The present disclosure generally relates to sensor-based shaving systems and methods, and more particularly to, sensor-based shaving systems and methods of analyzing a user's shave event for determining a unique threshold value of the user.
Generally, shave performance can be summarized as a trade-off between closeness and irritation, where an individual typically can either achieve, on the one hand, an increased closeness of shave (removing more hair) but risking irritation or redness of his or her skin, or, on the other hand, a less close shave (leaving more hair) but reducing the risk of skin irritation. Individuals typically try to balance this trade-off to get their desired end result by manually regulating the quantity, direction and pressure (or load) of strokes applied during a shave. Taking an increased quantity of strokes, taking strokes going against the direction of hair growth or applying increased pressure during strokes will typically result in both increased closeness and increased risk of skin irritation. However, there is typically a threshold value for such shave parameters, going beyond this threshold value will yield minimal increase closeness benefit while yielding a high risk of unwanted skin irritation.
Thus a problem arises for existing shaving razors, and the use thereof, where individuals desiring a close shave generally apply too many strokes, too many strokes going against the hair growth direction and/or too much pressure (or load) during a shave session, under the false impression that it will improve the closeness of the end result. The problem is acutely pronounced given the various versions, brands, and types of shaving razors currently available to individuals, where each of the versions, brands, and types of shaving razors have different components, blades, sharpness, and/or otherwise different configurations, all of which can vary significantly in the quantity, direction and pressure (or load) of strokes required, and for each shaving razor type, to achieve a close shave (e.g., with little or no hair remaining) with little or no skin irritation. This problem is particularly acute because such existing shaving razors—which may be differently configured—provide little or no feedback or guidance to assist the individual achieve a close shave without skin irritation.
For the foregoing reasons, there is a need for sensor-based shaving systems and methods of analyzing a user's shave event for determining a unique threshold value of the user.
Sensor-based shaving systems and methods are described herein regarding analyzing a user's shave event for determining a unique threshold value of the user. Generally, the sensor-based shaving systems and methods comprise a grooming device (e.g., a shaving razor such as a wet shave razor). The grooming device can include a handle and a connecting structure for connecting a hair cutting implement (e.g., a razor blade). The grooming device can also comprise, or be associated with, a shave event sensor (e.g., a load sensor) to collect shaving data of a user. Live feedback and/or indicators may be provided the user via an indication, e.g., green light-emitting diode (LED) feedback when the user is applying pressure within or below a unique threshold value, or a red LED feedback when the user is applying pressure above the unique threshold value of the user.
Indication and/or load feedback features, as provided by the sensor-based shaving systems and methods, warn users to deter behavior that causes skin irritation, and encourages behavior that reduces skin irritation. For this reason, reducing a specific load threshold of a user (e.g., a unique threshold value) that the user should not exceed during a shave stroke can allow the user to prevent skin damage. For example, a vast majority of user shave strokes typically lie within the range of 50 gram-force (gf) to 500 gf, and the average peak load during a shave stroke is approximately in the range of 200 gf to 250 gf. Based on this data, a load threshold value of a user (e.g., a unique threshold value), for example 250 gf, can be set for a grooming device, e.g., at least as an initial target value, to encourage a user to change his or her behavior to bring his or her specific load or pressure (as applied to his or her skin or face) to within a lower half of the typical load range. Reduction of load or pressure to a user's skin or face provides an irritation benefit, and at a specific user level using the unique threshold value, specific to each user, as described herein.
Generally, in various embodiments, unique, specific, and/or personalized threshold values, as implemented by a grooming device as described herein, may be generated to provide corresponding specific users with unique, specific, and/or personalized indications of stroke count, stroke direction or stroke pressure (load) for the purpose of reducing skin irritation. As provided herein, a grooming device, having a handle and a shaving implement, and communicatively coupled to a sensor and a communication device, may be provided to the user. The communication device may transmit shaving data and/or datasets from the sensor to a processor based computing device (which may be on the handle and/or remote from the grooming device). The shaving data and/or dataset(s) may be analyzed by the processor based computing device to determine relevant shave events, e.g. whole shaves or individual strokes. Shave events from a first dataset may be analyzed by the processor based computing device to determine a unique threshold value of the user. In addition, subsequent dataset(s) may be compared to the unique threshold value of the user, where a comparison result, e.g., in the form of an indication (e.g., an LED indication or otherwise as described herein) may be communicated to the user.
More specifically, in accordance with various embodiments herein, a sensor-based shaving method of analyzing a user's shave event is disclosed for determining a unique threshold value of the user. The sensor-based shaving method may comprise providing a grooming device to a user. The grooming device may include a handle comprising a connecting structure, and a hair cutting implement connected to the connecting structure. The sensor-based shaving method may comprise providing a shave event sensor to the user, the shave event sensor is configured to measure a user behavior associated with a shave event. The sensor-based shaving method may further comprise providing a communication device to the user. The sensor-based shaving method may further comprise collecting a first dataset from the shave event sensor. The first dataset may comprise shave data defining the shave event. The sensor-based shaving method may further comprise analyzing the first dataset to determine baseline behavior data of the user. The sensor-based shaving method may further comprise analyzing the baseline behavior data to determine a unique threshold value of the user that is different from the baseline behavior data. The sensor-based shaving method may further comprise comparing one or more subsequent datasets, each comprising shave data of one or more corresponding shave events, to the unique threshold value of the user to determine comparison data. The sensor-based shaving method may further comprise providing, based on the comparison data, an indication to indicate a deviation from the threshold value and to influence the user behavior.
In additional embodiments, as described herein, a sensor-based shaving system is configured to analyze a user's shave event for determining a unique threshold value of the user. The sensor-based shaving system comprises a grooming device having (i) a handle comprising a connecting structure, and (ii) a hair cutting implement. The hair cutting implement is configured to connect with the connecting structure. The sensor-based shaving system may further comprise a shave event sensor configured to measure a user behavior associated with a shave event of a user. The sensor-based shaving system may further comprise a communication device. The sensor-based shaving system may further comprise a processor, configured onboard or offboard the grooming device, and communicatively coupled to the shave event sensor and the communication device. In various embodiments, the processor may further be configured to execute computing instructions stored on a memory communicatively coupled to the processor. The instructions may cause the processor to collect a first dataset from the shave event sensor. The first dataset may comprise shave data defining the shave event. The instructions may further cause the processor to analyze the first dataset to determine baseline behavior data of the user. The instructions may further cause the processor to analyze the baseline behavior data to determine a unique threshold value of the user that is different from the baseline behavior data. The instructions may further cause the processor to compare one or more subsequent datasets, each comprising shave data of one or more corresponding shave events, to the unique threshold value of the user to determine comparison data. The instructions may further cause the processor to provide, based on the comparison data, an indication to indicate a deviation from the threshold value and to influence the user behavior.
In accordance with the above, and with the disclosure herein, the present disclosure includes improvements in computer functionality or in improvements to other technologies at least because the disclosure describes that, e.g., in some embodiments, a grooming device and/or a server to which the grooming device is communicatively connected, is improved where the intelligence or predictive ability of the server or grooming device is enhanced by a trained (e.g., machine learning trained) sensor-based learning model. In such embodiments, the sensor-based learning model, executing on the server, is able to accurately identify, based on shave data and/or datasets of a specific user, a unique threshold value designed for implementation on a grooming device to provide an indication to indicate a deviation from the threshold value and to influence the user behavior. That is, the present disclosure, with respect to some embodiments, describes improvements in the functioning of the computer itself or “any other technology or technical field” because the grooming device, and/or the server to which it is communicatively connected, is enhanced with a sensor-based learning model to accurately predict, detect, or determine unique threshold values of various users. This improves over the prior art at least because existing systems lack such predictive or classification functionality and are simply not capable of accurately analyzing shave data and/or datasets of a specific user to determine a unique threshold value of a user that is designed for implementation on a grooming device to provide an indication to indicate a deviation from the unique threshold value and to influence the user behavior.
For similar reasons, the present disclosure relates to improvement to other technologies or technical fields at least because the present disclosure describes or introduces improvements to computing devices in the field of shaving razors, whereby a grooming device, as described herein, is updated and enhanced with a unique threshold value, implemented on the grooming device, to provide an indication to indicate a deviation from the unique threshold value and to influence the user behavior.
In addition, the present disclosure includes applying certain of the claim elements with, or by use of, a particular machine, e.g., a grooming device having a handle comprising a connecting structure, and a hair cutting implement, the hair cutting implement being connected to the connecting structure. In addition present disclosure includes applying certain of the claim elements with, or by use of, a particular machine, e.g., a shave event sensor configured to measure a user behavior associated with a shave event of a user.
In addition, the present disclosure includes specific features other than what is well-understood, routine, conventional activity in the field, or adding unconventional steps that confine the claim to a particular useful application, e.g., analyzing a user's shave event for determining a unique threshold value of the user as described herein.
Advantages will become more apparent to those of ordinary skill in the art from the following description of the preferred embodiments which have been shown and described by way of illustration. As will be realized, the present embodiments may be capable of other and different embodiments, and their details are capable of modification in various respects. Accordingly, the drawings and description are to be regarded as illustrative in nature and not as restrictive.
The Figures described below depict various aspects of the system and methods disclosed therein. It should be understood that each Figure depicts an embodiment of a particular aspect of the disclosed system and methods, and that each of the Figures is intended to accord with a possible embodiment thereof. Further, wherever possible, the following description refers to the reference numerals included in the following Figures, in which features depicted in multiple Figures are designated with consistent reference numerals.
There are shown in the drawings arrangements which are presently discussed, it being understood, however, that the present embodiments are not limited to the precise arrangements and instrumentalities shown, wherein:
The Figures depict preferred embodiments for purposes of illustration only. Alternative embodiments of the systems and methods illustrated herein may be employed without departing from the principles of the invention described herein.
Sensor-based shaving system 100 further comprises a shave event sensor 154 (e.g., a load sensor) configured to measure a user behavior associated with a shave event of a user. Shave event sensor 154 may comprise one or more of a displacement sensor, a load sensor, a movement sensor, an optical sensor, an audio sensor, a temperature sensor, a mechanical button, an electronic button, or a software button (e.g., the software button being part of an app running on a user computing device in communication with grooming device 150). In the embodiment of
Sensor-based shaving system 100 further comprises a communication device. In various embodiments the communication device may be a wired or wireless transceiver positioned on or within grooming device 150. The communication device may comprise any one or more of a wired connection or a wireless connection, such as a Bluetooth connection, a Wi-Fi connection, a cellular connection and/or an infrared connection. In various embodiments, the communication device is communicatively coupled to the grooming device, a charger of the grooming device, a base station of the grooming device, or a computing device having a processor (e.g., user computing device 111c1 as illustrated in
Sensor-based shaving system 100 further comprises a processor 156 (e.g., a microprocessor) and is communicatively coupled to shave event sensor 154 and the communication device. Processor 156 is configured to receive, transmit, and analyze data (e.g., shave data) as provided from shave event sensor 154 and/or the communication device. In various embodiments, processor 156 is configured to execute computing instructions stored on a memory (e.g. of grooming device 150) communicatively coupled to processor 156. The instructions may cause processor 156 to collect a first dataset from the shave event sensor. The first dataset may comprise shave data defining a shave event. In various embodiments described herein, the first dataset may comprise data defining one or more shaving strokes, one or more shaving sessions, or user input (e.g., configuration data or profile data of a user).
The instructions may further cause processor 156 to analyze the first dataset to determine baseline behavior data of the user. Baseline behavior data of the user may be calculated by processor 156, which may be onboard or offboard (e.g., remote) to a grooming device, based on any one or more of a total value of the first dataset, an average value of the first dataset, a maximum value of the first dataset, a minimum value of the first dataset, an average peak value of the first dataset, a frequency of the first dataset, and/or an integration of the first dataset.
The instructions may further cause processor 156 to analyze the baseline behavior data to determine a unique threshold value of the user. The unique threshold value is different from the baseline behavior data. For example, the unique threshold value may comprise one or more of a load value, a temperature value, a shave count, a stroke count, a stroke speed, a stroke distance, a stroke duration, a shave duration, a stroke location, a shave location, a device parameter, a hair parameter, and/or a skin parameter. In various embodiments, the unique threshold value of a user may be calculated based an offset, a percentile, an average, and/or a statistical derivation from the baseline behavior data.
The instructions may further cause processor 156 to compare one or more subsequent datasets, each comprising shave data of one or more corresponding shave events, to the unique threshold value of the user to determine comparison data. In various embodiments, the comparison data may comprise a positive value, a negative value, a neutral value, an absolute value, or a relative value.
The instructions may further cause processor 156 to provide, based on the comparison data, an indication 152 to indicate a deviation from the threshold value and to influence the user behavior. For example, in the embodiment of
In some embodiments, the indication may be further based on post processing data generated, e.g., by processor 156, via application of one or more of signal smoothing, a hysteresis analysis, a time delay analysis, or signal processing to the comparison data.
In some embodiments, the indication provided by the communication device is customizable by the user. For example, in various embodiments, the communication device is configured to provide the indication directly to the user or, additionally or alternatively, to another device (e.g., user computing device 111c1 as illustrated in
In the embodiment of
Additionally, or alternatively, comparing of the one or more subsequent datasets to the unique threshold value of the user to determine comparison data, as described above, may be implemented by an offboard processor (e.g., a processor of server(s) 102 as described for
In the example embodiment of
Memorie(s) 106 may include one or more forms of volatile and/or non-volatile, fixed and/or removable memory, such as read-only memory (ROM), electronic programmable read-only memory (EPROM), random access memory (RAM), erasable electronic programmable read-only memory (EEPROM), and/or other hard drives, flash memory, MicroSD cards, and others. The memorie(s) 106 may store an operating system (OS) (e.g., Microsoft Windows, Linux, UNIX, etc.) capable of facilitating the functionalities, apps, methods, or other software as discussed herein. The memorie(s) 106 may also store a sensor-based learning model 108, which may be an artificial intelligence based model, such as a machine learning model, trained on shave data or datasets, as described herein. Additionally, or alternatively, the sensor-based learning model 108 may also be stored in database 105, which is accessible or otherwise communicatively coupled to server(s) 102. The memories 106 may also store machine readable instructions, including any of one or more application(s), one or more software component(s), and/or one or more application programming interfaces (APIs), which may be implemented to facilitate or perform the features, functions, or other disclosure described herein, such as any methods, processes, elements or limitations, as illustrated, depicted, or described for the various flowcharts, illustrations, diagrams, figures, and/or other disclosures herein. For example, at least some of the applications, software components, or APIs may be, include, otherwise be part of, an imaging based machine learning model or component, such as the sensor-based learning model 108, where each may be configured to facilitate their various functionalities discussed herein. It should be appreciated that one or more other applications may be envisioned and that are executed by the processor(s) 104.
The processor(s) 104 may be connected to the memories 106 via a computer bus responsible for transmitting electronic data, data packets, or otherwise electronic signals to and from the processor(s) 104 and memories 106 in order to implement or perform the machine readable instructions, methods, processes, elements or limitations, as illustrated, depicted, or described for the various flowcharts, illustrations, diagrams, figures, and/or other disclosures herein.
The processor(s) 104 may interface with the memory 106 via the computer bus to execute the operating system (OS). The processor(s) 104 may also interface with the memory 106 via the computer bus to create, read, update, delete, or otherwise access or interact with the data stored in the memories 106 and/or the database 105 (e.g., a relational database, such as Oracle, DB2, MySQL, or a NoSQL based database, such as MongoDB). The data stored in the memories 106 and/or the database 105 may include all or part of any of the data or information described herein, including, for example, shave data or datasets (e.g., first or subsequent datasets regarding shave data) or other information of the user, user profile data including demographic, age, race, skin type, or the like, and/or previous shave data associated with one or more shaving devices or implements. For example, in some embodiments, user profile data may be obtained via a questionnaire in a software app associated with the grooming device 150, e.g., as described herein for
In some embodiments, unique threshold values or datasets between different users or groups of users may be compared. For example, in an embodiment where grooming device 150 was of a first user, and grooming device 170 was of a second user, then unique threshold values or datasets of the first user and the second user may be compared, and may be used, e.g., to generate or update a starting or common baseline for a new user or for new grooming devices.
Additionally, or alternatively, calibration data may be collected from multiple grooming devices (e.g., grooming device 150 and grooming device 170) to compare data usage between users. Such calibration data may be used, e.g., to generate or update a starting or common baseline for a new user or to calibrate a new grooming device. In one embodiment, calibration data may be captured during production and compared. In such embodiments, the calibration data, as collected from multiple user grooming devices (e.g., grooming device 150 and grooming device 170) may be used to create a standardized reference point (i.e., a calibration value) for each grooming device. In such embodiments, a known load input is created for the shave event sensor. Output data of the sensor may be determined for a given grooming device. A calibration value may be used to convert raw sensor values, as output from a sensor of a grooming device, into actual or (i.e., real world measurable) pressure or load values. The actual pressure or load values may then be used to compare datasets from different devices (e.g., of difference users, such as grooming device 150 and grooming device 170) against each other. In some embodiments, users may receive a communication (e.g., from server(s) 102) regarding how their personal threshold compares to other user(s), including a wider population of user(s) in various regions. For example, after performing an analysis of a first or subsequent dataset, server(s) 102 may communicate the analysis to a user to let the user know how their behavior compares to either specific individuals, or an overall population, or combinations thereof.
In further embodiments, profile data may be loaded from a previous device, e.g., where a user purchases a same type, different, otherwise new grooming device. In such embodiments, a same type, different, otherwise new grooming device may receive previously collected user profile data for a previous or different grooming device. The same type, different, otherwise new grooming device may be then configured with the unique threshold value based on the user profile data in order to setup the same type, different, otherwise new grooming device to behave similarly to the previous or different grooming device.
In some embodiments, a translation of a previous unique threshold value may be implemented to transition to a new threshold if old and new devices have hardware differences. In such embodiments, previously collected user profile data of an old grooming device may be adjusted to match characteristics (e.g., hardware characteristics) of a new grooming device.
With reference to
Server(s) 102 may further include or implement an operator interface configured to present information to an administrator or operator and/or receive inputs from the administrator or operator. As shown in
According to some embodiments, an administrator or operator may access the server 102 via terminal 109 to review information, make changes, input training data, and/or perform other functions.
As described above herein, in some embodiments, server(s) 102 may perform the functionalities as discussed herein as part of a “cloud” network or may otherwise communicate with other hardware or software components within the cloud to send, retrieve, or otherwise analyze data or information described herein.
In general, a computer program or computer based product, application, or code (e.g., the model(s), such as AI models, or other computing instructions described herein) may be stored on a computer usable storage medium, or tangible, non-transitory computer-readable medium (e.g., standard random access memory (RAM), an optical disc, a universal serial bus (USB) drive, or the like) having such computer-readable program code or computer instructions embodied therein, wherein the computer-readable program code or computer instructions may be installed on or otherwise adapted to be executed by the processor(s) 104 (e.g., working in connection with the respective operating system in memories 106) to facilitate, implement, or perform the machine readable instructions, methods, processes, elements or limitations, as illustrated, depicted, or described for the various flowcharts, illustrations, diagrams, figures, and/or other disclosure herein. In this regard, the program code may be implemented in any desired program language, and may be implemented as machine code, assembly code, byte code, interpretable source code or the like (e.g., via Golang, Python, C, C++, C#, Objective-C, Java, Scala, ActionScript, JavaScript, HTML, CSS, XML, etc.).
As shown in
Server(s) 102 are also communicatively connected, via computer network 120, to user computing devices, including user computing device 111c1 and user computing device 112c1, via base stations 111b and 112b. Base stations 111b and 112b may comprise cellular base stations, such as cell towers, communicating to user computing devices (e.g., user computing device 111c1 and user computing device 112c1), via wireless communications 121 based on any one or more of various mobile phone standards, including NMT, GSM, CDMA, UMMTS, LTE, 5G, or the like.
User computing devices, including user computing device 111c1 and user computing device 112c1 may connect to grooming device 150 and grooming device 170 either directly or via computer network devices 160 and 180. Additionally, or alternatively, grooming device 150 and grooming device 170 may connect to server(s) 102 over computer network 120 via either base stations 111b or 112b and/or computer network devices 160 and 180.
User computing devices (e.g., user computing device 111c1 and user computing device 112c1) may comprise mobile devices and/or client devices for accessing and/or communications with server(s) 102. In various embodiments, user computing devices (e.g., user computing device 111c1 and user computing device 112c1) may comprise a cellular phone, a mobile phone, a tablet device, a personal data assistance (PDA), or the like, including, by non-limiting example, an APPLE iPhone or iPad device or a GOOGLE ANDROID based mobile phone or table. In addition, the user computing devices (e.g., user computing device 111c1 and user computing device 112c1) may implement or execute an operating system (OS) or mobile platform such as Apple's iOS and/or Google's Android operating system. Any of the user computing devices (e.g., user computing device 111c1 and user computing device 112c1) may comprise one or more processors and/or one or more memories for storing, implementing, or executing computing instructions or code, e.g., a mobile application, as described in various embodiments herein.
User computing devices (e.g., user computing device 111c1 and user computing device 112c1) may comprise a wireless transceiver to receive and transmit wireless communications 121 and/or 122 to and from base stations 111b and/or 112b. In this way, shave data and/or datasets may be transmitted via computer network 120 to server(s) 102 for determining unique threshold value(s) and/or training of model(s) as describe herein.
User computing devices (e.g., user computing device 111c1 and user computing device 112c1) may include a display screen for displaying graphics, images, text, data, interfaces, graphic user interfaces (GUI), and/or such visualizations or information as described herein.
At block 304, method 300 further comprises providing a shave event sensor (e.g., shave event sensor 154) to the user. The shave event sensor is configured to measure a user behavior associated with a shave event. For example, as shown for
At block 306, method 300 further comprises providing a communication device to the user. The communication device may comprise any one or more of a wired connection or a wireless connection, including a Bluetooth connection, a Wi-Fi connection, a cellular connection, and/or an infrared connection. In various embodiments, the communication device communicatively coupled to the grooming device (e.g., grooming device 150), a charger of the grooming device, a base station of the grooming device, or a computing device (e.g., user computing device 111c1 as illustrated in
At block 308, method 300 further comprises collecting a first dataset from the shave event sensor, the first dataset comprising shave data defining the shave event. In various embodiments, the shave data and/or dataset(s) (e.g., first or subsequent datasets) may be transmitted to server(s) 102. In some embodiments, such shave data and/or datasets may be transmitted every time the grooming device (e.g., grooming device 150) is used. However, it is to be understood, that other transmission schemes, such as sample based transmission (where less than all data) is transmitted to server(s) 102 from time to time.
With reference to
In various embodiments, if the stroke count exceeds a threshold then a shave event may be identified. For example,
With reference to
Implementation of a diagnostic shave may be communicated to the user by a software application (app), e.g., as implemented on a user computing device. For example,
In some embodiments, a diagnostic shave is used to configure or setup a grooming device (e.g., grooming device 150) for a user during first use. For example, when a new grooming device is acquired by a user, an out-of-box or factory default status may be detected by the grooming device software detecting that a diagnostic mode flag is set in the memory of the grooming device 150 and/or at the server(s) 102 for a given grooming device. Such diagnostic mode flag could trigger the grooming device 150 to set the indicator (e.g., indication 152) of the grooming device to a diagnostic indicator color (e.g., blue), and then implement a diagnostic shave.
In various embodiments, server(s) 102 may receive a dataset of a grooming device (e.g., grooming device 150) and detect that the dataset is a first dataset where the diagnostic mode flag is set to a value of “true.” Server(s) 102 may then analyze the first dataset to determine a unique threshold value for the user as described herein.
In some embodiments, a unique threshold value may be determined by measuring peak height for one or more given strokes in a dataset of shave data. For example, in the embodiment of
In the embodiment of
In some embodiments, a user's unique threshold value may be adjusted over time based on ongoing shave data so that the grooming device or otherwise sensor-based shaving is self-learning. For example,
Additionally, or alternatively, grooming device 150 and/or server(s) 102 may implement self-learning via an artificial intelligence or machine learning model. In such embodiments, a sensor-based learning model (e.g., sensor-based learning model 108 as described for
In various embodiments, a machine learning imaging model, as described herein (e.g. sensor-based learning model 108), may be trained using a supervised or unsupervised machine learning program or algorithm. The machine learning program or algorithm may employ a neural network, which may be a convolutional neural network, a deep learning neural network, or a combined learning module or program that learns in one or more features or feature datasets (e.g., pressure or load data of any of datasets 402, 452, and/or 502 as described herein). The machine learning programs or algorithms may also include natural language processing, semantic analysis, automatic reasoning, regression analysis, support vector machine (SVM) analysis, decision tree analysis, random forest analysis, K-Nearest neighbor analysis, naïve B ayes analysis, clustering, reinforcement learning, and/or other machine learning algorithms and/or techniques. In some embodiments, the artificial intelligence and/or machine learning based algorithms may be included as a library or package executed on imaging server(s) 102. For example, libraries may include the TENSORFLOW based library, the PYTORCH library, and/or the SCIKIT-LEARN Python library.
Machine learning may involve identifying and recognizing patterns in existing data (such as training a model based on pressure or load data of a user when shaving with a grooming device) in order to facilitate making predictions or identification for subsequent data (such as using the model to generate a unique threshold value for the user based on first datasets and/or subsequent datasets).
Machine learning model(s), such as the sensor-based learning model described herein for some embodiments, may be created and trained based upon example data (e.g., “training data” and related load data) inputs or data (which may be termed “features” and “labels”) in order to make valid and reliable predictions for new inputs, such as testing level or production level data or inputs. In supervised machine learning, a machine learning program operating on a server, computing device, or otherwise processor(s), may be provided with example inputs (e.g., “features”) and their associated, or observed, outputs (e.g., “labels”) in order for the machine learning program or algorithm to determine or discover rules, relationships, patterns, or otherwise machine learning “models” that map such inputs (e.g., “features”) to the outputs (e.g., labels), for example, by determining and/or assigning weights or other metrics to the model across its various feature categories. Such rules, relationships, or otherwise models may then be provided subsequent inputs in order for the model, executing on the server, computing device, or otherwise processor(s), to predict, based on the discovered rules, relationships, or model, an expected output.
In unsupervised machine learning, the server, computing device, or otherwise processor(s), may be required to find its own structure in unlabeled example inputs, where, for example multiple training iterations are executed by the server, computing device, or otherwise processor(s) to train multiple generations of models until a satisfactory model, e.g., a model that provides sufficient prediction accuracy when given test level or production level data or inputs, is generated. The disclosures herein may use one or both of such supervised or unsupervised machine learning techniques.
For example, server(s) 102 may receive load data (e.g., of datasets 402, 452, and/or 502) and train a sensor-based learning model to generate a unique threshold value of a user. In some embodiments, the sensor-based learning model may be retrained upon an occurrence of a pre-determined trigger situation (e.g., such as elapsed amount of time, detection of first use, or after an upgrade to the software of the grooming device). In some embodiments, the sensor-based learning model 108 may be further trained with user profile data in combination with the load or pressure data, where the user profile data adjusts the output of the sensor-based learning model based on the user's responses or input as to the user profile data.
Additionally, or alternatively, a user can manually adjust a unique threshold value up or down, e.g., based on their own personal preference or goals. In such embodiments, a unique threshold value is configured so to be adjustable by the user. Such embodiments allow the user to adjust the unique threshold value by adjusting different threshold percentage values or by setting different modes. For example, while a self-learning model, as described herein, may be used to set a unique threshold value, measuring load correctly for most users, a user may want to manually adjust their own unique threshold value up or down. In such embodiments, a user may select one or more modes (e.g. high mode, medium mode, and/or low mode) to adjust their threshold. The selection may be made, e.g., via a software application (app) executing on a user computing device (e.g., as shown and described for
With reference to
In some embodiments, different unique threshold values may be determined for different stroke types. For example, in such embodiments, server(s) 102 may compare different ones of one or more types of shave strokes to each of various unique threshold values, e.g., a first unique threshold value and a second unique threshold value. In such embodiments, the first unique threshold value may be different from the second unique threshold value. Such embodiments, would provide different thresholds for different scenarios. As an example, this can include a lower load threshold for up-strokes versus down-strokes, and/or a lower threshold for neck strokes versus face strokes. Different thresholds for different uses allow for optimization balance between closeness of shave and irritation by indicating to the user to press harder in face or skin areas (or related shaving scenarios) with a low risk of irritation, but at the same time encouraging the user to be more careful (i.e., decrease pressure or load) in face or skin areas (or related shaving scenarios) with a high risk.
Additionally, or alternatively, multiple thresholds could be set for a grooming device (e.g., grooming device 150) relative to a same average peak value of the shave data of the diagnostic shave as described herein. Additionally, or alternatively, server(s) 102 may implement a diagnostic shave offline to classify individual strokes (e.g., of one or more of datasets 402, 452, and/or 502) into groups. Server(s) 102 may then set one or more unique threshold value(s) based on an average peak value of each group. In some embodiments, live location data and/or direction aware load feedback data may be generated by the grooming device (e.g., grooming device 150) by analyzing each stroke dynamically to determine the location/direction. Such live location data and/or direction aware load feedback may be used by the grooming device 150 to switch or apply the relevant unique threshold value dynamically based on the grooming device's location relevant to the user's face, neck, and/or body.
Additionally, or alternatively, in some embodiments, server(s) 102 may analyze the baseline behavior data of a user (e.g., as generated for a diagnostic shave) to determine a second unique threshold value of the user. The second unique threshold value may differ from the baseline behavior data. In such embodiments, multiple thresholds (e.g., for high, medium, and/or low zones in a given dataset, such as any one of more of datasets 402, 452, and/or 502) may be generated by server(s) 102. In such embodiments, a lower unique threshold value may be set so that the grooming device (e.g., grooming device 150) shows low green when not positioned on the user's face or skin (e.g., indicating zero load) and high green when positioned on the user's face or skin (e.g. indicating below the load threshold).
With reference to
In contrast, bottom portion 510b indicates a region of load data 456, as detected by shave event sensor 154, where the load data is below the unique threshold value threshold value 510t. When load data, as detected by shave event sensor 154, is below the unique value threshold value 510t, then grooming device 150 will provide an indication (e.g., indication 152) indicating to the user that the pressure or load is within acceptable limits or is otherwise within or below the current unique threshold value (e.g., unique value threshold value 510t). In some embodiments, the indication is a green LED light that activates on grooming device 150 as a visual indicator.
In some embodiments, a user may select to re-run a diagnostic shave to update the user's unique threshold value. In such embodiments, server(s) 102 may determine, upon receiving a manual update request of the user (e.g., by the user sending the request via grooming device 150 and/or a software app associated with grooming device 150), an updated unique threshold value based on one or more subsequent datasets received by grooming device 150. For example, a user could manually re-run diagnostic shave setup every so often, e.g., every 10 shaves, to get a get an updated unique threshold value that may correspond to the user's new behavior and/or habits from previously using grooming device 150.
Additionally, or alternatively, in some embodiments, a unique threshold may be determined based on a first dataset of only a few strokes rather than a whole shave (e.g., during a first shave with grooming device 150). The grooming device 150 may then begin providing, based on the comparison data, an indication (e.g., indication 152), e.g., via the communication device, during the first shave with the grooming device 150.
Additionally, or alternatively, in some embodiments, the grooming device may begin to provide indications immediately (i.e., without having completed a diagnostic shave). In such embodiments, comparison data, as described herein, may be generated (e.g., by server(s) 102) during collection of a first dataset by comparing at least a portion of the first dataset to either a pre-determined threshold value, a threshold value manually selected by the user, a threshold calculated based on user profile data, or a threshold calculated based on datasets collected from other relevant users.
Aspects Of The Disclosure
The following aspects are provided as examples in accordance with the disclosure herein and are not intended to limit the scope of the disclosure.
1. A sensor-based shaving method of analyzing a user's shave event for determining a unique threshold value of the user, the sensor-based shaving method comprising the steps of: (a) providing a grooming device to a user, the grooming device comprising: (i) a handle comprising a connecting structure, and (ii) a hair cutting implement, the hair cutting implement being connected to the connecting structure; (b) providing a shave event sensor to the user, the shave event sensor configured to measure a user behavior associated with a shave event; (c) providing a communication device to the user; (d) collecting a first dataset from the shave event sensor, the first dataset comprising shave data defining the shave event; (e) analyzing the first dataset to determine baseline behavior data of the user; (f) analyzing the baseline behavior data to determine a unique threshold value of the user that is different from the baseline behavior data; (g) comparing one or more subsequent datasets, each comprising shave data of one or more corresponding shave events, to the unique threshold value of the user to determine comparison data, and; (h) providing, based on the comparison data, an indication to indicate a deviation from the threshold value and to influence the user behavior.
2. The sensor-based shaving method of aspect 1, wherein the shave event sensor is communicatively coupled to the grooming device, a charger of the grooming device, a base station of the grooming device, or a computing device having a processor executing a digital application.
3. The sensor-based shaving method of any one of aspects 1-2, wherein the shave event sensor comprises a displacement sensor, a load sensor, a movement sensor, an optical sensor, an audio sensor, a temperature sensor, a mechanical button, an electronic button, or a software button.
4. The sensor-based shaving method of any one of aspects 1-3, wherein the first dataset comprises data defining one or more shaving strokes, one or more shaving sessions, or one or more user inputs.
5. The sensor-based shaving method of any one of aspects 1-4, wherein the unique threshold value is a load value, a shave count, a stroke count, a stroke direction, a stroke speed, a stroke frequency, a stroke distance, a stroke duration, a shave duration, a stroke location, a shave location, a temperature value, a device parameter, a hair parameter, or a skin parameter.
6. The sensor-based method of any one of aspects 1-5, wherein the comparing of the one or more subsequent datasets to the unique threshold value of the user to determine comparison data is implemented by an offboard processor communicatively coupled to the grooming device via a wired or wireless computer network, the offboard processor configured to execute as part of at least one of: a base station of the grooming device, a mobile device, or a remote computing device.
7. The sensor-based method of any one of aspects 1-6, wherein the comparing of the one or more subsequent datasets to the unique threshold value of the user to determine comparison data is implemented by an onboard processor onboard the grooming device.
8. The sensor-based shaving method of aspect any one of aspects 1-7, wherein the baseline behavior data of the user is calculated based on a total value of the first dataset, an average value of the first dataset, a maximum value of the first dataset, a minimum value of the first dataset, an average peak value of the first dataset, a frequency of the first dataset, or an integration of the first dataset.
9. The sensor-based shaving method of aspect any one of aspects 1-8, wherein the unique threshold value of the user is calculated based an offset, a percentile, an average, or a statistical derivation from the baseline behavior data.
10. The sensor-based shaving method of aspect any one of aspects 1-9, wherein the comparison data comprises a positive value, negative value, a neutral value, an absolute value, or a relative value.
11. The sensor-based shaving method of any one of aspects 1-10 further comprising post processing data generated by the application of one or more of signal smoothing, a hysteresis analysis, a time delay analysis, or signal processing to the comparison data, wherein the indication is further based on the post processing data.
12. The sensor-based shaving method of any one of aspects 1-11, wherein the communication device is communicatively coupled to the grooming device, a charger of the grooming device, a base station of the grooming device, or a computing device having a processor executing a digital application.
13. The sensor-based shaving method of any one of aspects 1-12, wherein the indication comprises a visual indicator, a light emitting diode (LED), a vibrator, or an audio indicator.
14. The sensor-based shaving method of any one of aspects 1-13, wherein the communication device comprises a wired connection, a Bluetooth connection, a Wi-Fi connection, or an infrared connection.
15. The sensor-based shaving method of any one of aspects 1-14, wherein the communication device is configured to provide the indication directly to the user or to another device.
16. The sensor-based shaving method of any one of aspects 1-15, wherein the communication device is configured to provide the indication directly to the user, wherein a positive state is indicated via a green signal, and wherein a negative state is indicated via a red signal.
17. The sensor-based shaving method of any one of aspects 1-16, wherein the indication provided by the communication device is customizable by the user.
18. The sensor-based shaving method any one of aspects 1-17 further comprising analyzing the baseline behavior data to determine a second unique threshold value of the user, the second unique threshold value different from the baseline behavior data.
19. The sensor-based shaving method of any one of aspects 1-18, further comprising analyzing the one or more subsequent datasets to determine one or more types of shave strokes.
20. The sensor-based shaving method of aspect 19, wherein a type of shave stroke comprises a direction, a speed, a frequency, a hair cutting status, a hair hydration, a skin hydration, a blade age, a blade wear, a shave prep status, a lubrication level, a friction level, a temperature, a humidity, an overstroke status, a facial zone, a body location, a geographical location, or a local weather condition of a shave stroke.
21. The sensor-based shaving method of aspect 19 further comprising comparing different ones of the one or more types of shave strokes to each of the unique threshold value and a second unique threshold value, wherein the unique threshold value is different from the second unique threshold value.
22. The sensor-based shaving method of aspect any one of aspects 1-21, wherein the unique threshold value is adjustable by the user.
23. The sensor-based shaving method of aspect any one of aspects 1-22 further comprising determining, upon a manual update request of the user, an updated unique threshold value based on the one or more subsequent datasets.
24. The sensor-based shaving method of aspect any one of aspects 1-23 further comprising training a sensor-based learning model communicatively coupled to the shave event sensor, the sensor-based learning model trained with the data of at least the first dataset, the sensor-based learning model configured to analyze the one or more subsequent datasets to adjust the unique threshold value of the user.
25. The sensor-based shaving method of aspect 24, further comprising retraining the sensor-based learning model upon an occurrence of a pre-determined trigger situation.
26. The sensor-based shaving method of aspect 24, wherein the sensor-based learning model is further trained with user profile data.
27. The sensor-based shaving method of any one of aspects 1-26, further comprising collecting user profile data and analyzing the user profile data with the baseline behavior data to determine the unique threshold value of the user.
28. The sensor-based shaving method of any one of aspects 1-27, further comprising generating the comparison data during collection of the first dataset by comparing at least a portion of the first dataset to either a pre-determined threshold value, a threshold value manually selected by the user, or a threshold calculated based on datasets collected from other relevant users.
29. The sensor-based shaving method of aspect 28 further comprising providing, based on the comparison data, the indicator via the communication device during the collection of the first dataset.
30. The sensor-based shaving method of any one of aspects 1-29 further comprising collecting calibration data from the grooming device.
31. The sensor-based shaving method of aspect 30, further comprising comparing unique threshold values or datasets between different users or groups of users.
32. The sensor-based shaving method of any one of aspects 1-31, further comprising receiving previously collected user profile data for a different grooming device, and configuring the grooming device with the unique threshold value based on the user profile data.
33. The sensor-based shaving method of aspect 32, further comprising adjusting the previously collected user profile data to match characteristics of the grooming device, wherein the grooming device is a new device.
34. The sensor-based shaving method of any one of aspects 1-33, wherein the grooming device comprises at least one of an electric shaver, a shaving razor, or an epilator.
35. A sensor-based shaving system configured to analyze a user's shave event for determining a unique threshold value of the user, the sensor-based shaving system comprising: a grooming device having (i) a handle comprising a connecting structure, and (ii) a hair cutting implement, the hair cutting implement being connected to the connecting structure; a shave event sensor configured to measure a user behavior associated with a shave event of a user; a communication device; and a processor, configured onboard or offboard the grooming device, and communicatively coupled to the shave event sensor and the communication device, wherein the processor is configured to execute computing instructions stored on a memory communicatively coupled to the processor, the instructions causing the processor to: collect a first dataset from the shave event sensor, the first dataset comprising shave data defining the shave event, analyze the first dataset to determine baseline behavior data of the user, analyze the baseline behavior data to determine a unique threshold value of the user that is different from the baseline behavior data, compare one or more subsequent datasets, each comprising shave data of one or more corresponding shave events, to the unique threshold value of the user to determine comparison data, and, provide, based on the comparison data, an indication to indicate a deviation from the threshold value and to influence the user behavior.
Additional Considerations
Although the disclosure herein sets forth a detailed description of numerous different embodiments, it should be understood that the legal scope of the description is defined by the words of the claims set forth at the end of this patent and equivalents. The detailed description is to be construed as exemplary only and does not describe every possible embodiment since describing every possible embodiment would be impractical. Numerous alternative embodiments may be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims.
The following additional considerations apply to the foregoing discussion. Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Structures and functionality presented as separate components in example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.
Additionally, certain embodiments are described herein as including logic or a number of routines, subroutines, applications, or instructions. These may constitute either software (e.g., code embodied on a machine-readable medium or in a transmission signal) or hardware. In hardware, the routines, etc., are tangible units capable of performing certain operations and may be configured or arranged in a certain manner. In example embodiments, one or more computer systems (e.g., a standalone, client or server computer system) or one or more hardware modules of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware module that operates to perform certain operations as described herein.
The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions. The modules referred to herein may, in some example embodiments, comprise processor-implemented modules.
Similarly, the methods or routines described herein may be at least partially processor-implemented. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented hardware modules. The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processor or processors may be located in a single location, while in other embodiments the processors may be distributed across a number of locations.
The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the one or more processors or processor-implemented modules may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other embodiments, the one or more processors or processor-implemented modules may be distributed across a number of geographic locations.
This detailed description is to be construed as exemplary only and does not describe every possible embodiment, as describing every possible embodiment would be impractical, if not impossible. A person of ordinary skill in the art may implement numerous alternate embodiments, using either current technology or technology developed after the filing date of this application.
Those of ordinary skill in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above described embodiments without departing from the scope of the invention, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the inventive concept.
The patent claims at the end of this patent application are not intended to be construed under 35 U.S.C. § 112(f) unless traditional means-plus-function language is expressly recited, such as “means for” or “step for” language being explicitly recited in the claim(s). The systems and methods described herein are directed to an improvement to computer functionality, and improve the functioning of conventional computers.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
3373747 | Tapper | Mar 1968 | A |
3678944 | Berry | Jul 1972 | A |
9821479 | Zuidervaart | Nov 2017 | B2 |
10131061 | Krans | Nov 2018 | B2 |
10882199 | Zandsteeg | Jan 2021 | B2 |
11027442 | Fuellgrabe | Jun 2021 | B2 |
11186001 | Uit De Bulten | Nov 2021 | B2 |
11224981 | Westerhof | Jan 2022 | B2 |
11260550 | Neyer | Mar 2022 | B2 |
11318630 | Zandsteeg | May 2022 | B2 |
11504866 | Tsegenidis | Nov 2022 | B2 |
20020088121 | Jacobsen | Jul 2002 | A1 |
20050216035 | Kraus | Sep 2005 | A1 |
20100170052 | Ortins | Jul 2010 | A1 |
20110197726 | Kraus | Aug 2011 | A1 |
20120227554 | Beech | Sep 2012 | A1 |
20130021460 | Burdoucci | Jan 2013 | A1 |
20130250122 | Binder | Sep 2013 | A1 |
20140137883 | Rothschild | May 2014 | A1 |
20140345142 | Damkat | Nov 2014 | A1 |
20150217465 | Krenik | Aug 2015 | A1 |
20160262521 | Kustra | Sep 2016 | A1 |
20160263754 | Lauritsen | Sep 2016 | A1 |
20180236675 | Westerhof et al. | Aug 2018 | A1 |
20190224864 | Robinson et al. | Jul 2019 | A1 |
20190224865 | Robinson et al. | Jul 2019 | A1 |
20190299436 | Fuellgrabe et al. | Oct 2019 | A1 |
20220088808 | Westerhof | Mar 2022 | A1 |
Entry |
---|
Extended European Search Report and Search Opinion; Application No. 21182030.3 ; dated Nov. 30, 2021; 06 pages. |
Number | Date | Country | |
---|---|---|---|
20220001556 A1 | Jan 2022 | US |