchi et al. | May 2005 | B2 |
6903692 | Kivekas | Jun 2005 | B2 |
6911945 | Korva | Jun 2005 | B2 |
6922171 | Annamaa | Jul 2005 | B2 |
6925689 | Folkmar | Aug 2005 | B2 |
6927729 | Legay | Aug 2005 | B2 |
6937196 | Korva | Aug 2005 | B2 |
6950065 | Ying et al. | Sep 2005 | B2 |
6950066 | Hendler et al. | Sep 2005 | B2 |
6950068 | Bordi | Sep 2005 | B2 |
6950072 | Miyata et al. | Sep 2005 | B2 |
6952144 | Javor | Oct 2005 | B2 |
6952187 | Annamaa | Oct 2005 | B2 |
6958730 | Nagumo et al. | Oct 2005 | B2 |
6961544 | Hagstrom | Nov 2005 | B1 |
6963308 | Korva | Nov 2005 | B2 |
6963310 | Horita et al. | Nov 2005 | B2 |
6967618 | Ojantakanen | Nov 2005 | B2 |
6975278 | Song et al. | Dec 2005 | B2 |
6980158 | Iguchi et al. | Dec 2005 | B2 |
6985108 | Mikkota | Jan 2006 | B2 |
6992543 | Luetzelschwab et al. | Jan 2006 | B2 |
6995710 | Sugimoto et al. | Feb 2006 | B2 |
7023341 | Stilp | Apr 2006 | B2 |
7031744 | Kojima et al. | Apr 2006 | B2 |
7034752 | Sekiguchi et al. | Apr 2006 | B2 |
7042403 | Colburn et al. | May 2006 | B2 |
7053841 | Ponce De Leon et al. | May 2006 | B2 |
7054671 | Kaiponen et al. | May 2006 | B2 |
7057560 | Erkocevic | Jun 2006 | B2 |
7061430 | Zheng et al. | Jun 2006 | B2 |
7081857 | Kinnunen et al. | Jul 2006 | B2 |
7084831 | Takagi et al. | Aug 2006 | B2 |
7099690 | Milosavljevic | Aug 2006 | B2 |
7113133 | Chen et al. | Sep 2006 | B2 |
7119749 | Miyata et al. | Oct 2006 | B2 |
7126546 | Annamaa | Oct 2006 | B2 |
7129893 | Otaka et al. | Oct 2006 | B2 |
7136019 | Mikkola | Nov 2006 | B2 |
7136020 | Yamaki | Nov 2006 | B2 |
7142824 | Kojima et al. | Nov 2006 | B2 |
7148847 | Yuanzhu | Dec 2006 | B2 |
7148849 | Lin | Dec 2006 | B2 |
7148851 | Takaki et al. | Dec 2006 | B2 |
7170464 | Tang et al. | Jan 2007 | B2 |
7176838 | Kinezos | Feb 2007 | B1 |
7180455 | Oh et al. | Feb 2007 | B2 |
7193574 | Chiang et al. | Mar 2007 | B2 |
7205942 | Wang et al. | Apr 2007 | B2 |
7215283 | Boyle | May 2007 | B2 |
7218280 | Annamaa | May 2007 | B2 |
7218282 | Humpfer et al. | May 2007 | B2 |
7224313 | McKinzie, III et al. | May 2007 | B2 |
7230574 | Johnson | Jun 2007 | B2 |
7233775 | De Graauw | Jun 2007 | B2 |
7237318 | Annamaa | Jul 2007 | B2 |
7256743 | Korva | Aug 2007 | B2 |
7274334 | O'Riordan et al. | Sep 2007 | B2 |
7283097 | Wen et al. | Oct 2007 | B2 |
7289064 | Cheng | Oct 2007 | B2 |
7292200 | Posluszny et al. | Nov 2007 | B2 |
7319432 | Andersson | Jan 2008 | B2 |
7330153 | Rentz | Feb 2008 | B2 |
7333067 | Hung et al. | Feb 2008 | B2 |
7339528 | Wang et al. | Mar 2008 | B2 |
7340286 | Kempele | Mar 2008 | B2 |
7345634 | Ozkar et al. | Mar 2008 | B2 |
7352326 | Korva | Apr 2008 | B2 |
7355270 | Hasebe et al. | Apr 2008 | B2 |
7358902 | Erkocevic | Apr 2008 | B2 |
7375695 | Ishizuka et al. | May 2008 | B2 |
7381774 | Bish et al. | Jun 2008 | B2 |
7382319 | Kaunari | Jun 2008 | B2 |
7385556 | Chung et al. | Jun 2008 | B2 |
7388543 | Vance | Jun 2008 | B2 |
7391378 | Mikkola | Jun 2008 | B2 |
7405702 | Annamaa et al. | Jul 2008 | B2 |
7417588 | Castany et al. | Aug 2008 | B2 |
7418990 | Park | Sep 2008 | B2 |
7423592 | Pros et al. | Sep 2008 | B2 |
7432860 | Huynh | Oct 2008 | B2 |
7439929 | Ozkar | Oct 2008 | B2 |
7443344 | Boyle | Oct 2008 | B2 |
7468700 | Milosavljevic | Dec 2008 | B2 |
7468709 | Niemi | Dec 2008 | B2 |
7501983 | Mikkola | Mar 2009 | B2 |
7502598 | Kronberger | Mar 2009 | B2 |
7564413 | Kim et al. | Jul 2009 | B2 |
7589678 | Nissinen et al. | Sep 2009 | B2 |
7616158 | Mark et al. | Nov 2009 | B2 |
7633449 | Oh | Dec 2009 | B2 |
7663551 | Nissinen | Feb 2010 | B2 |
7679565 | Sorvala | Mar 2010 | B2 |
7692543 | Copeland | Apr 2010 | B2 |
7710325 | Cheng | May 2010 | B2 |
7724204 | Annamaa | May 2010 | B2 |
7760146 | Ollikainen | Jul 2010 | B2 |
7764245 | Loyet | Jul 2010 | B2 |
7786938 | Sorvala | Aug 2010 | B2 |
7800544 | Thornell-Pers | Sep 2010 | B2 |
7830327 | He | Nov 2010 | B2 |
7843397 | Boyle | Nov 2010 | B2 |
7889139 | Hobson et al. | Feb 2011 | B2 |
7889143 | Milosavljevic | Feb 2011 | B2 |
7901617 | Taylor | Mar 2011 | B2 |
7903035 | Mikkola et al. | Mar 2011 | B2 |
7916086 | Koskiniemi et al. | Mar 2011 | B2 |
7963347 | Pabon | Jun 2011 | B2 |
7973720 | Sorvala | Jul 2011 | B2 |
8049670 | Jung et al. | Nov 2011 | B2 |
8054232 | Chiang et al. | Nov 2011 | B2 |
8077032 | Vier et al. | Dec 2011 | B1 |
8098202 | Annamaa et al. | Jan 2012 | B2 |
8179322 | Nissinen | May 2012 | B2 |
8193998 | Puente et al. | Jun 2012 | B2 |
8378892 | Sorvala | Feb 2013 | B2 |
8466756 | Milosavljevic et al. | Jun 2013 | B2 |
8473017 | Milosavljevic et al. | Jun 2013 | B2 |
8564485 | Milosavljevic et al. | Oct 2013 | B2 |
8629813 | Milosavljevic | Jan 2014 | B2 |
9203154 | Korva | Dec 2015 | B2 |
20010050636 | Weinberger | Dec 2001 | A1 |
20020183013 | Auckland et al. | Dec 2002 | A1 |
20020196192 | Nagumo et al. | Dec 2002 | A1 |
20030146873 | Blancho | Aug 2003 | A1 |
20040090378 | Dai et al. | May 2004 | A1 |
20040137950 | Bolin et al. | Jul 2004 | A1 |
20040145525 | Annabi et al. | Jul 2004 | A1 |
20040171403 | Mikkola | Sep 2004 | A1 |
20050055164 | Neff et al. | Mar 2005 | A1 |
20050057401 | Yuanzhu | Mar 2005 | A1 |
20050159131 | Shibagaki et al. | Jul 2005 | A1 |
20050176481 | Jeong | Aug 2005 | A1 |
20060071857 | Pelzer | Apr 2006 | A1 |
20060192723 | Harada | Aug 2006 | A1 |
20070042615 | Liao | Feb 2007 | A1 |
20070082789 | Nissila | Apr 2007 | A1 |
20070152881 | Chan | Jul 2007 | A1 |
20070188388 | Feng | Aug 2007 | A1 |
20080059106 | Wight | Mar 2008 | A1 |
20080088511 | Sorvala | Apr 2008 | A1 |
20080096492 | Yoon | Apr 2008 | A1 |
20080174494 | Suzuki et al. | Jul 2008 | A1 |
20080266199 | Milosavljevic | Oct 2008 | A1 |
20090009415 | Tanska | Jan 2009 | A1 |
20090135066 | Raappana et al. | May 2009 | A1 |
20090153412 | Chiang et al. | Jun 2009 | A1 |
20090174604 | Keskitalo | Jul 2009 | A1 |
20090196160 | Crombach | Aug 2009 | A1 |
20090197654 | Teshima | Aug 2009 | A1 |
20090231213 | Ishimiya | Sep 2009 | A1 |
20100220016 | Nissinen | Sep 2010 | A1 |
20100244978 | Milosavljevic | Sep 2010 | A1 |
20100309092 | Lambacka | Dec 2010 | A1 |
20110045786 | Leinonen | Feb 2011 | A1 |
20110133994 | Korva | Jun 2011 | A1 |
20110279232 | Tuttle | Nov 2011 | A1 |
20120032876 | Tabe | Feb 2012 | A1 |
20120052820 | Lin | Mar 2012 | A1 |
20120057388 | Garrity | Mar 2012 | A1 |
20120062424 | Hwang | Mar 2012 | A1 |
20120093046 | Tikka | Apr 2012 | A1 |
20120098588 | Ujvari | Apr 2012 | A1 |
20120119955 | Milosavljevic et al. | May 2012 | A1 |
20120329407 | Rousu | Dec 2012 | A1 |
20130109370 | Rowson | May 2013 | A1 |
20130127670 | Desclos | May 2013 | A1 |
20130137487 | Sato | May 2013 | A1 |
20130241780 | Amm | Sep 2013 | A1 |
20140071008 | Desclos et al. | Mar 2014 | A1 |
20140087673 | Mostov | Mar 2014 | A1 |
20140106684 | Burns | Apr 2014 | A1 |
20140162574 | Rousu | Jun 2014 | A1 |
20140192845 | Szini | Jul 2014 | A1 |
20140307354 | Watanabe | Oct 2014 | A1 |
20140333494 | Huang et al. | Nov 2014 | A1 |
20140362038 | Murakami et al. | Dec 2014 | A1 |
20150022403 | Lin | Jan 2015 | A1 |
20150091762 | Hsiao | Apr 2015 | A1 |
20150200447 | Tang et al. | Jul 2015 | A1 |
20160173172 | Greene | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
1316797 | Oct 2007 | CN |
101958455 | Jan 2011 | CN |
10104862 | Aug 2002 | DE |
10150149 | Apr 2003 | DE |
0 208 424 | Jan 1987 | EP |
0 376 643 | Apr 1990 | EP |
0 751 043 | Apr 1997 | EP |
0 807 988 | Nov 1997 | EP |
0 831 547 | Mar 1998 | EP |
0 851 530 | Jul 1998 | EP |
1 294 048 | Jan 1999 | EP |
1 014 487 | Jun 2000 | EP |
1 024 553 | Aug 2000 | EP |
1 067 627 | Jan 2001 | EP |
0 923 158 | Sep 2002 | EP |
1 329 980 | Jul 2003 | EP |
1 361 623 | Nov 2003 | EP |
1 406 345 | Apr 2004 | EP |
1 453 137 | Sep 2004 | EP |
1 220 456 | Oct 2004 | EP |
1 467 456 | Oct 2004 | EP |
1 753 079 | Feb 2007 | EP |
20020829 | Nov 2003 | FI |
1118782 | Mar 2008 | FI |
2553584 | Oct 1983 | FR |
2724274 | Mar 1996 | FR |
2873247 | Jan 2006 | FR |
2266997 | Nov 1993 | GB |
2360422 | Sep 2001 | GB |
2389246 | Dec 2003 | GB |
59-202831 | Nov 1984 | JP |
60-206304 | Oct 1985 | JP |
61-245704 | Nov 1986 | JP |
06-152463 | May 1994 | JP |
07-131234 | May 1995 | JP |
07-221536 | Aug 1995 | JP |
07-249923 | Sep 1995 | JP |
07-307612 | Nov 1995 | JP |
08-216571 | Aug 1996 | JP |
09-083242 | Mar 1997 | JP |
09-260934 | Oct 1997 | JP |
09-307344 | Nov 1997 | JP |
10-028013 | Jan 1998 | JP |
10-107671 | Apr 1998 | JP |
10-173423 | Jun 1998 | JP |
10-209733 | Aug 1998 | JP |
10-224142 | Aug 1998 | JP |
10-322124 | Dec 1998 | JP |
10-327011 | Dec 1998 | JP |
11-004113 | Jan 1999 | JP |
11-004117 | Jan 1999 | JP |
11-068456 | Mar 1999 | JP |
11-127010 | May 1999 | JP |
11-127014 | May 1999 | JP |
11-136025 | May 1999 | JP |
11-355033 | Dec 1999 | JP |
2000-278028 | Oct 2000 | JP |
2001-053543 | Feb 2001 | JP |
2001-267833 | Sep 2001 | JP |
2001-217631 | Oct 2001 | JP |
2001-326513 | Nov 2001 | JP |
2002-319811 | Oct 2002 | JP |
2002-329541 | Nov 2002 | JP |
2002-335117 | Nov 2002 | JP |
2003-060417 | Feb 2003 | JP |
2003-124730 | Apr 2003 | JP |
2003-179426 | Jun 2003 | JP |
2004-112028 | Apr 2004 | JP |
2004-363859 | Dec 2004 | JP |
2005-005985 | Jan 2005 | JP |
2005-252661 | Sep 2005 | JP |
20010080521 | Oct 2001 | KR |
20020096016 | Dec 2002 | KR |
20130133853 | Dec 2013 | KR |
511900 | Dec 1999 | SE |
M460421 | Aug 2013 | TW |
M484801 | Aug 2014 | TW |
WO 1992000635 | Jan 1992 | WO |
WO 1996027219 | Sep 1996 | WO |
WO 1998001919 | Jan 1998 | WO |
WO 1999030479 | Jun 1999 | WO |
WO 2001020718 | Mar 2001 | WO |
WO 2001029927 | Apr 2001 | WO |
WO 2001033665 | May 2001 | WO |
WO 2001061781 | Aug 2001 | WO |
WO 2004017462 | Feb 2004 | WO |
WO 2004057697 | Jul 2004 | WO |
WO 2004100313 | Nov 2004 | WO |
WO 2004112189 | Dec 2004 | WO |
WO 2005062416 | Jul 2005 | WO |
WO 2007012697 | Feb 2007 | WO |
WO 2010122220 | Oct 2010 | WO |
Entry |
---|
“An Adaptive Microstrip Patch Antenna for Use in Portable Transceivers”, Rostbakken et al., Vehicular Technology Conference, 1996, Mobile Technology for the Human Race, pp. 339-343. |
“Dual Band Antenna for Hand Held Portable Telephones”, Liu et al., Electronics Letters, vol. 32, No. 7, 1996, pp. 609-610. |
“Improved Bandwidth of Microstrip Antennas using Parasitic Elements,” IEE Proc. vol. 127, Pt. H. No. 4, Aug. 1980. |
“A 13.56MHz RFID Device and Software for Mobile Systems”, by H. Ryoson, et al., Micro Systems Network Co., 2004 IEEE, pp. 241-244. |
“A Novel Approach of a Planar Multi-Band Hybrid Series Feed Network for Use in Antenna Systems Operating at Millimeter Wave Frequencies,” by M.W. Elsallal and B.L. Hauck, Rockwell Collins, Inc., 2003 pp. 15-24, waelsall@rockwellcollins.com and blhauck@rockwellcollins.com. |
Abedin, M. F. and M. Ali, “Modifying the ground plane and its effect on planar inverted-F antennas (PIFAs) for mobile handsets,” IEEE Antennas and Wireless Propagation Letters, vol. 2, 226-229, 2003. |
C. R. Rowell and R. D. Murch, “A compact PIFA suitable for dual frequency 900/1800-MHz operation,” IEEE Trans. Antennas Propag., vol. 46, No. 4, pp. 596-598, Apr. 1998. |
Cheng-Nan Hu, Willey Chen, and Book Tai, “A Compact Multi-Band Antenna Design for Mobile Handsets”, APMC 2005 Proceedings. |
Endo, T., Y. Sunahara, S. Satoh and T. Katagi, “Resonant Frequency and Radiation Efficiency of Meander Line Antennas,” Electronics and Commu-nications in Japan, Part 2, vol. 83, No. 1, 52-58, 2000. |
European Office Action, dated May 30, 2005 issued during prosecution of EP 04 396 001.2-1248. |
Examination Report dated May 3, 2006 issued by the EPO for European Patent Application No. 04 396 079.8. |
F.R. Hsiao, et al. “A dual-band planar inverted-F patch antenna with a branch-line slit,” Microwave Opt. Technol. Lett., vol. 32, Feb. 20, 2002. |
Griffin, Donald W. et al., “Electromagnetic Design Aspects of Packages for Monolithic Microwave Integrated Circuit-Based Arrays with Integrated Antenna Elements”, IEEE Transactions on Antennas and Propagation, vol. 43, No. 9, pp. 927-931, Sep. 1995. |
Guo, Y. X. and H. S. Tan, “New compact six-band internal antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 3, 295-297, 2004. |
Guo, Y. X. and Y.W. Chia and Z. N. Chen, “Miniature built-in quadband antennas for mobile handsets”, IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 30-32, 2004. |
Hoon Park, et al. “Design of an Internal antenna with wide and multiband characteristics for a mobile handset”, IEEE Microw. & Opt. Tech. Lett. vol. 48, No. 5, May 2006. |
Hoon Park, et al. “Design of Planar Inverted-F Antenna With Very Wide Impedance Bandwidth”, IEEE Microw. & Wireless Comp., Lett., vol. 16, No. 3, pp. 113-115, Mar. 2006. |
Hossa, R., A. Byndas, and M. E. Bialkowski, “Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane,” IEEE Microwave and Wireless Components Letters, vol. 14, 283-285, 2004. |
I. Ang, Y. X. Guo, and Y. W. Chia, “Compact internal quad-band antenna for mobile phones” Micro. Opt. Technol. Lett., vol. 38, No. 3 pp. 217-223 Aug. 2003. |
International Preliminary Report on Patentability for International Application No. PCT/FI2004/000554, dated May 1, 2006. |
Jing, X., et al.; “Compact Planar Monopole Antenna for Multi-Band Mobile Phones”; Microwave Conference Proceedings, Dec. 4-7, 2005.APMC 2005, Asia-Pacific Conference Proceedings, vol. 4. |
Kim, B. C., J. H. Yun, and H. D. Choi, “Small wideband PIFA for mobile phones at 1800 MHz,” IEEE International Conference on Vehicular Technology, 27{29, Daejeon, South Korea, May 2004. |
Kim, Kihong et al., “Integrated Dipole Antennas on Silicon Substrates for Intra-Chip Communication”, IEEE, pp. 1582-1585, 1999. |
Kivekas., O., J. Ollikainen, T. Lehtiniemi, and P. Vainikainen, “Bandwidth, SAR, and eciency of internal mobile phone antennas,” IEEE Transactions on Electromagnetic Compatibility, vol. 46, 71{86, 2004. |
K-L Wong, Planar Antennas for Wireless Communications, Hoboken, NJ: Willey, 2003, ch. 2. |
Lindberg., P. and E. Ojefors, “A bandwidth enhancement technique for mobile handset antennas using wavetraps,” IEEE Transactions on Antennas and Propagation, vol. 54, 2226{2232, 2006. |
Marta Martinez-Vazquez, et al., “Integrated Planar Multiband Antennas for Personal Communication Handsets”, IEEE Trasactions on Antennas and propagation, vol. 54, No. 2, Feb. 2006. |
P. Ciais, et al., “Compact Internal Multiband Antennas for Mobile and WLAN Standards”, Electronic Letters, vol. 40, No. 15, pp. 920-921, Jul. 2004. |
P. Ciais, R. Staraj, G. Kossiavas, and C. Luxey, “Design of an internal quadband antenna for mobile phones”, IEEE Microwave Wireless Comp. Lett., vol. 14, No. 4, pp. 148-150, Apr. 2004. |
P. Salonen, et al. “New slot configurations for dual-band planar inverted-F antenna,” Microwave Opt. Technol., vol. 28, pp. 293-298, 2001. |
Papapolymerou, Ioannis et al., “Micromachined Patch Antennas”, IEEE Transactions on Antennas and Propagation, vol. 46, No. 2, pp. 275-283, Feb. 1998. |
Product of the Month, RFDesign, “GSM/GPRS Quad Band Power AMP Includes Antenna Switch,” 1 page, reprinted Nov. 2004 issue of RF Design (www.rfdesign.com), Copyright 2004, Freescale Semiconductor, RFD-24-EK. |
S. Tarvas, et al. “An internal dual-band mobile phone antenna,” in 2000 IEEE Antennas Propagat. Soc. Int. Symp. Dig., pp. 266-269, Salt Lake City, UT, USA. |
Wang, F., Z. Du, Q. Wang, and K. Gong, “Enhanced-bandwidth PIFA with T-shaped ground plane,” Electronics Letters, vol. 40, 1504-1505, 2004. |
Wang, H.; “Dual-Resonance Monopole Antenna with Tuning Stubs”; IEEE Proceedings, Microwaves, Antennas & Propagation, vol. 153, No. 4, Aug. 2006; pp. 395-399. |
Wong, K., et al.; “A Low-Profile Planar Monopole Antenna for Multiband Operation of Mobile Handsets”; IEEE Transactions on Antennas and Propagation, Jan. 2003, vol. 51, No. 1. |
X.-D. Cai and J.-Y. Li, Analysis of asymmetric TEM cell and its optimum design of electric field distribution, IEE Proc 136 (1989), 191-194. |
X.-Q. Yang and K.-M. Huang, Study on the key problems of interaction between microwave and chemical reaction, Chin Jof Radio Sci 21 (2006), 802-809. |
Chiu, C.-W., et al., “A Meandered Loop Antenna for LTE/WWAN Operations in a Smartphone,” Progress In Electromagnetics Research C, vol. 16, pp. 147-160, 2010. |
Lin, Sheng-Yu; Liu, Hsien-Wen; Weng, Chung-Hsun; and Yang, Chang-Fa, “A miniature Coupled loop Antenna to be Embedded in a Mobile Phone for Penta-band Applications,” Progress in Electromagnetics Research Symposium Proceedings, Xi'an, China, Mar. 22-26, 2010, pp. 721-724. |
Zhang, Y.Q., et al. “Band-Notched UWB Crossed Semi-Ring Monopole Antenna,” Progress in Electronics Research C, vol. 19, 107-118, 2011, pp. 107-118. |
Joshi, Ravi K., et al., “Broadband Concentric Rings Fractal Slot Antenna”, XXVIIIth General Assembly of International Union of Radio Science (URSI). (Oct. 23-29, 2005), 4 Pgs. |
Singh, Rajender, “Broadband Planar Monopole Antennas,” M.Tech credit seminar report, Electronic Systems group, EE Dept, IIT Bombay, Nov. 2003, pp. 1-24. |
Gobien, Andrew, T. “Investigation of Low Profile Antenna Designs for Use in Hand-Held Radios,” Ch.3, The Inverted-L Antenna and Variations; Aug. 1997, pp. 42-76. |
See, C.H., et al., “Design of Planar Metal-Plate Monopole Antenna for Third Generation Mobile Handsets,” Telecommunications Research Centre, Bradford University, 2005, pp. 27-30. |
Chen, Jin-Sen, et al., “CPW-fed Ring Slot Antenna with Small Ground Plane,” Department of Electronic Engineering, Cheng Shiu University. |
“LTE—an introduction,” Ericsson White Paper, Jun. 2009, pp. 1-16. |
“Spectrum Analysis for Future LTE Deployments,” Motorola White Paper, 2007, pp. 1-8. |
Chi, Yun-Wen, et al. “Quarter-Wavelength Printed Loop Antenna With an Internal Printed Matching Circuit for GSM/DCS/PCS/UMTS Operation in the Mobile Phone,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 9m Sep. 2009, pp. 2541-2547. |
Wong, Kin-Lu, et al. “Planar Antennas for WLAN Applications,” Dept. of Electrical Engineering, National Sun Yat-Sen University, Sep. 2002 Ansoft Workshop, pp. 1-45. |
“λ/4 printed monopole antenna for 2.45GHz,” Nordic Semiconductor, White Paper, 2005, pp. 1-6. |
White, Carson, R., “Single- and Dual-Polarized Slot and Patch Antennas with Wide Tuning Ranges,” The University of Michigan, 2008. |
Extended European Search Report dated Jan. 30, 2013, issued by the EPO for EP Patent Application No. 12177740.3. |
Number | Date | Country | |
---|---|---|---|
20170033830 A1 | Feb 2017 | US |