This relates to touch sensor panels used as input devices for computing systems, and more particularly, to the normalization and post-processing of touch sensor data.
Many types of input devices are presently available for performing operations in a computing system, such as buttons or keys, mice, trackballs, touch sensor panels, joysticks, touch screens and the like. Touch screens, in particular, are becoming increasingly popular because of their ease and versatility of operation as well as their declining price. Touch screens can include a touch sensor panel, which can be a clear panel with a touch-sensitive surface. The touch sensor panel can be positioned partially or completely in front of a display screen, or integrated partially or entirely within the display screen, so that at least a portion of the touch-sensitive surface covers at least a portion of the viewable area of the display screen. Touch screens can allow a user to make selections and move a cursor by simply touching the display screen via a finger or stylus. In general, the touch screen can recognize the touch and position of the touch on the display screen, and the computing system can interpret the touch and thereafter perform an action based on the touch event.
Touch sensor panels can be capable of detecting either single-touch events or multiple touch events, an example of which is described in Applicant's co-pending U.S. application Ser. No. 11/649,998 entitled “Proximity and Multi-Touch Sensor Detection and Demodulation,” filed on Jan. 3, 2007 and published as U.S. Patent Application Publication No. 2008/0158172, the contents of which are incorporated by reference herein in their entirety for all purposes.
To provide a more uniform response from the touch sensor panel given the same amount of touch, the sensor output values can be calibrated or normalized by using offset values to compensate the raw no-touch output values for each sensor in the panel so that all sensor output values are normalized to approximately the same value. A periodic local baseline offset adjustment algorithm can then be employed to locally update the sensor offset values to account for variables such as temperature drift. However, when ungrounded objects such as water droplets or coins are present on the touch sensor panel, the periodic local baseline offset adjustment algorithm can generate inaccurate normalized results. Furthermore, factors such as temperature changes can rapidly skew the normalized sensor output values. In addition, when processing touch data to recognize gestures, it can be difficult to clearly identify and lock onto a particular dominant motion component as a preliminary step in recognizing a particular gesture.
This relates to an image jaggedness filter that can be used to detect the presence of ungrounded objects such as water droplets or coins on a touch sensor panel, and delay periodic local offset adjustments until these objects have largely disappeared. To do otherwise could produce inaccurate normalized sensor output values. This also relates to the application of a global baseline offset to quickly normalize the sensor output values to account for conditions such as rapid temperature changes. Background pixels not part of any touch regions can be used to detect changes to no-touch sensor output values and compute a global baseline offset accordingly. This also relates to the use of motion dominance ratios and axis domination confidence values to improve the accuracy of locking onto dominant motion components as part of gesture recognition.
In the following description of preferred embodiments, reference is made to the accompanying drawings in which it is shown by way of illustration specific embodiments in which the invention can be practiced. It is to be understood that other embodiments can be used and structural changes can be made without departing from the scope of the embodiments of this invention.
This relates to an image jaggedness filter that can be used to detect the presence of ungrounded objects such as water droplets or coins, and delay periodic local baseline offset adjustments until these objects have largely disappeared. To do otherwise could produce inaccurate normalized sensor output values. This also relates to the application of a global baseline offset to quickly modify the sensor offset values to account for conditions such as rapid temperature changes. Background pixels not part of any touch regions can be used to detect changes to no-touch sensor output values and compute the global baseline offset accordingly. This also relates to the use of motion dominance ratios and axis domination confidence values to improve the accuracy of locking onto dominant motion components as part of gesture recognition.
To provide a more uniform response from the touch sensor panel given the same amount of touch, touch sensor panel output values can be calibrated using offset values to adjust the raw no-touch output values for each sensor in the panel so that all touch sensor panel output values are normalized to approximately the same value. However, even with normalized sensor outputs, temperature drift and other factors can cause the sensor output values to change, which will tend to skew the normalized baseline. To account for these gradual changes to the normalized sensor output values, a periodic local baseline offset adjustment algorithm can be employed.
As shown in
However, as shown in
As shown in
Despite this normalization, in multi-touch sensor panels, certain pixels can generate false, erroneous or otherwise distorted readings when two or more simultaneous touch events are generated by the same poorly grounded object. Compensation of these distorted readings (so-called “negative pixels”) is described in U.S. application Ser. No. 11/963,578 entitled “Negative Pixel Compensation,” the contents of which are incorporated by reference herein in their entirety for all purposes. To compensate for these distorted readings, a predicted negative pixel value can first be computed as an indicator of pixels that are likely to be distorted. The predicted negative pixel value for any particular pixel can be computed by summing up the touch output values for pixels in the drive line of the particular pixel being considered, summing up the touch output values for pixels in the sense line of the particular pixel being considered, and then multiplying these two sums. A scaled function of the predicted negative pixel value can then be added to the measured touch output value for the pixel to compensate for artificially negative readings.
However, due to physical design changes, state-of-the-art touch sensor panels can have a greater incidence of negative pixels than previous touch sensor panels. In trackpad embodiments, for example, negative pixels can appear more frequently due to the expected frequent usage of unplugged notebook computers, which can cause a higher incidence of touches by ungrounded objects. Thus, for a given image of touch, there can be a higher sum of negative and positive pixels than in previous designs.
Water droplets on a touch sensor panel can also appear as ungrounded objects. On trackpads, where user fingers and palms are often touching (sometimes inadvertently) the panel, water droplets can easily get smeared. Therefore, if the possible presence of water droplets can be detected, it would be preferable to hold off on any periodic local baseline offset adjustment until the water has dried off, because of the likely existence of corrupting negative pixels.
To suppress periodic local baseline offset adjustments in the presence of water droplets, extra filters can first be employed to detect the presence of water droplets. To detect water droplets, a jaggedness/irregularity filter can be used, as described in U.S. application Ser. No. 11/619,490 entitled “Irregular Input Identification” and U.S. application Ser. No. 11/756,211 entitled “Multi-touch Input Discrimination,” both of which are incorporated by reference herein in their entirety for all purposes. This jaggedness/irregularity filter can be used to find touch images having a high spatial frequency, such as those caused by water droplets.
If a moderate (relatively even) mix of negative and positive pixels are found or are within a particular mix threshold at 210, and a certain jaggedness threshold is exceeded at 212, indicating the presence of numerous poorly grounded objects such as water droplets, then the next periodic local baseline offset adjustment can be skipped at 214. For example, a “moderate” mix of negative and positive pixels may be defined as having percentages of negative and positive pixels are within 40% of each other—30% and 70%. All other percentages would not be considered “moderate.” Additionally, if the jaggedness measure is normalized between [0,1], with “0” being not jagged (no ungrounded objects) and “1” being completely jagged (many small ungrounded objects), then the jaggedness threshold could be set to 0.5.
If the jaggedness threshold is not exceeded at 212, but the number of positive and negative pixels is changing rapidly at 216 (which can occur when water droplets are evaporating), periodic local baseline offset adjustments can also be suppressed at 214. To make this determination of whether the number of positive and negative pixels are changing rapidly, the sums of the negative and positive pixels can be passed though a (mathematical) low pass filter (LFP) that produces an auto-regressive average. Instantaneous values can then be subtracted from the average. If the difference is high (greater than a predetermined threshold, such as the instantaneous value being more than 25% different from the computed average), this indicates a large change in the number of negative or positive pixels sufficient to suppress periodic local baseline offset adjustments. On the other hand, if the number of positive and negative pixels is not changing rapidly at 216, then the next periodic local baseline offset adjustment can occur as scheduled at 218 (including the suppression of an initial baseline capture if fingers are detected at startup, as disclosed in U.S. application Ser. No. 11/650,112 entitled “Periodic Sensor Panel Baseline Adjustment,” the contents of which are incorporated by reference herein in their entirety for all purposes).
If the mix of negative and positive pixels is not moderate at 210 (e.g. many more positive pixels than negative pixels, or vice versa), the jaggedness threshold is not exceeded at 222, and the mix of negative and positive pixels is changing rapidly at 216, periodic local baseline offset adjustments can be suppressed at 214. However, if the mix of negative and positive pixels is not changing rapidly at 216, periodic local baseline offset adjustments can be performed at 218.
After enough water evaporates, no significant number of negative pixels may remain, but some positive pixels may remain. If the positive pixels are scattered spatially, they can still cause the jaggedness measure to be above the threshold. Note that the jaggedness algorithm may only recognize that the jaggedness measure has exceeded a threshold—it does not see actual negative and positive pixels, so it cannot determine that there are few negative pixels remaining. Thus, if the mix of negative and positive pixels is not moderate at 210, but the jaggedness threshold is exceeded at 222, periodic local baseline offset adjustments can be performed at 218. In addition, to compensate for this effect, the increment/decrement rate of the adaptation algorithm can be sped up, so that the positive pixels are compensated more quickly and the effect is reduced.
As described above, there are situations in which it can be preferable to delay periodic local baseline offset adjustments so that ungrounded touches do not cause erroneous adjustments to the sensor offset values. Additionally, with conventional keyboards having trackpads, inadvertent touch events can be commonplace while the keyboard is being utilized, presenting another situation where it can be preferable to keep the adaptation rate slower so that patches due to hovering or inadvertent touches do not get incorporated into the sensor offset values. However, it can still desirable to quickly compensate for temperature or other global effects.
Therefore, in addition to the periodic local baseline offset adjustment algorithm described above that can cause sensor offset values to be incrementally adapted or changed on a pixel-by-pixel (local) basis, in other embodiments of the invention a global baseline offset can be applied to the offset values for all pixels. The global baseline offset can be used to effect changes much more quickly than the periodic local baseline offset adjustment algorithm to compensate for large temperature changes or the effects of other global conditions. In some embodiments, the full amount of this global baseline offset can be immediately applied to the offset values for all pixels. In other embodiments, the offset values for all pixels can be incremented or decremented gradually over time (but more often than the individual pixels can be incremented or decremented using local baseline offset adjustments), until the full amount of the global baseline offset has been applied.
An average of all or a portion of the background pixels 306 can then be computed, and this average can then used to globally modify the offset values for all pixels in the touch sensor panel. Because the background pixels 306 are untouched, the average of their untouched output values can provide an indication of rapid changes to the pixel outputs due to factors such as temperature. This average, or some adjustment value that is a function of this average, can then be added to or subtracted from the current sensor baseline to compute the global baseline offset value. This global baseline offset value can then be added to the current offset values for every pixel in the touch sensor panel to effect a global adjustment of the offset values. In some embodiments, this global baseline offset value can be applied immediately to the current offset values for every pixel. In other embodiments, the current offset values can be incremented or decremented gradually until the full global baseline offset values has been applied. To keep the normalized sensor output values from “running away” (e.g. getting excessively large or small) due to unintended artifacts of the algorithm such as an accumulation of roundoff error, the global baseline offset value can optionally decay to zero over time.
However, if the increase in the raw sensor output values remains, even while the global baseline offset value 402 is decaying back down to zero, another mechanism is needed to ensure that an increase to the overall offset value does occur. To accomplish this, the local baseline offset adjustment algorithm described above can periodically incrementally increase the overall offset value 400 as the global baseline offset value 402 is decaying. Although each increment to the overall offset value 400 made by the local baseline offset adjustment algorithm is small, the total contribution of the local baseline offset value 404 gradually increases over time, as shown at 414 in
Although not shown, similar adjustments to the overall sensor offset value of each pixel can be made in the negative direction if the average of the background pixels rapidly decreases.
In the processing of touch images, after touch images (e.g. from two fingers) are captured, identified and tracked over multiple panel scans, motion components can be extracted. In the case of two fingers, motion components can include the X component, the Y component, a scale (zoom) component (the dot product of the two finger motion vectors), and a rotate component (the cross product of the two finger motion vectors). The extracted motion components can provide for two types of control. “Integral control” is defined herein as providing all four degrees of freedom (the ability to control all axes at once). “Separable control” is more limited, and separates motion between either (1) X-Y scrolling as a set, (2) zoom, or (3) rotate (i.e. one axis).
Smooth_translation_speed=(LPF(Vx)2+LPF(Vy)2)0.5
Smooth_rotate_speed=LPF(Vr)
Smooth_scale_speed=LPF(Vs)
Note that the smooth_translation_speed value includes Vx and Vy because of the desire to lock onto scrolling as a whole, not just the X and Y components. Of these three values, the dominant (largest) computed speed can be used, while the others can be ignored (zeroed or clipped out).
However, in practice it can be difficult to lock on properly, because a scroll motion might initially look like a rotate motion, for example, or vice versa. Therefore, in embodiments of the invention, the three raw values described above can be utilized in conjunction with two new parameters, scale_dominance_ratio (SDR) and rotate_dominance_ratio (RDR), which can be used to apply weights to the various motion components and set a balance point for the motions so that a particular component can be locked onto more accurately. The SDR and RDR values can be established after the various finger contacts are identified at 508. The SDR and RDR values computed at 510 can be based on whether the detected contacts are identified as fingers and/or thumbs. For example, if a thumb is detected, it can be more likely that a user is using a thumb and finger to perform a scaling (zoom) or rotate operation rather than a translation or scroll operation, so the SDR and RDR values can be set to high values (e.g. 2.5) so that the Smooth_scale_speed or the Smooth_rotate_speed values dominate the Smooth_translation_speed value.
However, if two or more fingers are detected, but not a thumb, it is more likely that a user is using the two fingers to perform a translation or scroll operation rather than a scaling or rotate operation, so the SDR and RDR values can be set to lower values to ensure that the Smooth_translation_speed value dominates. The multiple-finger, no-thumb SDR value can further be a function of the horizontal separation of the fingers, because it can be more likely that a user is performing a translation or scroll operation when the fingers are close together, but more likely that a user is performing a two finger scaling operation when the fingers have a greater separation. Thus, for example, the SDR can be set to 0.25 if the finger separation is between 0 and 3 cm, can vary from 0.25 to 1.25 if the separation is from 3-6 cm, and can be set to 1.25 for separations greater than 6 cm.
In further embodiments, an exception can be created for the SDR during a two-finger top-to-bottom translation because of the tendency for a user's fingers to draw together during the translation. The movement of the fingers towards each other during the translation should not be interpreted as a scaling operation. To prevent this, if a downward translation is detected plus a scale contraction, then the SDR can be maintained at 0.25, even if the two finger separation distance is high.
After the SDR and RDR values are computed at 510, the following pseudocode can then be implemented at 512, 514, 516 and 518:
Variables: scale_dominance_ratio (SDR), rotate_dominance_ratio (RDR)
If(smooth_translation_speed>SDR×smooth_scale_speed),then
Clip scale(Vx→pass,Vs→zero)Leave scroll; (A)
If(smooth_translation_speed>RDR×smooth_rotate_speed),then
Clip rotate(Vx→pass,Vr→zero)Leave scroll. (B)
In other embodiments, where the movement of contacts along with contact identifications provides an ambiguous determination of which motion component to lock onto, locking onto a particular motion component can be delayed until enough motion has occurred to make a more accurate determination. To accomplish this, an axis_domination_confidence value can be computed to provide a representation of the unambiguousness of the motion component to be locked onto.
at 604. Otherwise, at 606,
The axis_domination_confidence value as calculated above can be normalized to be between [0,1], where values approaching 1 represent a pure translation (and therefore there is high confidence in locking on to the X-Y motion components) and values approaching 0 indicate that the translation amount is about equal to the scale and rotation amount (and therefore low confidence in locking on to any motion component).
After the axis_domination_confidence value is computed, in one embodiment the motion component locking decision can be delayed by an amount proportional to the inverse of the axis_domination_confidence value at 608. Thus, if the value is high, indicating high confidence, there can be little or no delay. However, if the value is low, indicating low confidence, the locking decision can be delayed to allow for the motion components to become less ambiguous.
In another embodiment, the axis_domination_confidence value (or the square of this value) can be multiplied by any non-clipped motion components (see, e.g., equations (A) and (B) above) at 610. This has the effect of slowing down the ultimate gesture decision. For example, if the axis_domination_confidence value is 1 and this is multiplied by the unclipped motion component, the motion will be locked onto and integrated quickly in gesture detection algorithms. However, if no motion component has been locked onto, and motion is being integrated but the dominant motion component is borderline, when the motion component is multiplied by a low axis_domination_confidence value, this can dampen the motion and extend the integration period. This can delay the triggering of a decision on which motion components to pass and which motion components to clip and ultimately the identification of gestures. During this delay time, the motions can become more unambiguous. Once locked, it is not necessary to apply the axis_domination_confidence value any more.
Embodiments of the invention described above can be implemented, for example, using touch sensor panels of the types described in U.S. application Ser. No. 11/650,049 entitled “Double-Sided Touch Sensitive Panel and Flex Circuit Bonding.” Sense channels of the types described in U.S. application Ser. No. 11/649,998 entitled “Proximity and Multi-Touch Sensor Detection and Demodulation” can be used, for example, to detect touch and hover events. The resulting image of touch can be further processed to determine the location of the touch events, the identification of finger contacts, and the identification of gestures as described, for example, in U.S. application Ser. No. 11/428,522 entitled “Identifying Contacts on a Touch Surface,” U.S. application Ser. No. 11/756,211 entitled “Multi-touch Input Discrimination,” and U.S. application Ser. No. 10/903,964 entitled “Gestures for Touch Sensitive Input Devices.” All of the preceding applications referred to in this paragraph are incorporated by reference herein in their entirety for all purposes.
Touch sensor panel 724 can include a capacitive sensing medium having a plurality of drive lines and a plurality of sense lines, although other sensing media can also be used. Each intersection, adjacency or near-adjacency of drive and sense lines can represent a capacitive sensing node and can be viewed as picture element (pixel) 726, which can be particularly useful when touch sensor panel 724 is viewed as capturing an “image” of touch. (In other words, after panel subsystem 706 has determined whether a touch event has been detected at each touch sensor in the touch sensor panel, the pattern of touch sensors in the multi-touch panel at which a touch event occurred can be viewed as an “image” of touch (e.g. a pattern of fingers touching the panel).) Each sense line of touch sensor panel 724 can drive sense channel 708 (also referred to herein as an event detection and demodulation circuit) in panel subsystem 706.
Computing system 700 can also include host processor 728 for receiving outputs from panel processor 702 and performing actions based on the outputs that can include, but are not limited to, moving an object such as a cursor or pointer, scrolling or panning, adjusting control settings, opening a file or document, viewing a menu, making a selection, executing instructions, operating a peripheral device coupled to the host device, answering a telephone call, placing a telephone call, terminating a telephone call, changing the volume or audio settings, storing information related to telephone communications such as addresses, frequently dialed numbers, received calls, missed calls, logging onto a computer or a computer network, permitting authorized individuals access to restricted areas of the computer or computer network, loading a user profile associated with a user's preferred arrangement of the computer desktop, permitting access to web content, launching a particular program, encrypting or decoding a message, and/or the like. Host processor 728 can also perform additional functions that may not be related to panel processing, and can be coupled to program storage 732 and display device 730 such as an LCD display for providing a UI to a user of the device. Display device 730 together with touch sensor panel 724, when located partially or entirely under the touch sensor panel, or partially or entirely integrated with the touch sensor panel, can form touch screen 718.
Note that one or more of the functions described above can be performed by firmware stored in memory (e.g. one of the peripherals 704 in
The firmware can also be propagated within any transport medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In the context of this document, a “transport medium” can be any medium that can communicate, propagate or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The transport readable medium can include, but is not limited to, an electronic, magnetic, optical, electromagnetic or infrared wired or wireless propagation medium.
Although embodiments of this invention have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of embodiments of this invention as defined by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 15/006,987, filed Jan. 26, 2016 and published on Jun. 2, 2016 as U.S. Patent Publication No. 2016/0154529, which claims the benefit of U.S. patent application Ser. No. 12/238,342, filed Sep. 25, 2008 and published on Jul. 9, 2009 as U.S. Patent Publication No. 2009/0174676, which claims the benefit of U.S. Provisional Patent Application No. 61/019,222 filed on Jan. 4, 2008, the contents of which are incorporated herein by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4087625 | Dym et al. | May 1978 | A |
4090092 | Serrano | May 1978 | A |
4304976 | Gottbreht et al. | Dec 1981 | A |
4475235 | Graham | Oct 1984 | A |
4550221 | Mabusth | Oct 1985 | A |
4659874 | Landmeier | Apr 1987 | A |
5194862 | Edwards | Mar 1993 | A |
5317919 | Awtrey | Jun 1994 | A |
5459463 | Gruaz et al. | Oct 1995 | A |
5483261 | Yasutake | Jan 1996 | A |
5488204 | Mead et al. | Jan 1996 | A |
5543590 | Gillespie et al. | Aug 1996 | A |
5631670 | Tomiyoshi et al. | May 1997 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5835079 | Shieh | Nov 1998 | A |
5841078 | Miller et al. | Nov 1998 | A |
5844506 | Binstead | Dec 1998 | A |
5847690 | Boie et al. | Dec 1998 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5889236 | Gillespie et al. | Mar 1999 | A |
5914465 | Allen et al. | Jun 1999 | A |
5923997 | Miyanaga et al. | Jul 1999 | A |
6057903 | Colgan et al. | May 2000 | A |
6137427 | Binstead | Oct 2000 | A |
6163313 | Aroyan et al. | Dec 2000 | A |
6188391 | Seely et al. | Feb 2001 | B1 |
6204897 | Colgan et al. | Mar 2001 | B1 |
6239788 | Nohno et al. | May 2001 | B1 |
6310610 | Beaton et al. | Oct 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6329044 | Inoue et al. | Dec 2001 | B1 |
6452514 | Philipp | Sep 2002 | B1 |
6456952 | Nathan | Sep 2002 | B1 |
6587358 | Yasumura | Jul 2003 | B1 |
6690387 | Zimmerman et al. | Feb 2004 | B2 |
6730863 | Gerpheide et al. | May 2004 | B1 |
6847354 | Vranish | Jan 2005 | B2 |
6970160 | Mulligan et al. | Nov 2005 | B2 |
7015894 | Morohoshi | Mar 2006 | B2 |
7030860 | Hsu et al. | Apr 2006 | B1 |
7129935 | Mackey | Oct 2006 | B2 |
7138686 | Banerjee et al. | Nov 2006 | B1 |
7180508 | Kent et al. | Feb 2007 | B2 |
7184064 | Zimmerman et al. | Feb 2007 | B2 |
7337085 | Soss | Feb 2008 | B2 |
7395717 | DeAngelis et al. | Jul 2008 | B2 |
7412586 | Rajopadhye et al. | Aug 2008 | B1 |
7504833 | Seguine | Mar 2009 | B1 |
7538760 | Hotelling et al. | May 2009 | B2 |
7548073 | Mackey et al. | Jun 2009 | B2 |
7580030 | Marten | Aug 2009 | B2 |
7639234 | Orsley | Dec 2009 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7719523 | Hillis | May 2010 | B2 |
7701539 | Shih et al. | Aug 2010 | B2 |
7864503 | Chang | Jan 2011 | B2 |
7898122 | Andrieux et al. | Mar 2011 | B2 |
7907126 | Yoon et al. | Mar 2011 | B2 |
7932898 | Philipp et al. | Apr 2011 | B2 |
8026904 | Westerman | Sep 2011 | B2 |
8040142 | Bokma | Oct 2011 | B1 |
8040321 | Peng | Oct 2011 | B2 |
8040326 | Hotelling et al. | Oct 2011 | B2 |
8045783 | Lee et al. | Oct 2011 | B2 |
8058884 | Betancourt | Nov 2011 | B2 |
8068097 | GuangHai | Nov 2011 | B2 |
8120371 | Day et al. | Feb 2012 | B2 |
8125312 | Orr | Feb 2012 | B2 |
8169421 | Wright | May 2012 | B2 |
8223133 | Hristov | Jul 2012 | B2 |
8258986 | Makovetskyy | Sep 2012 | B2 |
8259078 | Hotelling et al. | Sep 2012 | B2 |
8283935 | Liu et al. | Oct 2012 | B2 |
8319747 | Hotelling et al. | Nov 2012 | B2 |
8339286 | Cordeiro | Dec 2012 | B2 |
8355887 | Harding et al. | Jan 2013 | B1 |
8441464 | Lin et al. | May 2013 | B1 |
8479122 | Hotelling et al. | Jul 2013 | B2 |
8484838 | Badaye et al. | Jul 2013 | B2 |
8487898 | Hotelling | Jul 2013 | B2 |
8507811 | Hotelling et al. | Aug 2013 | B2 |
8508495 | Hotelling et al. | Aug 2013 | B2 |
8525756 | Kwon | Sep 2013 | B2 |
8537126 | Yousefpor et al. | Sep 2013 | B2 |
8542208 | Krah et al. | Sep 2013 | B2 |
8576193 | Hotelling | Nov 2013 | B2 |
8593410 | Hong et al. | Nov 2013 | B2 |
8593425 | Hong et al. | Nov 2013 | B2 |
8614688 | Chang | Dec 2013 | B2 |
8633915 | Hotelling et al. | Jan 2014 | B2 |
8665237 | Koshiyama et al. | Mar 2014 | B2 |
8680877 | Lee et al. | Mar 2014 | B2 |
8760412 | Hotelling et al. | Jun 2014 | B2 |
8766950 | Morein et al. | Jul 2014 | B1 |
8773146 | Hills et al. | Jul 2014 | B1 |
8773351 | Rekimoto | Jul 2014 | B2 |
8810543 | Kurikawa | Aug 2014 | B1 |
8884917 | Seo | Nov 2014 | B2 |
8902172 | Peng | Dec 2014 | B2 |
8917256 | Roziere | Dec 2014 | B2 |
8922521 | Hotelling et al. | Dec 2014 | B2 |
8957874 | Elias | Feb 2015 | B2 |
8976133 | Yao et al. | Mar 2015 | B2 |
8982096 | Hong et al. | Mar 2015 | B2 |
8982097 | Kuzo et al. | Mar 2015 | B1 |
9000782 | Roziere | Apr 2015 | B2 |
9001082 | Rosenberg et al. | Apr 2015 | B1 |
9024913 | Jung et al. | May 2015 | B1 |
9035895 | Bussat et al. | May 2015 | B2 |
9075463 | Pyo et al. | Jul 2015 | B2 |
9086774 | Hotelling et al. | Jul 2015 | B2 |
9151791 | Roziere | Oct 2015 | B2 |
9189119 | Liao | Nov 2015 | B2 |
9250757 | Roziere | Feb 2016 | B2 |
9261997 | Chang et al. | Feb 2016 | B2 |
9280251 | Shih | Mar 2016 | B2 |
9292137 | Kogo | Mar 2016 | B2 |
9317165 | Hotelling et al. | Apr 2016 | B2 |
9329674 | Lee et al. | May 2016 | B2 |
9329723 | Benbasat et al. | May 2016 | B2 |
9372576 | Westerman | Jun 2016 | B2 |
9442330 | Huo | Sep 2016 | B2 |
9535547 | Roziere | Jan 2017 | B2 |
9582131 | Elias | Feb 2017 | B2 |
9640991 | Blondin et al. | May 2017 | B2 |
9690397 | Shepelev et al. | Jun 2017 | B2 |
9785295 | Yang | Oct 2017 | B2 |
9804717 | Schropp, Jr. | Oct 2017 | B2 |
9874975 | Benbasat et al. | Jan 2018 | B2 |
9880655 | O'Connor | Jan 2018 | B2 |
9886141 | Yousefpor | Feb 2018 | B2 |
9904427 | Co | Feb 2018 | B1 |
9996175 | Hotelling et al. | Jun 2018 | B2 |
10001888 | Hong et al. | Jun 2018 | B2 |
10061433 | Imai | Aug 2018 | B2 |
10175832 | Roziere | Jan 2019 | B2 |
10254896 | Mori et al. | Apr 2019 | B2 |
10289251 | Shih et al. | May 2019 | B2 |
10365764 | Korapati et al. | Jul 2019 | B2 |
10705658 | Li et al. | Jul 2020 | B2 |
10725591 | Maharyta et al. | Jul 2020 | B1 |
20020015024 | Westerman et al. | Feb 2002 | A1 |
20020152048 | Hayes | Oct 2002 | A1 |
20030075427 | Caldwell | Apr 2003 | A1 |
20030076325 | Thrasher | Apr 2003 | A1 |
20030164820 | Kent | Sep 2003 | A1 |
20030210235 | Roberts | Nov 2003 | A1 |
20040017362 | Mulligan et al. | Jan 2004 | A1 |
20040061687 | Kent | Apr 2004 | A1 |
20040090429 | Geaghan et al. | May 2004 | A1 |
20040119701 | Mulligan et al. | Jun 2004 | A1 |
20040188151 | Gerpheide et al. | Sep 2004 | A1 |
20040189617 | Gerpheide et al. | Sep 2004 | A1 |
20040239650 | Mackey | Dec 2004 | A1 |
20040241920 | Hsiao et al. | Dec 2004 | A1 |
20040243747 | Rekimoto | Dec 2004 | A1 |
20050007353 | Smith et al. | Jan 2005 | A1 |
20050012724 | Kent | Jan 2005 | A1 |
20050069718 | Voss-Kehl et al. | Mar 2005 | A1 |
20050073507 | Richter et al. | Apr 2005 | A1 |
20050083307 | Aufderheide et al. | Apr 2005 | A1 |
20050104867 | Westerman et al. | May 2005 | A1 |
20050126831 | Richter et al. | Jun 2005 | A1 |
20050146509 | Geaghan et al. | Jul 2005 | A1 |
20050219228 | Alameh et al. | Oct 2005 | A1 |
20050239532 | Inamura | Oct 2005 | A1 |
20050270039 | Mackey | Dec 2005 | A1 |
20050270273 | Marten | Dec 2005 | A1 |
20050280639 | Taylor et al. | Dec 2005 | A1 |
20060001640 | Lee | Jan 2006 | A1 |
20060017710 | Lee et al. | Jan 2006 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060038791 | Mackey | Feb 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060132463 | Lee et al. | Jun 2006 | A1 |
20060146484 | Kim et al. | Jul 2006 | A1 |
20060161871 | Hotelling et al. | Jul 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060202969 | Hauck | Sep 2006 | A1 |
20060227115 | Fry | Oct 2006 | A1 |
20060238522 | Westerman et al. | Oct 2006 | A1 |
20060267953 | Peterson | Nov 2006 | A1 |
20060278444 | Binstead | Dec 2006 | A1 |
20060279548 | Geaghan | Dec 2006 | A1 |
20060293864 | Soss | Dec 2006 | A1 |
20070008299 | Hristov | Jan 2007 | A1 |
20070012665 | Nelson et al. | Jan 2007 | A1 |
20070023523 | Onishi | Feb 2007 | A1 |
20070074914 | Geaghan et al. | Apr 2007 | A1 |
20070075982 | Morrison et al. | Apr 2007 | A1 |
20070216637 | Ito | Sep 2007 | A1 |
20070216657 | Konicek | Sep 2007 | A1 |
20070229468 | Peng et al. | Oct 2007 | A1 |
20070229470 | Snyder et al. | Oct 2007 | A1 |
20070247443 | Philipp | Oct 2007 | A1 |
20070262963 | Xiao-Ping et al. | Nov 2007 | A1 |
20070262969 | Pak | Nov 2007 | A1 |
20070268273 | Westerman et al. | Nov 2007 | A1 |
20070268275 | Westerman et al. | Nov 2007 | A1 |
20070279395 | Philipp | Dec 2007 | A1 |
20070279619 | Chang | Dec 2007 | A1 |
20070283832 | Hotelling | Dec 2007 | A1 |
20070285365 | Lee | Dec 2007 | A1 |
20070296709 | Guanghai | Dec 2007 | A1 |
20080006454 | Hotelling | Jan 2008 | A1 |
20080007533 | Hotelling | Jan 2008 | A1 |
20080012835 | Rimon et al. | Jan 2008 | A1 |
20080018581 | Park et al. | Jan 2008 | A1 |
20080024456 | Peng et al. | Jan 2008 | A1 |
20080036742 | Garmon | Feb 2008 | A1 |
20080042985 | Katsuhito et al. | Feb 2008 | A1 |
20080042986 | Westerman et al. | Feb 2008 | A1 |
20080042987 | Westerman et al. | Feb 2008 | A1 |
20080042992 | Kim | Feb 2008 | A1 |
20080047764 | Lee et al. | Feb 2008 | A1 |
20080062140 | Hotelling et al. | Mar 2008 | A1 |
20080062147 | Hotelling et al. | Mar 2008 | A1 |
20080062148 | Hotelling et al. | Mar 2008 | A1 |
20080062151 | Kent | Mar 2008 | A1 |
20080074398 | Wright | Mar 2008 | A1 |
20080100572 | Boillot | May 2008 | A1 |
20080136787 | Yeh et al. | Jun 2008 | A1 |
20080136792 | Peng | Jun 2008 | A1 |
20080158145 | Westerman | Jul 2008 | A1 |
20080158146 | Westerman | Jul 2008 | A1 |
20080158167 | Hotelling et al. | Jul 2008 | A1 |
20080158172 | Hotelling et al. | Jul 2008 | A1 |
20080158174 | Land et al. | Jul 2008 | A1 |
20080158181 | Hamblin et al. | Jul 2008 | A1 |
20080158182 | Westerman | Jul 2008 | A1 |
20080158185 | Westerman | Jul 2008 | A1 |
20080162996 | Krah et al. | Jul 2008 | A1 |
20080174321 | Kang et al. | Jul 2008 | A1 |
20080180365 | Ozaki | Jul 2008 | A1 |
20080188267 | Sagong | Aug 2008 | A1 |
20080224962 | Kasai et al. | Sep 2008 | A1 |
20080231292 | Ossart et al. | Sep 2008 | A1 |
20080238871 | Tam | Oct 2008 | A1 |
20080246496 | Hristov et al. | Oct 2008 | A1 |
20080264699 | Chang et al. | Oct 2008 | A1 |
20080277259 | Chang | Nov 2008 | A1 |
20080283175 | Hagood et al. | Nov 2008 | A1 |
20080303022 | Tai et al. | Dec 2008 | A1 |
20080303964 | Lee et al. | Dec 2008 | A1 |
20080309626 | Westerman et al. | Dec 2008 | A1 |
20080309627 | Hotelling et al. | Dec 2008 | A1 |
20080309629 | Westerman et al. | Dec 2008 | A1 |
20080309632 | Westerman et al. | Dec 2008 | A1 |
20080309633 | Hotelling et al. | Dec 2008 | A1 |
20080309635 | Matsuo | Dec 2008 | A1 |
20090002337 | Chang | Jan 2009 | A1 |
20090009485 | Bytheway | Jan 2009 | A1 |
20090019344 | Yoon et al. | Jan 2009 | A1 |
20090020343 | Rothkopf et al. | Jan 2009 | A1 |
20090054107 | Feland et al. | Feb 2009 | A1 |
20090070681 | Dawes et al. | Mar 2009 | A1 |
20090073138 | Lee et al. | Mar 2009 | A1 |
20090085894 | Gandhi et al. | Apr 2009 | A1 |
20090091546 | Joo et al. | Apr 2009 | A1 |
20090091551 | Hotelling et al. | Apr 2009 | A1 |
20090109192 | Liu et al. | Apr 2009 | A1 |
20090114456 | Wisniewski | May 2009 | A1 |
20090128516 | Rimon et al. | May 2009 | A1 |
20090135157 | Harley | May 2009 | A1 |
20090141046 | Rathnam et al. | Jun 2009 | A1 |
20090160787 | Westerman et al. | Jun 2009 | A1 |
20090174676 | Westerman | Jul 2009 | A1 |
20090174688 | Westerman | Jul 2009 | A1 |
20090179868 | Ayres et al. | Jul 2009 | A1 |
20090182189 | Lira | Jul 2009 | A1 |
20090184937 | Grivna | Jul 2009 | A1 |
20090194344 | Harley et al. | Aug 2009 | A1 |
20090205879 | Halsey, IV et al. | Aug 2009 | A1 |
20090212642 | Krah | Aug 2009 | A1 |
20090213090 | Mamba et al. | Aug 2009 | A1 |
20090236151 | Yeh et al. | Sep 2009 | A1 |
20090242283 | Chiu | Oct 2009 | A1 |
20090251427 | Hung et al. | Oct 2009 | A1 |
20090267902 | Nambu et al. | Oct 2009 | A1 |
20090267903 | Cady et al. | Oct 2009 | A1 |
20090273577 | Chen et al. | Nov 2009 | A1 |
20090277695 | Liu et al. | Nov 2009 | A1 |
20090303189 | Grunthaner et al. | Dec 2009 | A1 |
20090309850 | Yang | Dec 2009 | A1 |
20090309851 | Bernstein | Dec 2009 | A1 |
20090314621 | Hotelling | Dec 2009 | A1 |
20090315854 | Matsuo | Dec 2009 | A1 |
20090322702 | Chien et al. | Dec 2009 | A1 |
20100001973 | Hotelling et al. | Jan 2010 | A1 |
20100004029 | Kim | Jan 2010 | A1 |
20100006350 | Elias | Jan 2010 | A1 |
20100007616 | Jang | Jan 2010 | A1 |
20100019779 | Kato et al. | Jan 2010 | A1 |
20100031174 | Kim | Feb 2010 | A1 |
20100039396 | Ho et al. | Feb 2010 | A1 |
20100059294 | Elias et al. | Mar 2010 | A1 |
20100060608 | Yousefpor | Mar 2010 | A1 |
20100079384 | Grivna | Apr 2010 | A1 |
20100079401 | Staton | Apr 2010 | A1 |
20100090964 | Soo et al. | Apr 2010 | A1 |
20100097346 | Sleeman | Apr 2010 | A1 |
20100102027 | Liu et al. | Apr 2010 | A1 |
20100110035 | Selker | May 2010 | A1 |
20100117985 | Wadia | May 2010 | A1 |
20100123667 | Kim et al. | May 2010 | A1 |
20100139991 | Philipp et al. | Jun 2010 | A1 |
20100143848 | Jain et al. | Jun 2010 | A1 |
20100149108 | Hotelling et al. | Jun 2010 | A1 |
20100149127 | Fisher et al. | Jun 2010 | A1 |
20100156810 | Barbier et al. | Jun 2010 | A1 |
20100156846 | Long et al. | Jun 2010 | A1 |
20100182018 | Hazelden | Jul 2010 | A1 |
20100182278 | Li et al. | Jul 2010 | A1 |
20100194695 | Hotelling et al. | Aug 2010 | A1 |
20100194696 | Chang et al. | Aug 2010 | A1 |
20100194697 | Hotelling et al. | Aug 2010 | A1 |
20100194698 | Hotelling et al. | Aug 2010 | A1 |
20100194707 | Hotelling et al. | Aug 2010 | A1 |
20100201635 | Klinghult et al. | Aug 2010 | A1 |
20100245286 | Parker | Sep 2010 | A1 |
20100253638 | Yousefpor et al. | Oct 2010 | A1 |
20100259503 | Yanase et al. | Oct 2010 | A1 |
20100277418 | Huang et al. | Nov 2010 | A1 |
20100328228 | Elias | Dec 2010 | A1 |
20100328248 | Mozdzyn | Dec 2010 | A1 |
20100328262 | Huang et al. | Dec 2010 | A1 |
20100328263 | Lin | Dec 2010 | A1 |
20110001491 | Huang et al. | Jan 2011 | A1 |
20110006832 | Land et al. | Jan 2011 | A1 |
20110007020 | Hong et al. | Jan 2011 | A1 |
20110007021 | Bernstein et al. | Jan 2011 | A1 |
20110007030 | Mo et al. | Jan 2011 | A1 |
20110025623 | Lin | Feb 2011 | A1 |
20110025629 | Grivna et al. | Feb 2011 | A1 |
20110025635 | Lee | Feb 2011 | A1 |
20110061949 | Krah et al. | Mar 2011 | A1 |
20110074705 | Yousefpor et al. | Mar 2011 | A1 |
20110080391 | Brown et al. | Apr 2011 | A1 |
20110096016 | Yilmaz | Apr 2011 | A1 |
20110134050 | Harley | Jun 2011 | A1 |
20110157068 | Parker | Jun 2011 | A1 |
20110175846 | Wang et al. | Jul 2011 | A1 |
20110193776 | Oda et al. | Aug 2011 | A1 |
20110199105 | Otagaki et al. | Aug 2011 | A1 |
20110227874 | Faahraeus et al. | Sep 2011 | A1 |
20110231139 | Yokota | Sep 2011 | A1 |
20110234523 | Chang et al. | Sep 2011 | A1 |
20110241907 | Cordeiro | Oct 2011 | A1 |
20110248949 | Chang et al. | Oct 2011 | A1 |
20110254795 | Chen et al. | Oct 2011 | A1 |
20110261005 | Joharapurkar et al. | Oct 2011 | A1 |
20110261007 | Joharapurkar et al. | Oct 2011 | A1 |
20110282606 | Ahed et al. | Nov 2011 | A1 |
20110298727 | Yousefpor et al. | Dec 2011 | A1 |
20110310033 | Liu et al. | Dec 2011 | A1 |
20110310064 | Keski-Jaskari | Dec 2011 | A1 |
20120026099 | Harley | Feb 2012 | A1 |
20120044199 | Karpin et al. | Feb 2012 | A1 |
20120050206 | Welland | Mar 2012 | A1 |
20120050214 | Kremin | Mar 2012 | A1 |
20120050216 | Kremin et al. | Mar 2012 | A1 |
20120050217 | Noguchi et al. | Mar 2012 | A1 |
20120054379 | Leung et al. | Mar 2012 | A1 |
20120056662 | Wilson et al. | Mar 2012 | A1 |
20120056851 | Chen et al. | Mar 2012 | A1 |
20120075239 | Azumi et al. | Mar 2012 | A1 |
20120092288 | Wadia | Apr 2012 | A1 |
20120098776 | Chen et al. | Apr 2012 | A1 |
20120113047 | Hanauer et al. | May 2012 | A1 |
20120146726 | Huang | Jun 2012 | A1 |
20120146920 | Lin et al. | Jun 2012 | A1 |
20120146942 | Kamoshida et al. | Jun 2012 | A1 |
20120154324 | Wright et al. | Jun 2012 | A1 |
20120162121 | Chang et al. | Jun 2012 | A1 |
20120162133 | Chen et al. | Jun 2012 | A1 |
20120162134 | Chen et al. | Jun 2012 | A1 |
20120169652 | Chang | Jul 2012 | A1 |
20120169653 | Chang | Jul 2012 | A1 |
20120169655 | Chang | Jul 2012 | A1 |
20120169656 | Chang | Jul 2012 | A1 |
20120169664 | Milne | Jul 2012 | A1 |
20120182251 | Krah | Jul 2012 | A1 |
20120187965 | Roziere | Jul 2012 | A1 |
20120211264 | Milne | Aug 2012 | A1 |
20120249446 | Chen et al. | Oct 2012 | A1 |
20120262395 | Chan | Oct 2012 | A1 |
20120262410 | Lim | Oct 2012 | A1 |
20120287068 | Colgate et al. | Nov 2012 | A1 |
20120313881 | Ge et al. | Dec 2012 | A1 |
20120320385 | Mu et al. | Dec 2012 | A1 |
20130015868 | Peng | Jan 2013 | A1 |
20130021291 | Kremin et al. | Jan 2013 | A1 |
20130027118 | Ho et al. | Jan 2013 | A1 |
20130027346 | Yarosh et al. | Jan 2013 | A1 |
20130038573 | Chang | Feb 2013 | A1 |
20130057511 | Shepelev et al. | Mar 2013 | A1 |
20130069911 | You | Mar 2013 | A1 |
20130076648 | Krah et al. | Mar 2013 | A1 |
20130093712 | Liu et al. | Apr 2013 | A1 |
20130100038 | Yilmaz et al. | Apr 2013 | A1 |
20130100071 | Wright | Apr 2013 | A1 |
20130120303 | Hong et al. | May 2013 | A1 |
20130127739 | Guard et al. | May 2013 | A1 |
20130141383 | Woolley | Jun 2013 | A1 |
20130154996 | Trend et al. | Jun 2013 | A1 |
20130173211 | Hoch et al. | Jul 2013 | A1 |
20130176271 | Sobel et al. | Jul 2013 | A1 |
20130176273 | Li et al. | Jul 2013 | A1 |
20130215049 | Lee | Aug 2013 | A1 |
20130215075 | Lee et al. | Aug 2013 | A1 |
20130224370 | Cok et al. | Aug 2013 | A1 |
20130234964 | Kim et al. | Sep 2013 | A1 |
20130257785 | Brown et al. | Oct 2013 | A1 |
20130257797 | Wu et al. | Oct 2013 | A1 |
20130257798 | Tamura et al. | Oct 2013 | A1 |
20130265276 | Obeidat et al. | Oct 2013 | A1 |
20130271427 | Benbasat et al. | Oct 2013 | A1 |
20130278447 | Kremin | Oct 2013 | A1 |
20130278498 | Jung et al. | Oct 2013 | A1 |
20130278525 | Lim et al. | Oct 2013 | A1 |
20130278543 | Hsu | Oct 2013 | A1 |
20130307821 | Kogo | Nov 2013 | A1 |
20130308031 | Theuwissen | Nov 2013 | A1 |
20130314342 | Kim et al. | Nov 2013 | A1 |
20130320994 | Brittain et al. | Dec 2013 | A1 |
20130321289 | Dubery et al. | Dec 2013 | A1 |
20130328759 | Al-Dahle et al. | Dec 2013 | A1 |
20130342479 | Pyo et al. | Dec 2013 | A1 |
20140002406 | Cormier et al. | Jan 2014 | A1 |
20140009438 | Liu et al. | Jan 2014 | A1 |
20140022186 | Hong et al. | Jan 2014 | A1 |
20140022201 | Boychuk | Jan 2014 | A1 |
20140043546 | Yamazaki et al. | Feb 2014 | A1 |
20140070823 | Roziere | Mar 2014 | A1 |
20140071084 | Sugiura | Mar 2014 | A1 |
20140078096 | Tan et al. | Mar 2014 | A1 |
20140098051 | Hong et al. | Apr 2014 | A1 |
20140104194 | Davidson et al. | Apr 2014 | A1 |
20140104225 | Davidson et al. | Apr 2014 | A1 |
20140104228 | Chen et al. | Apr 2014 | A1 |
20140111707 | Song et al. | Apr 2014 | A1 |
20140118270 | Moses | May 2014 | A1 |
20140125628 | Yoshida et al. | May 2014 | A1 |
20140132534 | Kim | May 2014 | A1 |
20140132560 | Huang et al. | May 2014 | A1 |
20140132860 | Hotelling et al. | May 2014 | A1 |
20140145997 | Tiruvuru | May 2014 | A1 |
20140152615 | Chang et al. | Jun 2014 | A1 |
20140160058 | Chen et al. | Jun 2014 | A1 |
20140160376 | Wang et al. | Jun 2014 | A1 |
20140168540 | Wang et al. | Jun 2014 | A1 |
20140192027 | Ksondzyk et al. | Jul 2014 | A1 |
20140204043 | Lin et al. | Jul 2014 | A1 |
20140204058 | Huang et al. | Jul 2014 | A1 |
20140210779 | Katsuta et al. | Jul 2014 | A1 |
20140232681 | Yeh | Aug 2014 | A1 |
20140232955 | Roudbari et al. | Aug 2014 | A1 |
20140240291 | Nam | Aug 2014 | A1 |
20140247245 | Lee | Sep 2014 | A1 |
20140253470 | Havilio | Sep 2014 | A1 |
20140267070 | Shahparnia et al. | Sep 2014 | A1 |
20140267128 | Bulea et al. | Sep 2014 | A1 |
20140267146 | Chang et al. | Sep 2014 | A1 |
20140267165 | Roziere | Sep 2014 | A1 |
20140285469 | Wright et al. | Sep 2014 | A1 |
20140306924 | Lin | Oct 2014 | A1 |
20140347574 | Tung et al. | Nov 2014 | A1 |
20140354301 | Trend | Dec 2014 | A1 |
20140362030 | Mo et al. | Dec 2014 | A1 |
20140362034 | Mo et al. | Dec 2014 | A1 |
20140368436 | Abzarian et al. | Dec 2014 | A1 |
20140368460 | Mo et al. | Dec 2014 | A1 |
20140375598 | Shen et al. | Dec 2014 | A1 |
20140375603 | Hotelling et al. | Dec 2014 | A1 |
20140375903 | Westhues et al. | Dec 2014 | A1 |
20150002176 | Kwon et al. | Jan 2015 | A1 |
20150002448 | Brunet et al. | Jan 2015 | A1 |
20150002464 | Nishioka et al. | Jan 2015 | A1 |
20150009421 | Choi | Jan 2015 | A1 |
20150015528 | Vandermeijden | Jan 2015 | A1 |
20150026398 | Kim | Jan 2015 | A1 |
20150042600 | Lukanc et al. | Feb 2015 | A1 |
20150042607 | Takanohashi | Feb 2015 | A1 |
20150049043 | Yousefpor | Feb 2015 | A1 |
20150049044 | Yousefpor | Feb 2015 | A1 |
20150062063 | Cheng et al. | Mar 2015 | A1 |
20150077375 | Hotelling et al. | Mar 2015 | A1 |
20150077394 | Dai et al. | Mar 2015 | A1 |
20150091587 | Shepelev et al. | Apr 2015 | A1 |
20150091849 | Ludden | Apr 2015 | A1 |
20150103047 | Hanauer et al. | Apr 2015 | A1 |
20150116263 | Kim | Apr 2015 | A1 |
20150123939 | Kim et al. | May 2015 | A1 |
20150227240 | Hong et al. | Aug 2015 | A1 |
20150242028 | Roberts et al. | Aug 2015 | A1 |
20150248177 | Maharyta | Sep 2015 | A1 |
20150253907 | Elias | Sep 2015 | A1 |
20150268789 | Liao et al. | Sep 2015 | A1 |
20150268795 | Kurasawa et al. | Sep 2015 | A1 |
20150309610 | Rabii et al. | Oct 2015 | A1 |
20150324035 | Yuan et al. | Nov 2015 | A1 |
20150338937 | Shepelev et al. | Nov 2015 | A1 |
20150370387 | Yamaguchi et al. | Dec 2015 | A1 |
20150378465 | Shih et al. | Dec 2015 | A1 |
20160011702 | Shih | Jan 2016 | A1 |
20160018348 | Yau et al. | Jan 2016 | A1 |
20160022218 | Hayes et al. | Jan 2016 | A1 |
20160034102 | Roziere et al. | Feb 2016 | A1 |
20160041629 | Rao | Feb 2016 | A1 |
20160048234 | Chandran et al. | Feb 2016 | A1 |
20160062533 | O'Connor | Mar 2016 | A1 |
20160077667 | Chiang | Mar 2016 | A1 |
20160117032 | Lin et al. | Apr 2016 | A1 |
20160139728 | Jeon et al. | May 2016 | A1 |
20160154505 | Chang | Jun 2016 | A1 |
20160154529 | Westerman | Jun 2016 | A1 |
20160170533 | Roziere | Jun 2016 | A1 |
20160195954 | Wang et al. | Jul 2016 | A1 |
20160216808 | Hotelling et al. | Jul 2016 | A1 |
20160224177 | Krah | Aug 2016 | A1 |
20160224189 | Yousefpor et al. | Aug 2016 | A1 |
20160246423 | Fu | Aug 2016 | A1 |
20160253041 | Park | Sep 2016 | A1 |
20160259448 | Guameri | Sep 2016 | A1 |
20160266676 | Wang et al. | Sep 2016 | A1 |
20160266679 | Shahparnia et al. | Sep 2016 | A1 |
20160282980 | Chintalapoodi | Sep 2016 | A1 |
20160283023 | Shin et al. | Sep 2016 | A1 |
20160299603 | Tsujioka et al. | Oct 2016 | A1 |
20160357344 | Benbasat et al. | Dec 2016 | A1 |
20170060318 | Gu et al. | Mar 2017 | A1 |
20170090599 | Kuboyama et al. | Mar 2017 | A1 |
20170090619 | Yousefpor | Mar 2017 | A1 |
20170090622 | Badaye et al. | Mar 2017 | A1 |
20170097703 | Lee | Apr 2017 | A1 |
20170108968 | Roziere | Apr 2017 | A1 |
20170139539 | Yao et al. | May 2017 | A1 |
20170168626 | Konicek | Jun 2017 | A1 |
20170220156 | Blondin et al. | Aug 2017 | A1 |
20170229502 | Liu | Aug 2017 | A1 |
20170269729 | Chintalapoodi | Sep 2017 | A1 |
20170285804 | Yingxuan et al. | Oct 2017 | A1 |
20170315646 | Roziere | Nov 2017 | A1 |
20170357371 | Kim | Dec 2017 | A1 |
20180067584 | Zhu et al. | Mar 2018 | A1 |
20180224962 | Mori | Aug 2018 | A1 |
20180275824 | Li et al. | Sep 2018 | A1 |
20180307374 | Shah et al. | Oct 2018 | A1 |
20180307375 | Shah et al. | Oct 2018 | A1 |
20180367139 | Pribisic et al. | Dec 2018 | A1 |
20190138152 | Yousefpor et al. | May 2019 | A1 |
20190220115 | Mori et al. | Jul 2019 | A1 |
20200333902 | Li et al. | Oct 2020 | A1 |
20200341585 | Li et al. | Oct 2020 | A1 |
20200387259 | Krah | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
1202254 | Dec 1998 | CN |
1246638 | Mar 2000 | CN |
1527274 | Sep 2004 | CN |
1672119 | Sep 2005 | CN |
1689677 | Nov 2005 | CN |
1711520 | Dec 2005 | CN |
1782837 | Jun 2006 | CN |
1818842 | Aug 2006 | CN |
1864124 | Nov 2006 | CN |
1945516 | Apr 2007 | CN |
101046720 | Oct 2007 | CN |
101071354 | Nov 2007 | CN |
101122838 | Feb 2008 | CN |
101349957 | Jan 2009 | CN |
101419516 | Apr 2009 | CN |
201218943 | Apr 2009 | CN |
101840293 | Sep 2010 | CN |
102023768 | Apr 2011 | CN |
102411460 | Apr 2012 | CN |
103049148 | Apr 2013 | CN |
103052930 | Apr 2013 | CN |
103221910 | Jul 2013 | CN |
103258492 | Aug 2013 | CN |
103294321 | Sep 2013 | CN |
103365500 | Oct 2013 | CN |
103365506 | Oct 2013 | CN |
103577008 | Feb 2014 | CN |
103809810 | May 2014 | CN |
103885627 | Jun 2014 | CN |
104020908 | Sep 2014 | CN |
104142757 | Nov 2014 | CN |
104252266 | Dec 2014 | CN |
105045446 | Nov 2015 | CN |
102648446 | Jan 2016 | CN |
105278739 | Jan 2016 | CN |
105474154 | Apr 2016 | CN |
105824461 | Aug 2016 | CN |
11 2008 001 245 | Mar 2010 | DE |
102011089693 | Jun 2013 | DE |
112012004912 | Aug 2014 | DE |
0 853 230 | Jul 1998 | EP |
1 192 585 | Apr 2002 | EP |
1 192 585 | Apr 2002 | EP |
1 573 706 | Feb 2004 | EP |
1 573 706 | Feb 2004 | EP |
1 455 264 | Sep 2004 | EP |
1 455 264 | Sep 2004 | EP |
1 644 918 | Dec 2004 | EP |
1 717 677 | Nov 2006 | EP |
1 717 677 | Nov 2006 | EP |
1745356 | Jan 2007 | EP |
1918803 | May 2008 | EP |
1 986 084 | Oct 2008 | EP |
2 077 489 | Jul 2009 | EP |
2144146 | Jan 2010 | EP |
2148264 | Jan 2010 | EP |
2224277 | Sep 2010 | EP |
2 256 606 | Dec 2010 | EP |
1455264 | May 2011 | EP |
2756048 | May 1998 | FR |
2896595 | Jul 2007 | FR |
2949008 | Feb 2011 | FR |
3004551 | Oct 2014 | FR |
1 546 317 | May 1979 | GB |
2 144 146 | Feb 1985 | GB |
2 428 306 | Jan 2007 | GB |
2 437 827 | Nov 2007 | GB |
2 450 207 | Dec 2008 | GB |
10-505183 | May 1998 | JP |
2000-163031 | Jun 2000 | JP |
3134925 | Feb 2001 | JP |
2002-342033 | Nov 2002 | JP |
2003-066417 | Mar 2003 | JP |
2004-503835 | Feb 2004 | JP |
2004-526265 | Aug 2004 | JP |
2005-30901 | Feb 2005 | JP |
2005-084128 | Mar 2005 | JP |
2005-301373 | Oct 2005 | JP |
2006-251927 | Sep 2006 | JP |
2007-018515 | Jan 2007 | JP |
2008-510251 | Apr 2008 | JP |
2008-117371 | May 2008 | JP |
2008-225415 | Sep 2008 | JP |
2009-86240 | Apr 2009 | JP |
2009-157373 | Jul 2009 | JP |
2010-528186 | Aug 2010 | JP |
10-2004-0002983 | Jan 2004 | KR |
10-20040091728 | Oct 2004 | KR |
10-20070002327 | Jan 2007 | KR |
10-2008-0019125 | Mar 2008 | KR |
10-2008-0041278 | May 2008 | KR |
10-2011-0044670 | Apr 2011 | KR |
10-2012-0085737 | Aug 2012 | KR |
10-2013-0094495 | Aug 2013 | KR |
10-2013-0117499 | Oct 2013 | KR |
10-2014-0074454 | Jun 2014 | KR |
10-1609992 | Apr 2016 | KR |
200715015 | Apr 2007 | TW |
200826032 | Jun 2008 | TW |
2008-35294 | Aug 2008 | TW |
M341273 | Sep 2008 | TW |
M344522 | Nov 2008 | TW |
M344544 | Nov 2008 | TW |
M352721 | Mar 2009 | TW |
201115442 | May 2011 | TW |
201203069 | Jan 2012 | TW |
201401129 | Jan 2014 | TW |
201419071 | May 2014 | TW |
WO-9935633 | Jul 1999 | WO |
WO-9935633 | Jul 1999 | WO |
2000073984 | Dec 2000 | WO |
WO-01097204 | Dec 2001 | WO |
2002080637 | Oct 2002 | WO |
2003079176 | Sep 2003 | WO |
2004013833 | Feb 2004 | WO |
2004114265 | Dec 2004 | WO |
2004013833 | Aug 2005 | WO |
WO-2005114369 | Dec 2005 | WO |
WO-2005114369 | Dec 2005 | WO |
WO-2006020305 | Feb 2006 | WO |
WO-2006020305 | Feb 2006 | WO |
WO-2006023147 | Mar 2006 | WO |
WO-2006023147 | Mar 2006 | WO |
WO-2006104745 | Oct 2006 | WO |
WO-2006104745 | Oct 2006 | WO |
2006126703 | Nov 2006 | WO |
WO-2006130584 | Dec 2006 | WO |
WO-2006130584 | Dec 2006 | WO |
WO-2007012899 | Feb 2007 | WO |
WO-2007034591 | Mar 2007 | WO |
2007054018 | May 2007 | WO |
WO-2007066488 | Jun 2007 | WO |
WO-2007089766 | Aug 2007 | WO |
WO-2007089766 | Aug 2007 | WO |
WO-2007115032 | Oct 2007 | WO |
2007146780 | Dec 2007 | WO |
WO-2007146785 | Dec 2007 | WO |
WO-2007146785 | Dec 2007 | WO |
2007115032 | Jan 2008 | WO |
2008000964 | Jan 2008 | WO |
WO-2008007118 | Jan 2008 | WO |
WO-2008007118 | Jan 2008 | WO |
2008030780 | Mar 2008 | WO |
WO-2008047990 | Apr 2008 | WO |
WO-2008076237 | Jun 2008 | WO |
2008076237 | Aug 2008 | WO |
2007146780 | Sep 2008 | WO |
WO-2008108514 | Sep 2008 | WO |
WO-2008135713 | Nov 2008 | WO |
WO-2009046363 | Apr 2009 | WO |
WO-2009103946 | Aug 2009 | WO |
WO-2009132146 | Oct 2009 | WO |
WO-2009132150 | Oct 2009 | WO |
WO-2010088659 | Aug 2010 | WO |
WO-2010117882 | Oct 2010 | WO |
2011015795 | Feb 2011 | WO |
2011071784 | Jun 2011 | WO |
2011015795 | Jul 2011 | WO |
WO-2011137200 | Nov 2011 | WO |
2013093327 | Jun 2013 | WO |
WO-2013158570 | Oct 2013 | WO |
2014105942 | Jul 2014 | WO |
WO-2014127716 | Aug 2014 | WO |
WO-2015017196 | Feb 2015 | WO |
WO-2015023410 | Feb 2015 | WO |
WO-2015072722 | May 2015 | WO |
WO-2015107969 | Jul 2015 | WO |
WO-2015178920 | Nov 2015 | WO |
WO-2016048269 | Mar 2016 | WO |
2016066282 | May 2016 | WO |
WO-2016069642 | May 2016 | WO |
WO-2016126525 | Aug 2016 | WO |
WO-2016144437 | Sep 2016 | WO |
2017058413 | Apr 2017 | WO |
WO-2017058415 | Apr 2017 | WO |
Entry |
---|
First Action Interview Pilot Program Pre-Interview Communication, dated Apr. 4, 2019, for U.S. Appl. No. 15,686,969, filed Aug. 25, 2017, three pages. |
Notice of Allowance dated Apr. 3, 2019, for U.S. Appl. No. 15/687,078, filed Aug. 25, 2017, eight pages. |
Non-Final Office Action dated Jan. 2, 2019, for U.S. Appl. No. 15/522,737, filed Apr. 27, 2017, thirteen pages. |
Non-Final Office Action dated Jan. 18, 2019 , for U.S. Appl. No. 14/993,017, filed Jan. 11, 2016, 34 pages. |
Non-Final Office Action dated Jan. 18, 2019 , for U.S. Appl. No. 15/087,956, filed Mar. 31, 2016, twelve pages. |
Notice of Allowance dated Dec. 31, 2018, for U.S. Appl. No. 14/318,157, filed Jun. 27, 2014, eight pages. |
Notice of Allowance dated Mar. 11, 2019, for U.S. Appl. No. 15/087,956, filed Mar. 31, 2016, ten pages. |
Non-Final Office Action dated Dec. 21, 2018, for U.S. Appl. No. 15/313,549, filed Nov. 22, 2016, thirteen pages. |
Final Office Action dated Feb. 6, 2019, for U.S. Appl. No. 15/009,774, filed Jan. 28, 2016, fifteen pages. |
Non-Final Office Action dated Feb. 11, 2019 , for U.S. Appl. No. 15/507,722, filed Feb. 28, 2017, fifteen pages. |
Cassidy, R. (Feb. 23, 2007). “The Tissot T-Touch Watch—A Groundbreaking Timepiece,” located at <http://ezinearticles.com/?The-Tissot-T-Touch-Watch---A-Groundbreaking-Timepiece&id . . . >, last visited Jan. 23, 2009, two pages. |
Chinese Search Report completed Dec. 14, 2011, for CN Patent Application No. ZL201020108330X, filed Feb. 2, 2010, with English Translation, 12 pages. |
Chinese Search Report completed May 18, 2015, for CN Patent Application No. 201310042816.6, filed Feb. 2, 2010, two pages. |
European Search Report dated Jul. 21, 2010, for EP Patent Application 10151969.2, three pages. |
European Search Report dated Apr. 25, 2012, for EP Patent Application No. 08022505.5, 12 pages. |
European Search Report dated Dec. 3, 2012, for EP Patent Application No. 12162177.5, seven pages. |
European Search Report dated Feb. 13, 2013, for EP Patent Application No. 12192450.0, six pages. |
European Search Report dated Aug. 31, 2015, for EP Application No. 15166813.4, eight pages. |
European Search Report dated Jul. 27, 2017, for EP Application No. 14902458.0, four pages. |
European Search Report dated Jan. 31, 2018, for EP Application No. 17183937.6, four pages. |
Final Office Action dated Jan. 5, 2012, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 15 pages. |
Final Office Action dated Jan. 3, 2013, for U.S. Appl. No. 11/818,498, filed Jun. 13, 2007, 17 pages. |
Final Office Action dated Feb. 1, 2013, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, nine pages. |
Final Office Action dated Feb. 5, 2013, for U.S. Appl. No. 12/500,911, filed Jul. 10, 2009, 15 pages. |
Final Office Action dated Apr. 30, 2013, for U.S. Appl. No. 12/494,173, filed Jun. 29, 2009, 7 pages. |
Final Office Action dated May 22, 2013, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 16 pages. |
Final Office Action dated Jun. 21, 2013, for U.S. Appl. No. 12/545,754, filed Aug. 21, 2009, 6 pages. |
Final Office Action dated Jul. 19, 2013, for U.S. Appl. No. 12/545,604, filed Aug. 21, 2009, 17 pages. |
Final Office Action dated Aug. 12, 2013, for U.S. Appl. No. 12/238,333, filed Sep. 25, 2008, 19 pages. |
Final Office Action dated Aug. 13, 2013, for U.S. Appl. No. 12/238,342, filed Sep. 25, 2008, 14 pages. |
Final Office Action dated Jan. 27, 2014, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 20 pages. |
Final Office Action dated Apr. 23, 2014 for U.S. Appl. No. 12/847,987, filed Jul. 30, 2010, 16 pages. |
Final Office Action dated May 9, 2014, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, 13 pages. |
Final Office Action dated Jul. 16, 2014, for U.S. Appl. No. 12/545,604, filed Aug. 21, 2009, 18 pages. |
Final Office Action dated Oct. 22, 2014, for U.S. Appl. No. 12/238,342, filed Sep. 25, 2008, 16 pages. |
Final Office Action dated Oct. 22, 2014, for U.S. Appl. No. 13/448,182, filed Apr. 16, 2012, 11 pages. |
Final Office Action dated Apr. 22, 2015, for U.S. Appl. No. 12/238,333, fiied Sep. 25, 2008, 23 pages. |
Final Office Action dated Jun. 11, 2015, for U.S. Appl. No. 13/448,182, filed Apr. 16, 2012, 12 pages. |
Final Office Action dated Nov. 12, 2015, for U.S. Appl. No. 14/082,074, filed Nov. 15, 2013, 22 pages. |
Final Office Action dated Jan. 4, 2016, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, 25 pages. |
Final Office Action dated Jan. 29, 2016, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, nine pages. |
Final Office Action dated Apr. 8, 2016, for U.S. Appl. No. 13/899,391, filed May 21, 2013, ten pages. |
Final Office Action dated May 9, 2016, for U.S. Appl. No. 14/318,157, filed Jun. 27, 2014, ten pages. |
Final Office Action dated May 27, 2016, for U.S. Appl. No. 14/645,120, filed Mar. 11, 2015, twelve pages. |
Final Office Action dated Jun. 14, 2016, for U.S. Appl. No. 14/550,686, filed Nov. 21, 2014, ten pages. |
Final Office Action dated Sep. 29, 2016, for U.S. Appl. No. 14/558,529, filed Dec. 2, 2014, 22 pages. |
Final Office Action dated Nov. 4, 2016, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, 18 pages. |
Final Office Action dated Jul. 26, 2017, for U.S. Appl. No. 14/318,157, filed Jun. 27, 2014, 10 pages. |
Final Office Action dated Aug. 10, 2017, for U.S. Appl. No. 14/645,120, filed Mar. 11, 2015, twelve pages. |
Final Office Action dated Aug. 21, 2017, for U.S. Appl. No. 14/550,686, filed Nov. 21, 2014, 11 pages. |
Final Office Action dated Dec. 5, 2017, for U.S. Appl. No. 15/006,987, filed Jan. 26, 2016,16 pages. |
Final Office Action dated May 14, 2018, for U.S. Appl. No. 15/006,987, filed Jan. 26, 2016, 11 pages. |
Final Office Action dated May 17, 2018, for U.S. Appl. No. 15/017,463, filed Feb. 5, 2016, 22 pages. |
Final Office Action dated Jul. 27, 2018, for U.S. Appl. No. 15/097,179, filed Apr. 12, 2016, 11 pages. |
Final Office Action dated Aug. 16, 2018, for U.S. Appl. No. 14/993,017, filed Jan. 11, 2016, 35 pages. |
International Search Report dated Mar. 10, 2010, for PCT Application No. PCT/US2010/22868, filed Feb. 2, 2010, three pages. |
International Search Report dated Jan. 14. 2011, for PCT Application No. PCT/US2010/029698, filed Apr. 1, 2010, 4 pages. |
International Search Report dated May 2, 2011, for PCT Application No. PCT/US2010/058988, filed Dec. 3, 2010, five pages. |
International Search Report dated Aug. 6, 2013, for PCT Application No. PCT/US2013/036662, filed Apr. 15, 2013, three pages. |
International Search Report dated Jan. 29, 2015, for PCT Application No. PCT/US2014/047888, filed Jul. 23, 2014, six pages. |
International Search Report dated May 9, 2016, for PCT Application No. PCT/US2016/015479, filed Jan. 28, 2016, five pages. |
International Search Report dated May 11, 2016, for PCT Application No. PCT/US2016/016011, filed Feb. 1, 2016, six pages. |
Lee, S.K. et al. (Apr. 1985). “A Multi-Touch Three Dimensional Touch-Sensitive Tablet,” Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, pp. 21-25. |
Malik, S. et al. (2004). “Visual Touchpad: A Two-Handed Gestural Input Device,” Proceedings of the 6th International Conference on Multimodal Interfaces, State College, PA, Oct. 13-15, 2004, ICMI '04, ACM pp. 289-296. |
Non-Final Office Action dated Feb. 4, 2011, for U.S. Appl. No. 12/038,760, filed Feb. 27, 2008, 18 pages. |
Non-Final Office Action dated Jun. 9, 2011, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 13 pages. |
Non-Final Office Action dated Mar. 9, 2012, for U.S. Appl. No. 12/238,342, filed Sep. 25, 2008, 26 pgs. |
Non-Final Office Action dated May 3, 2012, for U.S. Appl. No. 12/238,333, filed Sep. 25, 2008, 22 pgs. |
Non-Final Office Action dated May 25, 2012, for U.S. Appl. No. 11/818,498, filed Jun. 13, 2007, 16 pages. |
Non-Final Office Action dated Jun. 7, 2012, for U.S. Appl. No. 12/500,911, filed Jul. 10, 2009, 16 pages. |
Non-Final Office Action dated Aug. 28, 2012, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, nine pages. |
Non-Final Office Action dated Sep. 26, 2012, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 14 pages. |
Non-Final Office Action dated Oct. 5, 2012, for U.S. Appl. No. 12/545,754, filed Aug. 21, 2009, 10 pages. |
Non-Final Office Action dated Nov. 23, 2012, for U.S. Appl. No. 12/545,557, filed Aug. 21, 2009, 11 pages. |
Non-Final Office Action dated Nov. 28, 2012, for U.S. Appl. No. 12/494,173, filed Jun. 29, 2009, six pages. |
Non-Final office Action dated Jan. 7, 2013, for U.S. Appl. No. 12/545,604, filed Aug. 21, 2009, 12 pages. |
Non-Final Office Action dated Jan. 7, 2013, for U.S. Appl. No. 12/238,333, filed Sep. 25, 2008, 20 pgs. |
Non-Final Office Action dated Feb. 15, 2013, for U.S. Appl. No. 12/238,342, filed Sep. 25, 2008, 15 pages. |
Non-Final Office Action dated Mar. 29, 2013 for U.S. Appl. No. 13/737,779, filed Jan. 9, 2013, nine pages. |
Non-Final Office Action dated Sep. 6, 2013, for U.S. Appl. No. 12/847,987, filed Jul. 30, 2010, 15 pages. |
Non-Final Office Action dated Sep. 10, 2013, for U.S. Appl. No. 12/545,754, filed Aug. 21, 2009, six pages. |
Non-Final Office Action dated Sep. 30, 2013, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 18 pages. |
Non-Final Office Action dated Nov. 8, 2013, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, 12 pages. |
Non-Final Office Action dated Dec. 19, 2013, for U.S. Appl. No. 12/545,604, filed Aug. 21, 2009, 17 pages. |
Non-Final Office Action dated Jan. 2, 2014, for U.S. Appl. No. 12/545,754, filed Aug. 21, 2009, 11 pages. |
Non-Final Office Action dated Jan. 3, 2014 , for U.S. Appl. No. 12/545,557, filed Aug. 21, 2009, 9 pages. |
Non-Final Office Action dated Jan. 31, 2014, for U.S. Appl. No. 13/448,182, filed Apr. 16, 2012, 18 pages. |
Non-Final Office Action dated Mar. 12, 2014, for U.S. Appl. No. 12/238,342, filed Sep. 25, 2008, 15 pages. |
Non-Final Office Action dated Apr. 10, 2014, for U.S. Appl. No. 14/055,717, filed Oct. 16, 2013, 10 pages. |
Non-Final Office Action dated Sep. 18, 2014, for U.S. Appl. No. 12/238,333, filed Sep. 25, 2008, 21 pages. |
Non-Final Office Action dated Apr. 10, 2015, for U.S. Appl. No. 14/082,074, filed Nov. 15, 2013, 23 pages. |
Non-Final Office Action dated May 4, 2015, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, nine pages. |
Non-Final Office Action dated May 8, 2015, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, 25 pages. |
Non-Final Office Action dated Aug. 20, 2015 , for U.S. Appl. No. 14/550,686, filed Nov. 21, 2014, ten pages. |
Non-Final Office Action dated Oct. 5, 2015, for U.S. Appl. No. 13/899,391, filed May 21, 2013, ten pages. |
Non-Final Office Action dated Oct. 6, 2015, for U.S. Appl. No. 14/318,157, filed Jun. 27, 2014, seven pages. |
Non-Final Office Action dated Oct. 27, 2015, for U.S. Appl. No. 14/645,120, filed Mar. 11, 2015, eight pages. |
Non-Final Office Action dated Apr. 14, 2016, for U.S. Appl. No. 14/558,529, filed Dec. 2, 2014, twenty pages. |
Non-Final Office Action dated May 25, 2016, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, 23 pages. |
Non-Final Office Action dated Jun. 1, 2016, for U.S. Appl. No. 14/615,186, filed Feb. 5, 2015, eight pages. |
Non-Final Office Action dated Dec. 14, 2016, for U.S. Appl. No. 14/550,686, filed Nov. 21, 2014, eight pages. |
Non-Final Office Action dated Dec. 16, 2016, for U.S. Appl. No. 14/645,120, filed Mar. 11, 2015, ten pages. |
Non-Final Office Action dated Dec. 19, 2016, for U.S. Appl. No. 14/318,157, filed Jun. 27, 2014, eleven pages. |
Non-Final Office Action dated Mar. 13, 2017, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, 20 pages. |
Non-Final Office Action dated Apr. 7, 2017, for U.S. Appl. No. 15/144,706, filed May 2, 2016, eight pages. |
Non-Final Office Action dated Jun. 14, 2017, for U.S. Appl. No. 15/006,987, filed Jan. 26, 2016, 14 pages. |
Non-Final Office Action dated Jun. 26, 2017, for U.S. Appl. No. 14/558,529, filed Dec. 2, 2014, six pages. |
Non-Final Office Action dated Sep. 14, 2017 , for U.S. Appl. No. 15/017,463, filed Feb. 5, 2016, 22 pages. |
Non-Final Office Action dated Dec. 22, 2017 , for U.S. Appl. No. 14/993,017, filed Jan. 11, 2016, 23 pages. |
Non-Final Office Action dated Jan. 22, 2018 , for U.S. Appl. No. 15/097,179, filed Apr. 12, 2016, 11 pages. |
Non-Final Office Action dated Apr. 3, 2018, for U.S. Appl. No. 14/318,157, filed Jun. 27, 2014, twelve pages. |
Non-Final Office Action dated Jun. 20, 2018, for U.S. Appl. No. 15/009,774, filed Jan. 28, 2016, seventeen pages. |
Notice of Allowance dated Jun. 10, 2013, for U.S. Appl. No. 12/545,557, filed Aug. 21, 2009, 9 pages. |
Notice of Allowance dated Aug. 19, 2013, for U.S. Appl. No. 12/500,911, filed Jul. 10, 2009, six pages. |
Notice of Allowance dated Sep. 3, 2013, for U.S. Appl. No. 13/737,779, filed Jan. 9, 2013, 10 pages. |
Notice of Allowance dated Apr. 11, 2014, for U.S. Appl. No. 12/545,557, filed Aug. 21, 2009, 9 pages. |
Notice of Allowance dated Aug. 21, 2014, for U.S. Appl. No. 12/545,754, filed Aug. 21, 2009, ten pages. |
Notice of Allowance dated Oct. 15, 2014, for U.S. Appl. No. 12/494,173, filed Jun. 29, 2009, eight pages. |
Notice of Allowance dated Nov. 7, 2014, for U.S. Appl. No. 14/055,717, filed Oct. 16, 2013, six pages. |
Notice of Allowance dated Mar. 16, 2015, for U.S. Appl. No. 14/312,489, filed Jun. 23, 2014, eight pages. |
Notice of Allowance dated Dec. 1, 2015, for U.S. Appl. No. 12/238,333, filed Sep. 25, 2008, nine pages. |
Notice of Allowance dated Jan. 8, 2016, for U.S. Appl. No. 13/448,182, filed Apr. 16, 2012, nine pages. |
Notice of Allowance dated Dec. 2, 2016, for U.S. Appl. No. 14/615,186, filed Feb. 5, 2015, seven pages. |
Notice of Allowance dated Sep. 20, 2017, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, eight pages. |
Notice of Allowance dated Sep. 20, 2017, for U.S. Appl. No. 15/144,706, filed May 2, 2016, nine pages. |
Notice of Allowance dated Oct. 3, 2017, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, nine pages. |
Notice of Allowance dated Oct. 13, 2017, for U.S. Appl. No. 14/558,529, filed Dec. 2, 2014, eight pages. |
Notice of Allowance dated Feb. 9, 2018, for U.S. Appl. No. 14/550,686, filed Nov. 21, 2014, 11 pages. |
Notice of Allowance dated Mar. 1, 2018, for U.S. Appl. No. 14/645,120, filed Mar. 11, 2015, five pages. |
Rekimoto, J. (2002). “SmartSkin: An Infrastructure for Freehand Manipulation on Interactive Surfaces,” CHI 2002, Apr. 20-25, 2002. [(Apr. 20, 2002). 4(1):113-120.]. |
Rubine, D.H. (Dec. 1991). “The Automatic Recognition of Gestures,” CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, 285 pages. |
Rubine, D.H. (May 1992). “Combining Gestures and Direct Manipulation,” CHI '92, pp. 659-660. |
Search Report dated Apr. 29, 2009, for NL Application No. 2001672, with English translation of Written Opinion, eight pages. |
Search Report dated Oct. 14, 2015, for TW Application No. 103116003, one page. |
Search Report dated Nov. 12, 2015, for ROC (Taiwan) Patent Application No. 103105965, with English translation, two pages. |
TW Search Report dated May 3, 2016, for TW Application No. 104115152, one page. |
Westerman, W. (Spring 1999). “Hand Tracking, Finger Identification, and Chordic Manipulation on a Multi-Touch Surface,” A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering, 364 pages. |
Wilson, A.D. (Oct. 15, 2006). “Robust Computer Vision-Based Detection of Pinching for One and Two-Handed Gesture Input,” ACM, USIT 06, Montreux, Switzerland, Oct. 15-18, 2006, pp. 255-258. |
Yang, J-H. et al. (Jul. 2013). “A Noise-Immune High-Speed Readout Circuit for In-Cell Touch Screen Panels,” IEEE Transactions on Circuits and Systems—1: Regular Papers 60(7):1800-1809. |
Advisory Action received for U.S. Appl. No. 11/818,498, dated May 17, 2013, 5 pages. |
Advisory Action received for U.S. Appl. No. 11/818,498, dated Oct. 14, 2011, 5 pages. |
Advisory Action received for U.S. Appl. No. 12/206,680, dated Apr. 16, 2012, 3 pages. |
Advisory Action received for U.S. Appl. No. 12/238,333, dated Dec. 17, 2013, 3 pages. |
Advisory Action received for U.S. Appl. No. 12/238,333, dated Oct. 21, 2015, 4 pages. |
Advisory Action received for U.S. Appl. No. 12/500,911, dated May 17, 2013, 3 pages. |
Advisory Action received for U.S. Appl. No. 12/642,466, dated May 23, 2013, 2 pages. |
Advisory Action received for U.S. Appl. No. 14/082,003, dated Mar. 10, 2016, 3 pages. |
Advisory Action received for U.S. Appl. No. 14/645,120, dated Nov. 25, 2016, 3 pages. |
Advisory Action received for U.S. Appl. No. 15/017,463, dated Aug. 8, 2018, 3 pages. |
Decision to Grant received for European Patent Application No. 16704768.7, dated May 23, 2019, 1 page. |
Final Office Action received for U.S. Appl. No. 11/818,498, dated Jun. 10, 2011, 16 pages. |
Final Office Action received for U.S. Appl. No. 12/038,760, dated Jul. 23, 2013, 20 pages. |
Final Office Action received for U.S. Appl. No. 12/038,760, dated Jun. 8, 2011, 21 pages. |
Final Office Action received for U.S. Appl. No. 12/110,024, dated Dec. 24, 2012, 21 pages. |
Final Office Action received for U.S. Appl. No. 12/110,024, dated Jan. 19, 2012, 12 pages. |
Final Office Action received for U.S. Appl. No. 12/110,075, dated Aug. 31, 2012, 15 pages. |
Final Office Action received for U.S. Appl. No. 12/333,250, dated Dec. 15, 2011, 13 pages. |
Final Office Action received for U.S. Appl. No. 14/157,737, dated Aug. 31, 2015, 28 pages. |
Final Office Action received for U.S. Appl. No. 14/997,031, dated Jun. 14, 2018, 19 pages. |
Final Office Action received for U.S. Appl. No. 15/090,555, dated Aug. 29, 2018, 18 pages. |
Final Office Action received for U.S. Appl. No. 15/228,942, dated Apr. 17, 2019, 9 pages. |
Final Office Action received for U.S. Appl. No. 15/313,549, dated Dec. 18, 2019, 24 pages. |
Final Office Action received for U.S. Appl. No. 15/507,722, dated Sep. 13, 2019, 18 pages. |
Final Office Action received for U.S. Appl. No. 15/522,737, dated Sep. 12, 2019, 15 pages. |
Final Office Action received for U.S. Appl. No. 16/201,730, dated Nov. 1, 2019, 11 pages. |
First Action Interview Office Action received for U.S. Appl. No. 15/686,969, dated Aug. 19, 2019, 7 pages. |
First Action Interview received for U.S. Appl. No. 15/228,942, dated Nov. 26, 2018, 5 pages. |
Gibilisco, Stan, “The Illustrated Dictionary of Electronics”, Eighth Edition, p. 173. |
Intention to Grant received for European Patent Application No. 15166813.4, dated Sep. 20, 2019, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2010/022868, dated Jan. 27, 2011, 10 pages. |
International Search Report received for PCT Patent Application No. PCT/US2008/078836, dated Mar. 19, 2009, 4 pages. |
International Search Report received for PCT Patent Application No. PCT/US2009/041460, dated Jul. 17, 2009, 3 pages. |
International Search Report received for PCT Patent Application No. PCT/US2009/041465, dated Aug. 5, 2009, 4 pages. |
International Search Report received for PCT Patent Application No. PCT/US2014/039245, dated Sep. 24, 2014, 3 pages. |
International Search Report received for PCT Patent Application No. PCT/US2014/056795, dated Dec. 12, 2014, 3 pages. |
International Search Report received for PCT Patent Application No. PCT/US2015/057644, dated Jan. 8, 2016, 3 pages. |
International Search Report received for PCT Patent Application No. PCT/US2016/048694, dated Oct. 31, 2016, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/818,498, dated Dec. 13, 2010, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/038,760, dated Jan. 2, 2013, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/110,024, dated Jul. 3, 2012, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/110,024, dated Jul. 11, 2011, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/110,075, dated Jan. 25, 2012, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/110,075, dated Jul. 8, 2011, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/110,075, dated Mar. 28, 2013, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/333,250, dated Aug. 17, 2011, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/157,737, dated Feb. 10, 2015, 24 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/009,774, dated Sep. 4, 2019, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/017,463, dated May 15, 2019, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/090,555, dated Nov. 3, 2017, 28 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/313,549, dated Jul. 10, 2019, 25 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/201,730, dated May 10, 2019, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 12/038,760, dated Nov. 8, 2013, 15 pages. |
Notice of Allowance received for U.S. Appl. No. 12/110,024, dated May 23, 2013, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 12/110,075, dated Aug. 19, 2013, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 12/333,250, dated Aug. 28, 2012, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 12/545,604, dated Oct. 5, 2015, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 14/157,737, dated Dec. 14, 2015, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/329,719, dated Nov. 2, 2015, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 14/993,017, dated Jul. 12, 2019, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 15/090,555, dated Feb. 12, 2019, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 15/228,942, dated Aug. 30, 2019, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 15/686,969, dated Jan. 2, 2020, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 15/691,283, dated Jun. 5, 2019, 10 pages. |
Notification of Grant received for Korean Patent Application No. 10-2016-7003645, dated May 31, 2019, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Notification to Grant received for Chinese Patent Application No. 201610790093.1, dated Apr. 30, 2019, 4 pages (2 pages of English Translation and 2 page of Official Copy). |
O'Connor, Todd, “mTouch Projected Capacitive Touch Screen Sensing Theory of Operation”, Microchip TB3064, Microchip Technology Inc., pp. 1-16. |
Office Action received for Australian Patent Application No. 2019200698, dated Nov. 23, 2019, 3 pages. |
Office Action received for Chinese Patent Application No. 201310330348.2, dated Nov. 3, 2015, 7 pages (4 pages of English Translation and 3 pages of Official copy). |
Office Action received for Chinese Patent Application No. 201480081612.6, dated Jun. 4, 2019, 22 pages (11 of English Translation and 11 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201580058366.7, dated May 28, 2019, 19 pages (10 pages of English Translation and 9 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201680012966.4, dated Nov. 1, 2019, 19 pages (10 pages of English Translation and 9 pages of Official copy). |
Preinterview First Office Action received for U.S. Appl. No. 15/228,942, dated Sep. 13, 2018, 4 pages. |
Restriction Requirement received for U.S. Appl. No. 12/238,333, dated Mar. 8, 2012, 6 pages. |
Restriction Requirement received for U.S. Appl. No. 12/494,173, dated Aug. 8, 2012, 5 pages. |
Restriction Requirement received for U.S. Appl. No. 13/899,391, dated Apr. 8, 2015, 6 pages. |
Restriction Requirement received for U.S. Appl. No. 15/087,956, dated Feb. 13, 2018, 8 pages. |
Restriction Requirement received for U.S. Appl. No. 15/097,179, dated Sep. 28, 2017, 6 pages. |
Restriction Requirement received for U.S. Appl. No. 15/228,942, dated Mar. 21, 2018, 6 pages. |
Restriction Requirement received for U.S. Appl. No. 15/691,283, dated Mar. 5, 2019, 6 pages. |
Search Report received for Chinese Patent Application No. 200820133814.2, dated Jan. 10, 2011, 25 pages. |
Search Report received for Chinese Patent Application No. 200920008199.7, dated Jan. 7, 2011, 14 pages. |
Search Report received for Chinese Patent Application No. ZL2009201524013, completed on Jun. 3, 2011, 20 pages. |
Search Report received for European Patent Application No. 08017396.6, dated Mar. 19, 2009, 7 pages. |
Search Report received for Great Britain Patent Application No. GB0817242.1, dated Jan. 19, 2009, 2 pages. |
Search Report received for Great Britain Patent Application No. GB0817242.1, dated Jan. 19, 2010, 2 pages. |
Written Opinion received for PCT Patent Application No. PCT/US2010/022868, dated Mar. 10, 2010, 4 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 11/818,498, dated Dec. 20, 2013, 17 pages. |
Extended European Search Report received for European Patent Application No. 18197785.1, dated Apr. 5, 2019, 8 pages. |
Final Office Action received for U.S. Appl. No. 15/017,463, dated Feb. 13, 2020, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/313,549, dated Apr. 23, 2020, 33 pages. |
Notice of Allowance received for U.S. Appl. No. 15/009,774, dated Mar. 20, 2020, 16 pages. |
Notice of Allowance received for U.S. Appl. No. 15/507,722, dated Feb. 27, 2020, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/522,737, dated Mar. 6, 2020, 8 pages. |
Patent Board Decision received for U.S. Appl. No. 11/818,498, dated Nov. 2, 2016, 8 pages. |
Search Report received for Chinese Patent Application No. 201680008313.9, dated Jul. 5, 2019, 4 pages (2 pages English Translation and 2 pages of Official copy). |
Supplemental Notice of Allowance received for U.S. Appl. No. 15/686,969, dated Feb. 21, 2020, 2 pages. |
Lowe, Doug, “Electronics Components: How to Use an Op Amp as a Voltage Comparator”, Dummies, Available online at :<https://www.dummies.com/programming/electronics/components/electronics-components-how-to-use-an-pp-amp-as-a-voltage-comparator/>, 2012, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/009,774, dated Jul. 1, 2020, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 15/313,549, dated Oct. 21, 2020, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/921,817, dated Sep. 22, 2021, 24 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/924,047, dated Sep. 24, 2021, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/003,133, dated Aug. 3, 2021, 22 pages. |
Number | Date | Country | |
---|---|---|---|
20190034032 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
61019222 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15006987 | Jan 2016 | US |
Child | 16152326 | US | |
Parent | 12238342 | Sep 2008 | US |
Child | 15006987 | US |