Sensor-based power controls for a welding system

Information

  • Patent Grant
  • 12145226
  • Patent Number
    12,145,226
  • Date Filed
    Thursday, February 7, 2019
    5 years ago
  • Date Issued
    Tuesday, November 19, 2024
    7 days ago
Abstract
A welding system includes a torch motion sensing system associated with a welding torch and is configured to sense welding torch orientations or movements. The welding system also includes a processing system that is configured to vary operation of a power source based on the sensed orientations or movements.
Description
BACKGROUND

The invention relates generally to welding systems, and, more particularly, to sensing systems for controlling power supplies or accessories of a welding system using motion sensors.


Welding is a process that has become ubiquitous in various industries for a variety of types of applications. For example, welding is often performed in applications such as shipbuilding, aircraft repair, construction, and so forth. The welding systems often include power sources that may generate power for consumption during the welding process. However, these power sources may generate power even when unneeded due to inactivity of the welding torch. Furthermore, if the power sources are inactive or producing reduced power until a demand event (e.g., a trigger is pressed), there may be a period of time during which power is desired but unavailable.


BRIEF DESCRIPTION

In a first embodiment, a welding system includes a power source and a torch motion sensing system associated with a welding torch and configured to sense welding torch orientations or movements. The welding system also includes a processing system communicatively coupled to the torch motion sensing system. The processing system is configured to determine movement of the welding torch prior to a welding demand from the welding torch, and to send an indication to the power source to provide power at a generation level sufficient to operate the welding torch.


In another embodiment, a method includes sensing an initial orientation of a welding torch, via a torch motion sensing system and sensing subsequent orientations of the welding torch, via the torch motion sensing system. The method also includes activating a power source associated with the welding torch if the power source is turned off and the subsequent orientations differ from the initial orientation. Furthermore, the method includes activating a higher power state for the power source if the power source is in a low-power state and the subsequent orientations differ from the initial orientation.


In a further embodiment, a retro-fit kit configured to couple to a welding torch includes a torch motion sensing system configured to determine orientations or movements of the welding torch. Furthermore, the retro-fit kit includes a processor configured to send instructions to a power supply for the welding torch to provide power in response to movements of the welding torch or changes in orientations of the welding torch.





DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:



FIG. 1 is a block diagram of an embodiment of a welding system utilizing a power supply and a welding torch with motion sensors;



FIG. 2 is a flowchart of an embodiment of a power control process that may be used by the welding system of FIG. 1;



FIG. 3 is a flowchart of an embodiment of a power control process that may be used by the welding system of FIG. 1;



FIG. 4 is a block diagram of an embodiment of the power supply and welding torch of FIG. 1;



FIG. 5 is a flowchart of an embodiment of a gesture control process that may be used to control the welding system of FIG. 1; and



FIG. 6 is a perspective view of an embodiment of a welding torch 100 that may be used in the welding system of FIG. 1.





DETAILED DESCRIPTION

As will be described in detail below, provided herein are systems and methods for using motion (e.g., inertial) sensors in a welding torch to determine likelihood of power demand prior to actual demand to reduce delays in power availability and/or waste of generated power. By determining that a welding torch is being moved, the welding system may determine demand is likely imminent and that a higher level power generation state should be initiated even before explicit requests (e.g., pressing a trigger on the torch). The generation of power when the welding torch determines that the demand is likely imminent allows a power source to ramp up power earlier, thereby reducing or eliminating a deficit in power available at the time of initial demand.


Turning now to the figures, FIG. 1 is a block diagram of an embodiment of a welding system 10 in accordance with the present techniques. The welding system 10 is designed to produce a welding arc 12 with a workpiece 14 (e.g., pipe). The welding arc 12 may be generated by any type of welding system or process, and may be oriented in any desired manner. For example, such welding systems may include gas metal arc welding (GMAW) systems, and may utilize various programmed waveforms and settings. The welding system 10 includes a power supply 16 (e.g., engine-driven generator in some embodiments) that will typically be coupled to a power source 18, such as a power grid, an engine, or a combination thereof (e.g., hybrid power). Other power sources may, of course, be utilized including generators and so forth. In the illustrated embodiment, a wire feeder 20 is coupled to a gas source 22 and the power source 18, and supplies welding wire 24 to a welding torch 26. The welding torch 26 is configured to generate the welding arc 12 between the welding torch 26 and the workpiece 14. The welding wire 24 is fed through the welding torch 26 to the welding arc 12, melted by the welding arc 12, and deposited on the workpiece 14.


The wire feeder 20 will typically include wire feeder control circuitry 28, which regulates the feed of the welding wire 24 from a spool 29 and commands the output of the power supply 16, among other things. Similarly, the power supply 16 may include power supply control circuitry 30 for controlling certain welding parameters and arc-starting parameters. In certain embodiments, the wire feeder control circuitry 28 or the power supply control circuitry 30 may be include software, hardware, or a combination thereof. For example, in certain embodiments, the wire feeder control circuitry 28 and/or the power supply control circuitry 30 may include a processor and memory configured to store instructions to be executed by the processor. In some embodiments, the wire feeder control circuitry 28 may communicate with the power supply control circuitry 30 through a weld cable 31 that is also used to provide power to the wire feeder 20. The spool 29 of the wire feeder 20 will contain a length of welding wire 24 that is consumed during the welding operation. The welding wire 24 is advanced by a wire drive assembly 32, typically through the use of an electric motor under control of the control circuitry 28. In addition, the workpiece 14 is coupled to the power supply 16 by a clamp 34 connected to a work cable 36 to complete an electrical circuit when the welding arc 12 is established between the welding torch 26 and the workpiece 14.


Placement of the welding torch 26 at a location proximate to the workpiece 14 allows electrical current, which is provided by the power supply 16 and routed to the welding torch 26, to arc from the welding torch 26 to the workpiece 14. As described above, this arcing completes an electrical circuit that includes the power supply 16, the welding torch 26, the workpiece 14, and the work cable 36. Particularly, in operation, electrical current passes from the power supply 16, to the welding torch 26, to the workpiece 14, which is typically connected back to the power supply 16 via the work cable 36. The arc generates a relatively large amount of heat that causes part of the workpiece 14 and the filler metal of the welding wire 24 to transition to a molten state that fuses the materials, forming the weld.


In certain embodiments, to shield the weld area from being oxidized or contaminated during welding, to enhance arc performance, and to improve the resulting weld, the welding system 10 may also feed an inert shielding gas to the welding torch 26 from the gas source 22. It is worth noting, however, that a variety of shielding materials for protecting the weld location may be employed in addition to, or in place of, the inert shielding gas, including active gases and particulate solids. Moreover, in other welding processes, such gases may not be used, while the techniques disclosed herein are equally applicable.


Although FIG. 1 illustrates a GMAW system, the presently disclosed techniques may be similarly applied across other types of welding systems, including gas tungsten arc welding (GTAW) systems and shielded metal arc welding (SMAW) systems, among others. Accordingly, embodiments of the sensor-based power supply controls may be utilized with welding systems that include the wire feeder 20 and gas source 22 or with systems that do not include a wire feeder 20 and/or a gas source 22 (e.g., embodiments where the welding torch 26 is directly coupled to the power supply 16), depending on implementation-specific considerations.


Presently disclosed embodiments are directed to sensor-based control of the power supply 16. In some embodiments, the wire feeder control circuitry 28 and/or the power supply control circuitry 30 may control the power supply 16 based on inertial data derived using at least an accelerometer 38, gyroscope sensor 40, and/or magnetometer 41 (collectively referred to as the sensors) located in, on, or associated with the welding torch 26. For example, in some embodiments, the sensors may be located in a retro-fit kit that may be mounted to the welding torch 26. Moreover, in some embodiments, the circuitry 30 may individually control the welding power supplied by the power supply 16 based at least in part on the sensor feedback. In certain embodiments, the circuitry 28 may individually adjust wire feed speed based at least in part on the sensor feedback. In other embodiments, and either of circuitries (28 or 30) may perform their control and send a control signal to the other so that the other can perform their control in yet other embodiments.


In certain embodiments, the accelerometer 38 may include a single triaxial accelerometer capable of measuring dynamic motion, such as weld weaving. In other embodiments, the accelerometer 38 may include one or more orientation sensors (e.g., accelerometers) to determine a change of welding torch 26 orientation in one or more dimensions. For example, a two-dimensional position may be calculated with respect to a plane parallel to a direction of gravity based on two accelerometers. Using the accelerometer 38, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may determine that the welding torch 26 is in an active state (e.g., upright position) or an inactive state. For example, the welding torch 26 may be deemed inactive when remaining substantially motionless for a period of time in a position indicating idleness, such as lying on its side, upside down, or lying with the welding torch 26 facing downward.


In some embodiments, the gyroscope sensor 40 may include one or more gyroscope sensors, such as a single triaxial gyroscope sensor. The power supply control circuitry 30 and/or the wire feeder control circuitry 28 may use the gyroscope sensor 40 to supplement data from the accelerometer 38 to measure low value movements, such as oscillatory motions used in certain welding processes (e.g., TIG).


In certain embodiments, the magnetometer 41 may include one or more gyroscope sensors, such as a single triaxial magnetometer. The power supply control circuitry 30 and/or the wire feeder control circuitry 28 may use the magnetometer 41 to determine changes in magnetic fields such as movement of the welding torch 26 or other objects in the weld area.


Using data from one or more of the sensors, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may control the power supply 16 to ensure that sufficient power is produced when an operator begins to use the welding torch 26. In certain embodiments, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may control the power supply 16 by implementing a power control process 50, as illustrated in FIG. 2. In some embodiments, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may implement the process 50 via instructions stored in a non-transitory, computer-readable medium (e.g., memory) and executed by a processor. The power supply control circuitry 30 and/or the wire feeder control circuitry 28 receive data indicative of activity (block 52). In some embodiments, the data indicative of activity may be received from the welding torch 26 as data indicating that the torch 26 has moved or that some other object (e.g., via magnetometer 41) has moved within the weld area. As will be discussed below, the data may be transmitted to the power supply control circuitry 30 and/or the wire feeder control circuitry 28 via a transmitter located within the torch 26.


Upon receipt of these indicia of activity, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 determines that the torch 26 is likely to be used (e.g., that a depression of a trigger of the torch 26, to initiate a welding arc, may be imminent). Accordingly, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 determine whether power should be increased by determining whether the power source is active and producing sufficient power (block 54). For example, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 determines whether an engine is producing sufficient energy or whether AC line power is sufficient for welding. Since the power supply 16 may be beyond vision or hearing of the operator, in some embodiments, if the power supply 16 is active and producing desired energy, the welding system 10 may indicate that sufficient power is available (block 56). As discussed below, available power may be indicated via haptic, visual, or audio feedback through the welding torch 26, a welding helmet, or external feedback device to an operator indicating that the welding system 10 is ready to provide a desired level of power. However, if the power supply 16 is not active or not ready to provide a desired power level (e.g., the power supply 16 is idling), the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may cause the power supply 16 to turn on or increase power consumption (block 58) from input line power, or power production from engine. Once sufficient power consumption is achieved, available power may be indicated to the operator via haptic, visual, or audio feedback.


Moreover, in some situations, it may be desirable to reduce power during periods of inactivity. For example, if the power supply 16 includes an engine, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may enable the engine to idle or shutoff when receiving indicia of inactivity, thereby reducing power production based on a sensed lack of demand. One typical form of idle state is disconnecting the input power to the main power converter for output but allows control power connected for communications to the motion sensors and reconnect the main power. One typical power consumption of the main power converter is the magnetizing current of the main transformer. By eliminating power consumption of the main transformer, less power is wasted while the welding torch 26 is inactive. Furthermore, when the power supply 16 includes an engine, the engine can be completely shut off when the welding or gouging tool is not in use. The power supply controls can be powered by battery to communicate with the motion sensors and start the engine as the operator picks up the torch ready for welding. An alternative is to run the engine at low speed for controls only but not sufficient to provide welding power but increase to high speed when the torch is picked up or moved by operator after periods of no movement. Often for stick welding, it needs an initial high power for the first few hundreds of milliseconds for arc ignition so the motion sensor can trigger the engine to go to high speed for arc start, then ramp down to lower speed for the remainder of the weld. Moreover, increased energy consumption using an engine may involve increased fuel consumption, engine wear, and noise production, thereby reducing energy consumption may reduce fuel consumption, engine wear, noise production, and so forth.


It is also possible to tag different motion sensors with power levels for specific tools. For example, for arc gouging uses much higher power than arc welding. It is possible to that the movement of gouging tool will trigger a higher engine speed sufficient for gouging, and the movement of the welding tool will trigger a lower engine speed sufficient for welding when the engine is waken from sleeping state (shut off).


Accordingly, FIG. 3 illustrates a power control process 60 that may be implemented by the power supply control circuitry 30 and/or the wire feeder control circuitry 28. The power supply control circuitry 30 and/or the wire feeder control circuitry 28 may receive an indication of inactivity (block 62). For example, if the power supply control circuitry 30 and/or the wire feeder control circuitry 28 determines that the welding torch 26 has remained substantially motionless or in a position indicating idleness, such as laying on its side, upside down, or laying with the welding torch 26 facing downward, for a given period of time. If the power supply 16 is active or producing power (block 64), the power supply control circuitry 30 and/or the wire feeder control circuitry 28 determines if a power reduction duration has elapsed (block 66). In other words, in some embodiments, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may allow some amount of idleness (e.g., less than a minute) without controlling power production. In some embodiments, more than one duration may be used. For example, in some embodiments, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may cause an engine to idle after a first threshold (e.g., 5 minutes) of inactivity is surpassed and to turn off when a second threshold (e.g., 10 minutes) is surpassed.


Upon determination that the welding torch 26 is inactive for some period and the power supply 16 is producing unused power, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 reduces power production (block 68). Otherwise, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 do not adjust power production. As discussed above, in some embodiments, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may reduce power in one or more steps. For example, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may reduce a power production level at various intervals of inactivity and shut off power production after another duration of inactivity.



FIG. 4 illustrates a block diagram view of an embodiment of a power supply 16 and welding torch 26 that may be used to implement the power control processes 50 and 60 discussed above. The welding torch 26 may include at least one of the magnetometer 41, the accelerometer 38, and the gyroscope 40. In some embodiments having one or more of the sensors, a data fusion unit 70 may receive the measurements from the magnetometer 41, the accelerometer 38, and the gyroscope 40 and may fuse the data for transmission via a transmitter 72. For example, a magnetometer 41 may detect changes in a magnetic field while the accelerometer 38 detects movement. The data fusion unit 70 may fuse the data by using data from both sensors to an accurate model of welding torch movement. In some embodiments, the data fusion unit 70 may fuse data from sensors external to the welding torch 26 (e.g., a light sensor in the weld area) with the internal sensors. In other embodiments, only one of the sensors may be relied upon at a time without fusing the data or having a data fusion unit 70. In some embodiments, the data from the sensors may be transmitted by the transmitter 72 without first being fused such that the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may receive the data separately and analyze the information. In some embodiments, the data fusion unit 70 may include hardware, software, or some combination thereof (e.g., processor and memory storing instructions).


The transmitter 72 used to transmit information from the welding torch 26 to the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may include wired or wireless connections. For example, in the illustrated embodiment, the transmitter 72 transmits sensor data to a receiver 74 of the power supply control circuitry 30 using the weld cable 31 that is used to power the welding torch 26. In certain embodiments, the wire feeder 20 may also include a transmitter, a receiver, or a transceiver. In some embodiments, the transmitter 72 may transmit sensor data to the receiver 74 using a data line separate from the weld cable 31. In some embodiments, the transmitter 72 and the receiver 74 may include wireless communication radios configured to transmit and receive data wirelessly. For example, in some embodiments, the transmitter 72 and the receiver 74 may include transceivers configured to communicate via 802.11 (WiFi), 802.15.4, ZigBee®, 802.15.1, Bluetooth, Cellular Machine to Machine (M2M) technologies.


In some embodiments, the welding torch 26 includes a torch power storage 76 (e.g., chemical batteries or capacitors) that may be used to provide power for operating the sensors, the data fusion unit 70, and/or the transmitter 72. In some embodiments, the sensors, the data fusion unit 70, and/or the transmitter 72 may be at least partially powered by the power supply 16 when the power supply 16 is producing power. However, in certain embodiments, the welding torch 26 may also include an energy harvester 78 that may be used to replenish the torch power storage 76 during operation of the welding torch 26. The energy harvester 78 scavenges power (e.g., electricity, heat, magnetic fields, etc.) from the immediate environment to power the sensors. For example, an inductive unit of the energy harvester 78 may extract a small amount of energy from the fluctuating current in the weld cable 31 to charge the torch power storage 76.


In some embodiments, a feedback unit 80 may be used to alert the operator that a level of power is being produced to enable the operator to determine whether sufficient power is available for using the welding torch 26. In some embodiments, the feedback unit 80 may include one or more LEDs, one or more sound emitting units (e.g., speakers), one or more haptic feedback units, dials, meters, other units suitable for indicating power availability, or some combination thereof. The present embodiment illustrates the feedback unit 80 as part of the welding torch 26. In some embodiments, the feedback unit 80 may be located within a welding helmet, separate from the operator in the weld area, on the welding torch 26, or some combination thereof.


In some embodiments, the sensors may be used to determine more than presence of motion. In some embodiments, the sensors may be used to determine various gestures to a change in weld process. For example, FIG. 5 illustrates a flow chart of a gesture control process 90 that may be used to control the welding system 10. The welding system 10 receives a recognized gesture (block 92). In some embodiments, various gestures may be preprogrammed the power supply control circuitry 30 and/or the wire feeder control circuitry 28 or later learned using the welding torch 26. For example, the gestures may include a horizontal swipe (e.g., left or right), a vertical swipe (e.g., up or down), a circular motion (e.g., clockwise or counterclockwise loop), a twist (e.g., clockwise or counterclockwise rotation of the torch 26), or other gestures that may be recognized by the sensors. In other words, the raw data generated by the sensors may be analyzed to determine when certain gestures are being performed by the operator using the welding torch 26. In some embodiments, the gestures may be analyzed by a preprocessor (e.g., the data fusion unit 70, in certain embodiments) prior to communication to the power supply control circuitry 30 and/or the wire feeder control circuitry 28. In other words, in such embodiments, raw data may be analyzed by the data fusion unit 70, and the data fusion unit 70 transmits which gestures are recognized to the power supply control circuitry 30 and/or the wire feeder control circuitry 28. In other embodiments, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may analyze raw data from the sensors to recognize the gestures.


Upon receipt of a recognized gesture, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 changes a corresponding weld process parameter (block 94). For example, if a rapid left or right swipe is recognized, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may decrease or increase a corresponding welding parameter, such as voltage for MIG welding or current for shielded metal arc welding (SMAW) and tungsten inert gas (TIG) welding. Additionally or alternative, the welding parameter may include a current for carbon arc gouging (CAG) process, plasma cutting, or welding process or a current for tools powered off auxiliary output of the power source, such as a grinder or pump. In some embodiments, a recognized gesture may progress the power supply through a number of states.


Additionally or alternatively, if a clockwise circular motion or a clockwise twist is recognized, an engine of the power supply 16 may be turned on while corresponding clockwise motions may turn off the power supply engine. Such gestures and associated actions are merely exemplary, and not intended to be limiting. Other gestures and resulting actions may also be used.



FIG. 6 illustrates a perspective view of an embodiment of a welding torch 100 that may be used in the welding system 10 of FIG. 1. The welding torch 100 includes a handle 102 for a welding operator to hold while performing a weld. At a first end 104, the handle 102 is coupled to a cable 106 where welding consumables are supplied to the weld. Welding consumables generally travel through the handle 102 and exit at a second end 108 opposite from the first end 104. The welding torch 100 includes a neck 110 extending out of the end 108. As such, the neck 110 is coupled between the handle 102 and a nozzle 112. As should be noted, when the trigger 111 is pressed or actuated, welding wire travels through the cable 106, the handle 102, the neck 110, and the nozzle 112, so that the welding wire extends out of an end 114 (i.e., torch tip) of the nozzle 112.


As illustrated, the handle 102 is secured to the neck 110 via fasteners 116 and 118, and to the cable 106 via fasteners 120 and 122. The nozzle 112 is illustrated with a portion of the nozzle 112 removed to show welding wire 124 extending out of a guide or contact tip 126 (or other guiding device). The guide tip 126 is used to guide the welding wire 124 out of the end 114 of the welding torch 100. Although one type of welding torch 100 is illustrated, any suitable type of welding torch may include the indicator 128. For example, a welding torch having the indicator 128 may be configured for shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), and so forth.


The welding torch 100 may also include one or more motion sensors 130 (e.g., accelerometer) that may detect motion of or near the welding torch 100. As previously discussed, by detecting motion via the welding torch 100, the welding system 10 may receive indications of activity or inactivity to control corresponding power management processes. In other words, by relying on the sensors 130, the welding system 10 may produce power when desired by increasing power production prior to actual demand (e.g., actuation of trigger 111) thereby enabling the welding system 10 to reduce power during inactivity without significant lag between power demand and availability of the power. For example, when the sensors 130 detect motion, the power supply 16 may provide power in anticipation of depression of the trigger 111.


Although the foregoing discussion primarily discusses motion sensing for a welding torch, some embodiments may include motion sensing for other tools or accessories. For example, motion sensing may be used for any welding-type tool or accessory associated with a welding-type process. As used herein, welding-type refers to any process related to welding, such as welding, cutting, or gouging. Furthermore, a welding-type tool or accessory may be any tool or accessory using in such processes. For example, welding-type tools may include torches, electrode holders, machining tools, or other similar tools that may be used in the welding-type processes. Moreover, welding-type accessories may include helmet, jackets, gloves, or other equipment that may be used in the welding-type processes.


While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

Claims
  • 1. A method comprising: sensing an initial orientation of a welding-type tool or accessory via a motion sensing system;sensing a subsequent orientation of the welding-type tool or accessory via the motion sensing system;determining, via the motion sensing system, that the welding-type tool or accessory has not moved for a duration of time;determining whether the duration of time exceeds a first threshold or a second threshold;when the duration of time exceeds the first threshold and the welding-type tool or accessory has not moved, placing an engine or engine-driven power supply in a first power state associated with a first engine speed; andwhen the duration of time exceeds the second threshold and the welding-type tool or accessory has not moved, placing the engine or engine-driven power supply in a second power state associated with a second engine speed, wherein the first and second power states are altered power generation states from a higher power state associated with a higher engine speed;activating the engine or engine-driven power supply associated with the welding-type tool or accessory to the higher power state if the power source is in the second power state and the subsequent orientation differs from the initial orientation; andactivating the engine or engine-driven power supply to the higher power state for the power source if the power source is in the first power state and the subsequent orientation differs from the initial orientation.
  • 2. The method of claim 1, wherein the first power state comprises an idle state for the power source.
  • 3. The method of claim 1, comprising indicating a state of the power source by: providing visual feedback;providing audible feedback; orproviding haptic feedback.
  • 4. The method of claim 1, wherein the second power state comprises an off state.
  • 5. The method of claim 1, wherein the motion sensing system comprises at least one of an accelerometer, a gyroscope, or a magnetometer.
  • 6. The method of claim 1, further comprising: identifying, via the motion sensing system, one or more predefined gestures; andchanging a corresponding weld process parameter by progressing through a plurality of welding-type process states based at least in part on the identified one or more predefined gestures.
  • 7. The method of claim 1, wherein sensing the initial orientation comprises sensing a predefined orientation.
  • 8. The method of claim 7, wherein the predefined orientation corresponds to an orientation indicative of idleness of the welding-type tool or accessory.
  • 9. The method of claim 7, wherein the predefined orientation corresponds to the welding-type tool or accessory laying on its side, being upside down, or laying with a working end facing downward.
  • 10. The method of claim 1, further comprising activating the engine or engine-driven welding power supply to the higher power state if the engine or engine-driven welding power supply is in the first power state or in the second power state and the subsequent orientation indicates that the welding-type tool or accessory is in an active state with respect to a plane parallel to a direction of gravity.
US Referenced Citations (475)
Number Name Date Kind
1340270 Emil May 1920 A
2045800 Walther Jun 1936 A
2045801 Richter Jun 1936 A
2045802 Walther Jun 1936 A
2333192 Moberg Oct 1942 A
2351910 Blankenbuehler Jun 1944 A
3391691 Young Jul 1968 A
3651290 Durbin Mar 1972 A
3679865 Jesnitzer Jul 1972 A
3867769 Schow Feb 1975 A
4028522 Chihoski Jun 1977 A
4041615 Whitehill Aug 1977 A
4044377 Bowerman Aug 1977 A
4124944 Blair Nov 1978 A
4132014 Schow Jan 1979 A
4144766 Wehrmeister Mar 1979 A
4163886 Omae Aug 1979 A
4224501 Lindbom Sep 1980 A
4253648 Meeks Mar 1981 A
4294440 Severt Oct 1981 A
4375026 Kearney Feb 1983 A
4375165 deSterke Mar 1983 A
4380696 Masaki Apr 1983 A
4389561 Weman Jun 1983 A
4396945 DiMatteo Aug 1983 A
4412121 Kremers Oct 1983 A
4452589 Denison Jun 1984 A
4459114 Barwick Jul 1984 A
4471207 Hawkes Sep 1984 A
4484059 Lillquist Nov 1984 A
4518361 Conway May 1985 A
4541055 Wolfe Sep 1985 A
4555614 Morris Nov 1985 A
4577499 Silke Mar 1986 A
4590356 Povlick May 1986 A
4591689 Brown May 1986 A
4594497 Takahashi Jun 1986 A
4595186 Reed Jun 1986 A
4595368 Cole Jun 1986 A
4595820 Richardson Jun 1986 A
4609806 Grabkowski Sep 1986 A
4628176 Kojima Dec 1986 A
4638146 Koyama Jan 1987 A
4677277 Cook Jun 1987 A
4680014 Paton Jul 1987 A
4689021 Vasiliev Aug 1987 A
4716273 Paton Dec 1987 A
4721947 Brown Jan 1988 A
4728768 Cueman Mar 1988 A
4739404 Richardson Apr 1988 A
4767109 Raketich Aug 1988 A
4829365 Eichenlaub May 1989 A
4830261 Mello May 1989 A
4867685 Brush Sep 1989 A
4868649 Gaudin Sep 1989 A
4877940 Bangs Oct 1989 A
4881678 Gaudin Nov 1989 A
4920249 McLaughlin Apr 1990 A
4931018 Herbst et al. Jun 1990 A
4937427 McVicker Jun 1990 A
4943702 Richardson Jul 1990 A
4954690 Kensrue Sep 1990 A
4992881 Tomasek Feb 1991 A
4996409 Paton Feb 1991 A
5061841 Richardson Oct 1991 A
5103376 Blonder Apr 1992 A
5185561 Good Feb 1993 A
5208436 Blankenship May 1993 A
5211564 Martinez Aug 1993 A
5231928 Phillips Aug 1993 A
5283418 Bellows Feb 1994 A
5302799 Kennedy Apr 1994 A
5304774 Durheim Apr 1994 A
5306893 Morris Apr 1994 A
5320538 Baum Jun 1994 A
5343011 Fujii Aug 1994 A
5380978 Pryor Jan 1995 A
5397872 Baker Mar 1995 A
5404181 Hung Apr 1995 A
5426732 Boies Jun 1995 A
5448405 Clausen Sep 1995 A
5464957 Kidwell Nov 1995 A
5508757 Chen Apr 1996 A
5514846 Cecil May 1996 A
5517420 Kinsman May 1996 A
5521843 Hashima May 1996 A
5533146 Iwai Jul 1996 A
5543863 Lin Aug 1996 A
5546476 Mitaka Aug 1996 A
5571431 Lantieri Nov 1996 A
5592241 Kita Jan 1997 A
5617335 Hashima Apr 1997 A
5659479 Duley Aug 1997 A
5668612 Hung Sep 1997 A
5674415 Leong Oct 1997 A
5675229 Thorne Oct 1997 A
5681490 Chang Oct 1997 A
5708253 Bloch Jan 1998 A
5709219 Chen Jan 1998 A
5747042 Choquet May 1998 A
5823785 Matherne, Jr. Oct 1998 A
5832139 Batterman Nov 1998 A
5856844 Batterman Jan 1999 A
5930093 Morrissett Jul 1999 A
5961859 Chou Oct 1999 A
5973677 Gibbons Oct 1999 A
5999909 Rakshit Dec 1999 A
6003052 Yamagata Dec 1999 A
6018729 Zacharia Jan 2000 A
6019359 Fly Feb 2000 A
6024273 Ludewig Feb 2000 A
6039494 Pearce Mar 2000 A
6046754 Stanek Apr 2000 A
6049059 Kim Apr 2000 A
6051805 Vaidya Apr 2000 A
6101455 Davis Aug 2000 A
6107601 Shimagama Aug 2000 A
6130407 Villafuerte Oct 2000 A
6136946 Yao Oct 2000 A
6153848 Nagae Nov 2000 A
6155475 Ekelof Dec 2000 A
6163946 Pryor Dec 2000 A
6225590 Farrow May 2001 B1
6226395 Gilliland May 2001 B1
6236017 Smartt May 2001 B1
6242711 Cooper Jun 2001 B1
6271500 Hirayama Aug 2001 B1
6288359 Koch Sep 2001 B1
6290740 Schaefer Sep 2001 B1
6301763 Pryor Oct 2001 B1
6315186 Friedl Nov 2001 B1
6329635 Leong Dec 2001 B1
6337458 Lepeltier Jan 2002 B1
6371765 Wall Apr 2002 B1
6417894 Goff Jul 2002 B1
6423936 Reed Jul 2002 B1
6441342 Hsu Aug 2002 B1
6445964 White Sep 2002 B1
6469752 Ishikawa Oct 2002 B1
6476354 Jank Nov 2002 B1
6479793 Wittmann Nov 2002 B1
6506997 Matsuyama Jan 2003 B2
6516300 Rakshit Feb 2003 B1
6572379 Sears Jun 2003 B1
6583386 Ivkovich Jun 2003 B1
6596972 Di Novo Jul 2003 B1
6614002 Weber Sep 2003 B2
6621049 Suzuki Sep 2003 B2
6622906 Kushibe Sep 2003 B1
6647288 Madill Nov 2003 B2
6670574 Bates Dec 2003 B1
6697761 Akatsuka Feb 2004 B2
6703585 Suzuki Mar 2004 B2
6710298 Eriksson Mar 2004 B2
6720878 Jumpertz Apr 2004 B2
6728582 Wallack Apr 2004 B1
6734393 Friedl May 2004 B1
6744011 Hu Jun 2004 B1
6748249 Eromaki Jun 2004 B1
6750428 Okamoto Jun 2004 B2
6753909 Westerman Jun 2004 B1
6768974 Nanjundan Jul 2004 B1
6839049 Koizumi Jan 2005 B1
6857553 Hartman Feb 2005 B1
6868726 Lemkin Mar 2005 B2
6910971 Alsenz Jun 2005 B2
6927360 Artelsmair Aug 2005 B2
6937329 Esmiller Aug 2005 B2
6967635 Hung Nov 2005 B2
6977357 Hsu Dec 2005 B2
6995536 Challoner Feb 2006 B2
7015419 Hackl Mar 2006 B2
7025053 Altamirano Apr 2006 B1
7032814 Blankenship Apr 2006 B2
7045742 Feichtinger May 2006 B2
7081888 Cok Jul 2006 B2
7120473 Hawkins Oct 2006 B1
7132617 Lee Nov 2006 B2
7132623 DeMiranda Nov 2006 B2
7150047 Fergason Dec 2006 B2
7173215 Kapoor Feb 2007 B1
7181413 Hadden Feb 2007 B2
7226176 Huang Jun 2007 B1
7261261 Ligertwood Aug 2007 B2
7342210 Fergason Mar 2008 B2
7358458 Daniel Apr 2008 B2
7465230 LeMay Dec 2008 B2
7474760 Hertzman Jan 2009 B2
7523069 Friedl et al. Apr 2009 B1
7564005 Cabanaw Jul 2009 B2
7574172 Clark Aug 2009 B2
7577285 Schwarz Aug 2009 B2
7637622 Garbergs Dec 2009 B2
D614217 Peters Apr 2010 S
7698094 Aratani Apr 2010 B2
D615573 Peters May 2010 S
7766213 Henrikson Aug 2010 B2
7789811 Cooper Sep 2010 B2
7826984 Sjostrand Nov 2010 B2
7831098 Melikian Nov 2010 B2
7839416 Ebensberger Nov 2010 B2
7845560 Emanuel Dec 2010 B2
D631074 Peters Jan 2011 S
7899618 Ledet Mar 2011 B2
7962967 Becker Jun 2011 B2
8019144 Sugihara Sep 2011 B2
8044942 Leonhard Oct 2011 B1
8046178 Dai Oct 2011 B2
8100694 Portoghese Jan 2012 B2
8110774 Huonker Feb 2012 B2
8125094 Radtke Feb 2012 B2
8235588 Louban Aug 2012 B2
8248324 Nangle Aug 2012 B2
8274013 Wallace Sep 2012 B2
8316462 Becker et al. Nov 2012 B2
8393519 Allehaux Mar 2013 B2
8406682 Elesseily Mar 2013 B2
8431862 Kachline Apr 2013 B2
8432476 Ashforth Apr 2013 B2
8502866 Becker Aug 2013 B2
8512043 Choquet Aug 2013 B2
8541746 Andres Sep 2013 B2
8569655 Cole Oct 2013 B2
8657605 Wallace Feb 2014 B2
8680434 Stoger et al. Mar 2014 B2
8681178 Tseng Mar 2014 B1
8692157 Daniel Apr 2014 B2
8698843 Tseng Apr 2014 B2
8747116 Zboray et al. Jun 2014 B2
8834168 Peters Sep 2014 B2
8851896 Wallace Oct 2014 B2
8860760 Chen Oct 2014 B2
8911237 Postlethwaite Dec 2014 B2
8915740 Zboray Dec 2014 B2
8946595 Ishida Feb 2015 B2
8953033 Yamane Feb 2015 B2
8953909 Guckenberger Feb 2015 B2
RE45398 Wallace Mar 2015 E
8987628 Daniel et al. Mar 2015 B2
8990842 Rowley Mar 2015 B2
8992226 Leach Mar 2015 B1
9011154 Kindig Apr 2015 B2
9012802 Daniel Apr 2015 B2
9050678 Daniel Jun 2015 B2
9050679 Daniel Jun 2015 B2
9089921 Daniel Jul 2015 B2
9196169 Wallace Nov 2015 B2
9218745 Choquet Dec 2015 B2
9221117 Conrardy Dec 2015 B2
9269279 Penrod et al. Feb 2016 B2
9293056 Zboray Mar 2016 B2
9293057 Zboray Mar 2016 B2
9318026 Peters Apr 2016 B2
9330575 Peters May 2016 B2
9336686 Peters May 2016 B2
9402122 Richardson Jul 2016 B2
9511443 Pfeifer et al. Dec 2016 B2
20010026445 Naghi Oct 2001 A1
20010032508 Lemkin Oct 2001 A1
20020043607 Tajima Apr 2002 A1
20020071550 Pletikosa Jun 2002 A1
20020105797 Navid Aug 2002 A1
20020114653 Gatta Aug 2002 A1
20020148745 Chang Oct 2002 A1
20020153354 Norby Oct 2002 A1
20030011673 Eriksson Jan 2003 A1
20030092496 Alsenz May 2003 A1
20030172032 Choquet Sep 2003 A1
20040058703 Eromaki Mar 2004 A1
20040068335 Ferla Apr 2004 A1
20040069754 Bates Apr 2004 A1
20040175684 Kaasa Sep 2004 A1
20040223148 Takemura Nov 2004 A1
20040227730 Sugihara Nov 2004 A1
20040251910 Smith Dec 2004 A1
20050006363 Hsu Jan 2005 A1
20050012598 Berquist Jan 2005 A1
20050016979 Stein Jan 2005 A1
20050017152 Fergason Jan 2005 A1
20050073506 Durso Apr 2005 A1
20050127052 Spencer Jun 2005 A1
20050133488 Blankenship Jun 2005 A1
20050135682 Abrams Jun 2005 A1
20050179654 Hawkins Aug 2005 A1
20050197115 Clark et al. Sep 2005 A1
20050207102 Russo Sep 2005 A1
20050227635 Hawkins Oct 2005 A1
20050256611 Pretlove Nov 2005 A1
20060010551 Bishop Jan 2006 A1
20060081740 Bellavance Apr 2006 A1
20060136183 Choquet Jun 2006 A1
20060151446 Schneider Jul 2006 A1
20060163228 Daniel Jul 2006 A1
20060173619 Brant Aug 2006 A1
20060212169 Luthardt Sep 2006 A1
20060241432 Herline Oct 2006 A1
20060285330 Sundell Dec 2006 A1
20070038400 Lee Feb 2007 A1
20070051711 Kachline Mar 2007 A1
20070070358 Ouchi Mar 2007 A1
20070114215 Bill May 2007 A1
20070115202 Kiesenhofer May 2007 A1
20070164006 Burgstaller Jul 2007 A1
20070187378 Karakas Aug 2007 A1
20070188606 Atkinson Aug 2007 A1
20070221636 Monzyk Sep 2007 A1
20070247793 Carnevali Oct 2007 A1
20070248261 Zhou Oct 2007 A1
20070264620 Maddix Nov 2007 A1
20070278196 James Dec 2007 A1
20070291166 Misawa Dec 2007 A1
20080030631 Gallagher Feb 2008 A1
20080038702 Choquet Feb 2008 A1
20080061113 Seki Mar 2008 A9
20080077422 Dooley Mar 2008 A1
20080124698 Ebensberger May 2008 A1
20080128395 Aigner Jun 2008 A1
20080149602 Lenzner Jun 2008 A1
20080149608 Albrecht Jun 2008 A1
20080158502 Becker Jul 2008 A1
20080168290 Jobs Jul 2008 A1
20080169277 Achtner Jul 2008 A1
20080234960 Byington Sep 2008 A1
20080308541 Hiroi Dec 2008 A1
20080314887 Stoger Dec 2008 A1
20090005728 Weinert Jan 2009 A1
20090057286 Ihara Mar 2009 A1
20090109128 Nangle Apr 2009 A1
20090146359 Canfield Jun 2009 A1
20090152251 Dantinne Jun 2009 A1
20090161212 Gough Jun 2009 A1
20090173726 Davidson et al. Jul 2009 A1
20090189974 Deering Jul 2009 A1
20090200281 Hampton Aug 2009 A1
20090200282 Hampton Aug 2009 A1
20090230107 Ertmer Sep 2009 A1
20090231423 Becker Sep 2009 A1
20090249606 Diez Oct 2009 A1
20090283021 Wong Nov 2009 A1
20090298024 Batzler Dec 2009 A1
20090323121 Valkenburg Dec 2009 A1
20100020483 Ma Jan 2010 A1
20100048273 Wallace Feb 2010 A1
20100053541 Sundell Mar 2010 A1
20100062405 Zboray Mar 2010 A1
20100062406 Zboray Mar 2010 A1
20100088793 Ghisleni Apr 2010 A1
20100123664 Shin May 2010 A1
20100133247 Mazumder Jun 2010 A1
20100133250 Sardy Jun 2010 A1
20100145520 Gerio Jun 2010 A1
20100201803 Melikian Aug 2010 A1
20100207620 Gies Aug 2010 A1
20100224610 Wallace Sep 2010 A1
20100238119 Dubrovsky Sep 2010 A1
20100245273 Hwang Sep 2010 A1
20100283588 Gomez Nov 2010 A1
20100291313 Ling Nov 2010 A1
20100314362 Albrecht Dec 2010 A1
20110000892 Mueller Jan 2011 A1
20110006047 Penrod Jan 2011 A1
20110091846 Kreindl Apr 2011 A1
20110092828 Spohn Apr 2011 A1
20110114615 Daniel May 2011 A1
20110117527 Conrardy May 2011 A1
20110176720 VanOsten Jul 2011 A1
20110183304 Wallace Jul 2011 A1
20110220616 Mehn Sep 2011 A1
20110220619 Mehn Sep 2011 A1
20110240605 Takayama Oct 2011 A1
20110249090 Moore Oct 2011 A1
20110284508 Miura Nov 2011 A1
20110286005 Yamamoto Nov 2011 A1
20110290765 Albrecht Dec 2011 A1
20110313731 Vock Dec 2011 A1
20110316516 Schiefermuller Dec 2011 A1
20120007748 Forgues Jan 2012 A1
20120012561 Wiryadinata Jan 2012 A1
20120048838 Ishida Mar 2012 A1
20120057240 Sundell Mar 2012 A1
20120067859 Albrecht Mar 2012 A1
20120072021 Walser Mar 2012 A1
20120077174 DePaul Mar 2012 A1
20120105476 Tseng May 2012 A1
20120113512 Tsanev May 2012 A1
20120122062 Yang May 2012 A1
20120175834 Hamm Jul 2012 A1
20120180180 Steve Jul 2012 A1
20120188365 Stork Jul 2012 A1
20120189993 Kindig Jul 2012 A1
20120205359 Daniel Aug 2012 A1
20120231894 Nicora Sep 2012 A1
20120248080 Hutchison Oct 2012 A1
20120248083 Garvey Oct 2012 A1
20120273473 Zhang Nov 2012 A1
20120280576 Wood Nov 2012 A1
20120291172 Wills Nov 2012 A1
20120298640 Conrardy Nov 2012 A1
20120323496 Burroughs Dec 2012 A1
20130040270 Albrecht Feb 2013 A1
20130081293 Delin Apr 2013 A1
20130182070 Peters Jul 2013 A1
20130189656 Zboray Jul 2013 A1
20130189657 Wallace Jul 2013 A1
20130189658 Peters Jul 2013 A1
20130200882 Almalki Aug 2013 A1
20130206741 Pfeifer Aug 2013 A1
20130208569 Pfeifer Aug 2013 A1
20130209976 Postlethwaite Aug 2013 A1
20130262000 Hutchison et al. Oct 2013 A1
20130264315 Hung Oct 2013 A1
20130264322 Bornemann Oct 2013 A1
20130288211 Patterson Oct 2013 A1
20130291271 Becker Nov 2013 A1
20130326842 Pearson Dec 2013 A1
20140008088 Chellew Jan 2014 A1
20140017642 Postlethwaite Jan 2014 A1
20140017645 Simpson Jan 2014 A1
20140042135 Daniel et al. Feb 2014 A1
20140069899 Mehn Mar 2014 A1
20140131337 Williams May 2014 A1
20140134579 Becker May 2014 A1
20140134580 Becker May 2014 A1
20140140719 Suzuki May 2014 A1
20140144896 Einav May 2014 A1
20140184496 Gribetz Jul 2014 A1
20140220522 Peters Aug 2014 A1
20140234813 Peters Aug 2014 A1
20140263224 Becker Sep 2014 A1
20140263227 Daniel et al. Sep 2014 A1
20140267773 Jeung Sep 2014 A1
20140272835 Becker Sep 2014 A1
20140272836 Becker Sep 2014 A1
20140272837 Becker Sep 2014 A1
20140272838 Becker Sep 2014 A1
20140315167 Kreindl Oct 2014 A1
20140322684 Wallace Oct 2014 A1
20140346158 Matthews Nov 2014 A1
20140346793 DeStories Nov 2014 A1
20140374396 Luo et al. Dec 2014 A1
20150056584 Boulware Feb 2015 A1
20150056585 Boulware Feb 2015 A1
20150072323 Postlethwaite Mar 2015 A1
20150154884 Salsich Jun 2015 A1
20150170539 Barrera Jun 2015 A1
20150190875 Becker Jul 2015 A1
20150190876 Becker Jul 2015 A1
20150190887 Becker Jul 2015 A1
20150190888 Becker Jul 2015 A1
20150194072 Becker Jul 2015 A1
20150194073 Becker Jul 2015 A1
20150209887 DeLisio Jul 2015 A1
20150235565 Postlethwaite Aug 2015 A1
20150248845 Postlethwaite Sep 2015 A1
20150325153 Albrecht Nov 2015 A1
20150375323 Becker Dec 2015 A1
20150375324 Becker Dec 2015 A1
20150375327 Becker Dec 2015 A1
20150379894 Becker Dec 2015 A1
20160039034 Becker Feb 2016 A1
20160039053 Becker Feb 2016 A1
20160049085 Beeson Feb 2016 A1
20160093233 Boulware Mar 2016 A1
20160125592 Becker et al. May 2016 A1
20160125593 Becker May 2016 A1
20160125594 Becker May 2016 A1
20160125653 Denis May 2016 A1
20160125761 Becker May 2016 A1
20160125762 Becker May 2016 A1
20160125763 Becker May 2016 A1
20160125764 Becker May 2016 A1
20160203734 Boulware Jul 2016 A1
20160203735 Boulware Jul 2016 A1
20160236303 Matthews Aug 2016 A1
20170326674 Dunbar Nov 2017 A1
Foreign Referenced Citations (72)
Number Date Country
2298208 Aug 2000 CA
2311685 Dec 2001 CA
2517874 Dec 2001 CA
2549553 Jul 2004 CA
2554498 Apr 2006 CA
2841583 Feb 2013 CA
101203197 Jun 2008 CN
101323046 Dec 2008 CN
102378666 Mar 2012 CN
202877704 Apr 2013 CN
103983988 Aug 2014 CN
104014906 Sep 2014 CN
202010011064 Oct 2010 DE
102010038902 Feb 2012 DE
0323277 Jul 1989 EP
0878263 Nov 1998 EP
0963744 Dec 1999 EP
1025946 Aug 2000 EP
1029306 Aug 2000 EP
1295195 Jun 2001 EP
1573699 Sep 2005 EP
1797545 Jun 2007 EP
1864744 Dec 2007 EP
2022592 Feb 2009 EP
2415560 Feb 2014 EP
2438440 Jan 2014 ES
1456780 Jul 1966 FR
2827066 Jan 2003 FR
2989141 Oct 2013 FR
2454232 May 2009 GB
2454232 May 2009 GB
S5527422 Feb 1980 JP
H05141909 Jun 1993 JP
H11146387 May 1999 JP
2000298427 Oct 2000 JP
2004181493 Jul 2004 JP
2007021542 Feb 2007 JP
2009125790 Jun 2009 JP
100876425 Dec 2008 KR
20110017484 Feb 2011 KR
20130048580 May 2013 KR
972552 Nov 1982 SU
1354234 Nov 1987 SU
1489933 Jun 1989 SU
1638145 Mar 1991 SU
9934950 Jul 1999 WO
9958286 Nov 1999 WO
03019349 Jan 2003 WO
2004057554 Jul 2004 WO
2005102230 Nov 2005 WO
2005110658 Nov 2005 WO
2006004427 Jan 2006 WO
2006034571 Apr 2006 WO
2007009131 Jan 2007 WO
2007044135 Apr 2007 WO
2009022443 Feb 2009 WO
2009053829 Apr 2009 WO
2009060231 May 2009 WO
2009092944 Jul 2009 WO
2009146359 Dec 2009 WO
2010000003 Jan 2010 WO
2010020867 Feb 2010 WO
2010020870 Feb 2010 WO
2010111722 Oct 2010 WO
2011112493 Sep 2011 WO
2011150165 Dec 2011 WO
2012137060 Oct 2012 WO
2013023012 Feb 2013 WO
2013138831 Sep 2013 WO
2014007830 Jan 2014 WO
2014074296 May 2014 WO
2014140719 Sep 2014 WO
Non-Patent Literature Citations (140)
Entry
“Low Cost Virtual Reality Welding Training System,” NSRP Joint Panel Meeting, Apr. 21, 2010, http://www.nsrp.org/6-Presentations/Joint/042110_Low_Cost_Virtual_Reality_Welder_Training_System_Fast.pdf.
“NJC Technology Displayed at ShipTech 2005”, Welding Journal, vol. 84, No. 3, Mar. 2005, p. 54, https://app.aws.org/w/r/www/wj/2005/03/WJ_2005_03.pdf.
“Sheet Metal Conference XXII,” Conference Program, American Welding Society, May 2006, Detroit.
“SOLDAMATIC: Augmented Training Technology for Welding,” Seabery Augmented Training Technology, Seabery Soluciones, 2011.
“Virtual Reality Program to Train Welders for Shipbuilding”, American Welding Society, Navy Joining Center, https://app.aws.org/wj/2004/04/052/.
“Virtual Reality Welder Training Initiatives: Virtual Welding Lab Pilot,” Paul D. Camp Community College, Advanced Science & Automation Corporation, Northrop Grumman Newport News, Nov. 22, 2006, http://www.nsrp.org/6-Presentations/WD/103106_Virtual_Reality_Welder.pdf.
“Virtual Welding—A Low Cost Virtual Reality Welder Training System”, Interim Status Report # 4, Technology Investment Agreement 2008-600, Feb. 18, 2009, http://www.nsrp.org/3-Key_Deliverables/FY08_Low-Cost_Virtual_Reality_Welder_Trainer/FY08_Low-Cost_Virtual_Reality_Welder_Trainer-Interim2.pdf.
“Virtual Welding: A Low Cost Virtual Reality Welder Training System,” NSRP ASE, Feb. 19, 2009, http://www.nsrp.org/6-Presentations/WVD/020409_Virtual_Welding_Wilbur.pdf.
“Vision for Welding Industry,” American Welding Society, Apr. 22, 1999, http://www.aws.org/library/doclib/vision.pdf.
“Welding in Defense Industry,” American Welding Society conference schedule, 2004. https://app.aws.org/conferences/defense/live_index.html.
“Welding Technology Roadmap,” prepared by Energetics, Inc., Columbia, MD, in cooperation with The American Welding Society and The Edison Welding Institute, Sep. 2000.
123arc.com—“Weld into the future”; 2000.
Advance Program of American Welding Society Programs and Events, Nov. 11-14, 2007, Chicago.
Aiteanu, Dorin, and Axel Graser, “Computer-Aided Manual Welding Using an Augmented Reality Supervisor,” Sheet Metal Welding Conference XII, Livoinia, MI, May 9-12, 2006, pp. 1-14.
Aiteanu, Dorin, et al., “A Step Forward in Manual Welding: Demonstration of Augmented Reality Helmet,” Institute of Automation, University of Bremen, Germany, 2003.
Aiteanu et al., Generation and Rendering of a Virtual Welding Seam in an Augmented Reality Training Envionment, Proceedings of the Sixth IASTED International Conference Visualization, Imaging, and Image Proceeding, Aug. 28-30, 2006, Palma de Mallorca, Spain ISBN Hardcapy: 0-88986-598-1 /CD: 0-88986-600-7 (8 pages).
American Welding Society Forms: typical Procedure Qualification Record and Welding Procedure Specification forms.
American Welding Society's Virtual Welding Trailer to Debut at FABTECH Careers in Welding Trailer Appeals to New Generation of Welders, Miami, Florida, Nov. 3, 2011.
ArcSentry Weld Monitoring System, Version 3, Users Manual, Native American Technologies, Golden, CO, Dec. 10, 1999.
ARVIKA Forum Vorstellung Projeckt PAARA, BMW Group Virtual Reality Center, Nuernberg, 2003.
Ascension Technology Corporation: Tracking 3D Worlds: http://ascension-tech.com/, Dec. 1996.
Barckhoff, J.R.; “Total Welding Managemet,” American Welding Society, 2005.
Bender Shipbuilding and Repair, Co., “Virtual Welding—A Low Cost Virtual Reality Welder Training System”, Technical Proposal, Jan. 23, 2008.
Byrd, Alex Preston, “Identifying the effects of human factors and training methods on a weld training program” (2014). Graduate Theses and Dissertations. Paper 13991.
Canadian Office Action AppIn No. 2,959,374 dated Sep. 30, 2019.
Canadian Office Action Appln. No. 2,959,374 dated Dec. 11, 2017 (5 pages).
Central Welding Supply http://www.welders-direct.com/ Feb. 29, 2000.
Cho, Min Hyn, Numerical Simulation F Arc Welding Process and its Application Dissertation for Ohio State University by Min Hyun Cho, M.S. 2006: See Internet as this document is security protected) ohttps://etd.ohiolink.edu/ap:0:0:APPLICATION_PROCESS=DOWNLOAD_ETD_SUB_DOC_ACCNUM:::F1501_ID:osu1155741113, attachment.
Choquet, Claude, ARC+ & ARC PC Welding Simulators: Teach Welders with Virtual Interactive 3D Technologies; Jul. 2010.
Choquet, Claude, ARC+: Today's Virtual Reality Solution for Welders, Jun. 1, 2008.
Cybernetics: Enhancing Human Performance found in the DTIC Review dated Mar. 2001, p. 186/19. See http://www.dtic.mil/dtic/tr/fulltext/u2/a385219.pdf.
Echtler, Florian, Fabian Stuurm, Kay Kindermann, Gudrun Klinker, Joachim Stilla, Jorn Trilk, Hesam Najafi, “The Intelligent Welding Gun: Augmented Reality for Experimental Vehicle Construction,” Virtual and Augmented Reality Applications in Manufacturing, Ong S.K and Nee A.Y.C., eds., Springer Verlag, 2003, pp. 1-27.
Evaluating Two Novel Tactile Feedback Devices, by Thomas Hulin, Phillipp Kremer, Robert Scheibe, Simon Schaetzle and Carsten Preusche presented at the 4th International Conference on Enactive Interfaces, Grenoble, France, Nov. 19 -22, 2007.
EWI, “EWI ArcCheck,” marketing brochure, Columbus, Ohio, 1 page.
EWI, “EWI SkillBuilder,” marketing brochure, Columbus, Ohio, 1 page.
Fast et al., Virtual Training for Welding, Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2004); 0-7695-2191-6/04; 2004.
Fast, Kenneth, Jerry Jones, and Valerie Rhoades; “Virtual Welding—A Low Cost Virtual Reality Welder Training System Phase II,” National Shipbuilding Research Program (NSRP), NSRP ASE Technology Investment Agreement No. 2010-357, Feb. 29, 2012, http://www.nsrp.org/3-RA-Panel_Final_Reports/FY08_Virtual_Welder_Final_Report.pdf.
Fite-Georgel, Pierre; “Is there a Reality in Industrial Augmented Reality?” 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2011.
Fridenfalk et al., Design and Validation of a Universal 6D Seam Tracking System in Robotic Welding Based on Laser Scanning, Industrial Robotics: Programming, Simulation, and Application, ISBN 3-86611-286-6, pp. 702, ARS/pIV, Germany, Dec. 2006, edited by Kin Huat.
Fronius “The Ghost”: http://www.fronius.com/cps/rde/xchg/SID-3202EAB7-AE082518/fronius_interational/hs.xsl/79_15490_ENG_HTML.htm; 2006.
Fronius International GmbH—Focus on Welding—Fronius Virtual Welding; http://www.fronius.com/cps/rde/xchg/SID-99869147-0110E322/fronius_intenational/hs.xsl/79_15490_ENG_HML.htm; 2006.
Fronius Perfect Welding; 06,3082, EN v01 2010 aw05; Virtual Welding—The training method of the future; Feb. 20, 2012.
Ftp://www.hitl.washington.edu/pub/scivw/publications/IDS-pdf/HAPTIC1.PDF, (University of Washington): Table 11, Tactile Feedback Actuator Technologies, p. 119, below the table is a. Based on Hasser (1995, 1996).
GAWDA—Welding & Gases Today Online GAWDA Media Blog; Will Games Turn Welding into a Virtual Market? Friday, Dec. 2, 2011; http://www.weldingandgasestoday.org/blogs/Devin-OToole/index.php/ta.
Gundersen, O., et al. “The Use of an Integrated Multiple Neural Network Structure for Simultaneous Prediction of Weld Shape, Mechanical Properties, and Distortion in 6063-T6 and 6082-T6 Aluminum Assemblies”, Mathematical Modelling of Weld Phenomena, vol. 5, Maney Publishing, 2001.
Haptic Feedback for Virtual Reality by Grigore C. Burdea dated 1996.
Hashimoto, Nobuyoshi et al., “Training System for Manual Arc Welding by Using Mixed Reality: Reduction of Position-Perception Error of Electrode Tip,” Journal of the Japan Society for Precision Engineering, vol. 72, pp. 249-253, 2006.
Hemez, Francois M., Scott W. Doebling, “Uncertainty, Validation of Computer Models an the Myth of Numerical Predictability,” Engineering Analysis Group (ESA-EA), Los Alamos National Laboratory, dated 2004.
Hillers, B, and Axel Graeser, “Direct welding arc observation withouth harsh flicker,” FABTECH International and AWS Welding Show, 2007.
Hillers, B, and Axel Graeser, “Real time Arc-Welding Video Observation System,” 62nd International Conference of IIW, Jul. 12-17, 2009, Singapore, 2009.
Hillers, B., et al.; “TEREBES: Welding Helmet with AR Capabilites,” Institute of Automation, University of Bremen, and Institute of Industrial Engineering and Ergonomics, RWTH Aachen Universty, 2004.
Hillers, Bernd, Dorin Aiteanu, Axel Graser, “Augmented Reality—Helmet for the Manual Welding Process,” Virtual and Augmented Reality Applications in Manufacturing, Institute of Automation, Universtity of Bremen, 2004.
Himperich, Frederick, “Applications in Augmented Reality in the Automotive Industry,” Fachgebiet Augmented Reality, Department of Informatics, Jul. 4, 2007, p. 1-21.
http://www.123arc.com “Simulation and Certification”; 2000.
Image from Sim Welder.com—R-V's Welder Training Goes Virtual, www.rvii.com/PDF/simwelder.pdf; Jan. 2010.
IMPACT Spring 2012 vol. 12, No. 2, Undergraduate Research in Information Technology Engineering, University of Virginia School of Engineering & Applied Science; 2012.
Impact Welding: miscellaneous examples from current and archived website, trade shows, etc. See, e.g., http://www.impactwelding.com.
Integrated Microelectromechanical Gyroscopes; Journal of Aerospace Engineering, Apr. 2003 pp. 65-75 (p. 65) by Huikai Xie and Garry K. Fedder.
International Search Report and Written Opinion from PCT application No. PCT/US2017/046867 dated Nov. 13, 2017, 13 pages.
International Search Report for PCT application No. PCT/US2015/04234, dated Nov. 27, 2015, 14 pgs.
International Search Report for PCT application No. PCT/US2009/045436, dated Nov. 9, 2009, 3 pgs.
International Search Report for PCT application No. PCT/US2012/050059, dated Nov. 27, 2012, 16 pgs.
International Search Report for PCT application No. PCT/US2013/038371, dated Jul. 31, 2013, 8 pgs.
International Search Report for PCT application No. PCT/US2013/066037, dated Mar. 11, 2014, 10 pgs.
International Search Report for PCT application No. PCT/US2013/066040, dated Mar. 11, 2014, 12 pgs.
International Search Report for PCT application No. PCT/US2014/018107, dated Jun. 2, 2014, 3 pgs.
International Search Report for PCT application No. PCT/US2014/018109, dated Jun. 2, 2014, 4 pgs.
International Search Report for PCT application No. PCT/US2014/018113, dated Jun. 2, 2014, 3pgs.
International Search Report for PCT application No. PCT/US2014/018114, dated Jun. 2, 2014, 4 pgs.
International Search Report for PCT application No. PCT/US2014/065498, dated May 11, 2015, 13 pgs.
International Search Report for PCT application No. PCT/US2014/065506, dated Jun. 26, 2015, 16 pgs.
International Search Report for PCT application No. PCT/US2014/065512, dated Jun. 8, 2015, 17 pgs.
International Search Report for PCT application No. PCT/US2014/065525, dated Jul. 23, 2015, 16 pgs.
International Search Report for PCT application No. PCT/US2014/067951, dated Feb. 24, 2015, 10 pgs.
International Search Report for PCT application No. PCT/US2015/037410, dated Nov. 6, 2015, 10 pgs.
International Search Report for PCT application No. PCT/US2015/037439, dated Nov. 3, 2015, 12 pgs.
International Search Report for PCT application No. PCT/US2015/037440, dated Nov. 3, 2015, 12 pgs.
International Search Report for PCT application No. PCT/US2015/039680, dated Sep. 23, 2015, 12 pgs.
International Search Report from PCT application No. PCT/US2014/018103, dated Jun. 30, 2014, 13 pgs.
International Search Report from PCT application No. PCT/US2015/028939, dated Oct. 14, 2015, 13 pgs.
International Search Report from PCT application No. PCT/US2015/041462, dated Dec. 4, 2015, 14 pgs.
International Search Report from PCT application No. PCT/US2015/043370, dated Dec. 4, 2015, 12 pgs.
International Search Report from PCT application No. PCT/US2015/058563, dated Jan. 29, 2016, 13 pgs.
International Search Report from PCT application No. PCT/US2015/058567, dated May 6, 2016, 15 pgs.
International Search Report from PCT application No. PCT/US2015/058569, dated Feb. 10, 2016, 12 pgs.
International Search Report from PCT application No. PCT/US2015/058660, dated Feb. 2, 2016, 14 pgs.
International Search Report from PCT application No. PCT/US2015/058664, dated Apr. 25, 2016, 17 pgs.
International Search Report from PCT application No. PCT/US2015/058666, dated Feb. 1, 2016, 11 pgs.
International Search Report from PCT application No. PCT/US2015/058667, dated Feb. 5, 2016, 14 pgs.
International Search Report from PCT application No. PCT/US2016/023612, dated Jul. 18, 2016, 11 pgs.
Jo et al., Visualization of Virtual Weld Beads, VRST 2009, Kyoto, Japan, Nov. 18-20, 2009; Electronics and Telecommunications Research Institute (ETRI) ACM 978-1 60558-869-8/09/0011.
Kevin Dixon, et al., ‘Gesture-based Programming for Robotic Arc Welding’, Carnegie Mellon University, dated Dec. 6, 2002 (24 pages).
Kiwinakiful; Holographic TV coming 2012 (as seen on BBC); http://www.youtube.com/watch?v=Ux6aD6vE9sk&feature=related, Jul. 2, 2011.
Kobayashi, Kazuhiko et al., “Modified Training System for Manual Arc Welding by Using Mixed Reality and Investigation of Its Effectiveness,” Journal of the Japan Society for Precision Engineering, vol. 70, pp. 941-945, 2004.
Kobayashi, Kazuhiko et al., “Simulator of Manual Metal Arc Welding with Haptic Display,” Chiba University, ICAT 2001, Dec. 2001.
Kobayashi, Kazuhiko et al., “Skill Training System of Manual Arc Welding by Means of Face-Shield HMD and Virtual Electrode,” Chiba University, Japan, R. Nakatsu et al. (eds.), Entertainment Computing, Springer Science+Business Media, New York, 2003.
Kooima, Robert; Kinect +3D TV=Virtual Reality; http://www.youtube.com/watch?v=2MX1RinEXUM&feature=related, Feb. 26, 2011.
Leap Motion; https://www.leapmotion.com/, May 2012.
Lincoln Electric VRTEX Virtual Reality Arc Welding Trainer; http://www.lincolnelectric.com/en-us/equipment/training-equipment/pages/vrtex360.aspx; 1999.
Maccormick, John; How does the Kinect work ?; http://users.dickinson.edu/˜jmac/selected-talks/kinect.pdf, Dec. 1, 2011.
NAMeS Users Guide, N A Tech Neural Applications, Copyright 1997, 1998, 1999, 2000 Golden, CO (123 pages).
NAMeS, Native American Technologies Weld Measuring Software, Users Guide, 2000.
National Science Foundation—Where Discoveries Begin—Science and Engineering's Most Powerful Statements Are Not Made From Words Alone—Entry Details for NSF International Science & Engineering Visualization Challenge, Public Voting ended on Mar. 9, 2012; Velu the welder by Muralitharan Vengadasalam—Sep. 30, 2011; https://nsf-scivis.skild.com/skild2/NationalScienceFoundation/viewEntryDetail.action?pid.
Native American Technologies, “ArcDirector Weld Controller” web page, http://web.archive.org/web/20020608125127/http://www.natech-inc.com/arcdirector/index.html, published Jun. 8, 2002.
Native American Technologies, “ArcSentry Weld Quality Monitoring System” web page, http://web.archive.org/web/20020608124903/http://www.natech-inc.com/arcsentry1/index.html, published Jun. 8, 2002.
Native American Technologies, “P/NA.3 Process Modelling and Optimization” web pages, http://web.archive.org/web/20020608125619/http://www.natech-inc.com/pna3/index.html, published Jun. 8, 2002.
Native American Technologies, “Process Improvement Products” web page, http://web.archive.org/web/20020608050736/http://www.natech-inc.com/products.html, published Jun. 8, 2002.
Natural Point, Trackir; http://www.naturalpoint.com/trackir/, Dec. 2003.
NZ Manufacturer Game promotes welding trade careers; http://nzmanufacturer.co.nz/2011/11/gme-promotes-welding-trade-careers/ . . . Compentenz Industry Training; www.competenz.org.nz; Game promotes welding trade careers, Nov. 7, 2011.
OptiTrack: Motion Capture Systems: http://www.naturalpoint.com/optitrack/, Mar. 2005.
Penrod, Matt; “New Welder Training Tools,” EWI PowerPoint presentation, 2008.
PhaseSpace: Optical Motion Capture: http://phasespace.com/, 2009.
Playstation; Move Motion Controller: http://us.playstation.com/ps3/playstation-move/, Mar. 2010.
Polhemus: Innovation in Motion: http://polhemus.com/?page=researchandtechnology, 1992.
Porter et al, EWI-CRP Summary Report SR0512, Jul. 2005—Virtual Reality Welder Training.
Porter, Nancy C., Edison Welding Institute; J. Allan Cote, General Dynamics Electrict Boat; Timothy D. Gifford, VRSim; and Wim Lam, FCS Controls—Virtual Reality Welder Training—Project No. S1051 Navy Man Tech Program; Project Review for Ship Tech 2005,—Mar. 1, 2005, Biloxi, MS, http://www.nsrp.org/6-Presentations/WD/Virtual_Welder.pdf.
Porter, Nancy C., Edison Welding Institute; J.Allan Cote, General Dynamics Electric Boat; Timoty D. Gifford, VRSim; and Wim Lam, FCS Controls—Virtual Reality Welder Training—Session 5; Joining Technologies for Naval Applications; 2007.
Quebec International, May 28, 2008 ‘Video Game’ Technology to Fill Growing Need; http://www.mri.gouv.qc.ca/portail/_scripts/actualities/viewnew.sap?NewID=5516.
Ryu, Jonghyun, Jaehoon Jung, Seojoon Kim, and Seungmoon Choi, “Perceptually Transparent Vibration Rendering Using a Vibration Motor for Haptic Interaction,” 16 IEEE International Conference on Robot & Human Interactive Communication, Jeju, Korea, Aug. 26-29, 2007.
Sandor, Christian, Gudrun Klinker, “PAARTI: Development of an Intelligent Welding Gun for BMW,” PIA 2003, Tokyo, Japan, Technical University of Munich Department of Informatics, Oct. 7, 2003.
Sandor, Christian, Gudrun Klinker; “Lessons Learned in Designing Ubiquitous Augmented Reality User Interfaces,” Emerging Technologies of Augmented Reality Interfaces, Eds. Haller, M, Billinghurst, M., and Thomas, B., Idea Group Inc., 2006.
ShotOfFuel; Wii Head Tracking for 3D, http://www.youtube.com/watch?v=1x5ffF-0Wr4, Mar. 19, 2008.
Sternowski, Andreas; “Handheld Welding Torch with Position Detection,” Patente Fonds, Patent Portfolio, Sep. 21, 2011.
Stone, R. T., K. Watts, and P. Zhong, “Virtual Reality Integrated Welder Training, Welding Research,” Welding Journal, vol. 90, Jul. 2011, p. 136-s-141-s, https://app.aws.org/wj/supplement/wj201107_s136.pdf.
TCS News & Events: Press Release: TCS wins the “People Choice” award from National Science Foundation, USA, pp. 1-6; Press Release May 21, 2012; http://www.tsc.com/news_events/press_releases/Pages/TCS_People_Choice_award_Natio.
TeachWELD: Welding Simulator/Hands-On Learning for Welding: http://realityworks.com/products/teachweld-welding-simulator; 2012.
TEREBES; miscellaneous examples from http://www.terebes.uni-bremen.de.
The Rutgers Master II—New Design Force-Feedback Glove by Mourad Bouzit, Member, IEEE, Grigore Burdea, Senior Member, IEEE, George Popescu, Member, IEEE, and Rares Bolan, Student Member, found in IEEE/ASME Transactions on Mechatronics, vol. 7, No. 2, Jun. 2002.
Thefabricator.com—Arc Welding Article; Heston, Tim, Virtual welding—Training in a virtual environment gives welding students a leg up—Mar. 11, 2008.
Tschirner, Petra, Hillers, Bernd, and Graeser, Axel; “A Concept for the Application of Augmented Reality in Manual Gas Metal Arc Welding,” Proceedings of the International Symposium on Mixed and Augmented Reality, 2002.
Vicon: Motion Capture Systems: http://vicon.com/, Dec. 1998.
Virtual Reality Training Manual Module 1—Training Overview—A Guide for Gas Metal Arc Welding—EWI 2006.
VRTEX 360 Operator's Manual, Lincoln Electric, Oct. 2012.
VRTEX 360, Lincoln Electric, Dec. 2009.
Weld Training Solutions, REALWELD, The Lincoln Electric Company, Jul. 2015.
Welding Journal, American Welding Society, Nov. 2007, https://app.aws.org/wj/2007/11/WJ_2007_11.pdf.
White, S., et al., “Low-Cost Simulated MIG Welding for Advancement in Technical Training,” Virtual Reality, 15, 1, 69-81, Mar. 2011. ISSN:13594338 [Retrieved from EBSCOhost, Jun. 15, 2015].
Canadian Office Action Appln. No. 2,958,203 dated Oct. 4, 2019 (5 pages).
Canadian Office Action AppIn. No. 2,958,203 dated Jun. 10, 2021.
Native American Technologies, “Official NAMeS Web Site” web page, http://web.archive.org/web/20020903210256/http://www.natech-inc.com/names/names.html, published Sep. 3, 2002.
Related Publications (1)
Number Date Country
20190168333 A1 Jun 2019 US
Continuations (1)
Number Date Country
Parent 14516281 Oct 2014 US
Child 16270241 US